Institut Eurecom: November 2008 Archives

WOMBAT paper accepted at NDSS2009

|
The following paper has been accepted at the Network and Distributed Systems Security (NDSS) 2009 conference:

Title: Scalable, Behavior-Based Malware Clustering
Authors:
  • Ulrich Bayer, TUV
  • Paolo Milani Comparetti, TUV
  • Clemens Hlauschek, TUV
  • Christopher Kruegel, UCSB
  • Engin Kirda, Eurecom

Anti-malware companies receive thousands of malware samples every day. To process this large quantity, a number of automated analysis tools were developed. These tools execute a malicious program in a controlled environment and produce reports that summarize the program's actions. Of course, the problem of analyzing the reports still remains. Recently, researchers have started to explore automated clustering techniques that help to identify samples that exhibit similar behavior. This allows an analyst to discard reports of samples that have been seen before, while focusing on novel, interesting threats. Unfortunately, previous techniques do not scale well and frequently fail to generalize the observed activity well enough to recognize related malware.

In this paper, we propose a scalable clustering approach to identify and group malware samples that exhibit similar behavior. For this, we first perform dynamic analysis to obtain the execution traces of malware programs. These execution traces are then generalized into behavioral profiles, which characterize the activity of a program in more abstract terms. The profiles serve as input to an efficient clustering algorithm that allows us to handle sample sets that are an order of magnitude larger than previous approaches. We have applied our system to real-world malware collections. The results demonstrate that our technique is able to recognize and group malware programs that behave similarly, achieving a better precision than previous approaches. To underline the scalability of the system, we clustered a set of more than 75 thousand samples in less than three hours.

PhD Defense of Corrado Leita

|
M. Corrado LEITA will publicly defend his UNS Doctoral Thesis 
on Thursday, December 4th 2008 at 2:00 pm, in the Amphitheater MARCONI at EURECOM.

Topic of the Thesis:

"SGNET: automated protocol learning for the observation of malicious threats"

Jury members :

  • Marc DACIER (Symantec)
  • Vern PAXSON (ICSI)
  • Hervé DEBAR (France Télécom R&D/Orange Labs)
  • Engin KIRDA (Eurecom)
  • Christopher KRUEGEL (UCSB)
  • Mohamed KAANICHE (LAAS CNRS)
  • Sotiris IOANNIDIS (FORTH)

One of the main prerequisites for the development of reliable defenses to protect a network resource consists in the collection of quantitative data on  Internet threats. This attempt to "know your enemy" leads to an increasing interest in the collection and exploitation of datasets providing intelligence on network attacks. The creation of these datasets is a very challenging task. The challenge derives from the need to cope with the spatial and quantitative diversity of malicious activities. The observations need to be performed on a broad perspective, since the activities are not uniformly distributed over the IP space. At the same time, the data collectors need to be sophisticated enough to extract a sufficient amount of information on each activity and perform meaningful inferences. How to combine the simultaneous need to deploy a vast number of data collectors with the need of sophistication required to make meaningful observations? This work addresses this challenge by proposing a protocol learning technique based on bioinformatics algorithms. The proposed technique allows to automatically generate low-cost protocol responders starting from a set of samples of network interaction. Its characteristics are exploited in a distributed honeypot deployment that collected information on Internet attacks for a period of 8 months in 23 different networks distributed all over the world (Europe, Australia, United States). This information is organized in a central dataset enriched with contextual information from a number of sources and analysis tools. Simple data mining techniques proposed in this work allow the generation of a valuable overview on the propagation techniques employed by nowadays malware.