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Abstract

This deliverable offers an extensive report of all experiments carried out with respect
to root cause analysis techniques. This final deliverable for Workpackage 5 (Threats
Intelligence ) builds upon D12 (D5.1 - Technical Survey on Root Cause Analysis) and
benefits from the modifications made to the various software modules developed in WP4,
following up the experimental feedback.

The R&D efforts carried out in WP5 with respect to root cause analysis have produced
a novel framework for attack attribution called TRIAGE. This framework has been suc-
cessfully applied to various WOMBAT datasets to perform intelligence analyses by taking
advantage of several structural and contextual features of the data sets developed by the
different partners. These experiments enabled us to get insights into the underlying root
phenomena that have likely caused many security events observed by sensors deployed
by WOMBAT partners.

In this deliverable, we provide an in-depth description of experimental results obtained
with TRIAGE, in particular with respect to (i) the analysis of Rogue AV campaigns (based
on HARMUR data), and (i) the analysis of different malware variants attributed to the
Allaple malware family (based on data from SGNET, VirusTotal and Anubis).

Finally, we describe another experiment performed on a large spam data set obtained
from Symantec.Cloud (formerly MessageLabs), for which TRIAGE was successfully used
to analyze spam botnets and their ecosystem, i.e., how those botnets are used by spam-
mers to organize and coordinate their spam campaigns. Thanks to this application,
we are considering a possible technology transfer of TRIAGE to Symantec. Cloud, who is
interested in carrying out regular intelligence analyses of their spam data sets, and may
also consider the integration of TRIAGE to their Skeptic® spam filtering technology.



1 Introduction

Understanding the existing and emerging threats on the Internet should help us to
effectively protect the Internet economy, our information systems and the net citizens.
This assertion may look blindingly obvious to many people. However, things are less
evident when looking more closely at the problem. Among security experts, there is at
least one thing on which everybody agrees: combating cyber-crime becomes harder and
harder [63] (17, [61]. Recent threat reports published by major security companies have
also acknowledged the fact that the cyber-crime scene is becoming increasingly more
organized, and more consolidated [71] [72] [35] 49].

Since 2003, there seems to be a shift in the nature of attacks in the Internet, from
server-side to client-side attacks and from fast spreading worms to profit-oriented activ-
ities like identity theft, fraud, spam, phishing, online gambling, extortion. Most of those
illegal activities are supported by large botnets controlled by criminal organizations. All
facts and figures presented in public security threat reports are certainly valuable and
help to shed some light on those cyber-criminal phenomena, but a lot of unknowns
remain.

In fact, current analysis tools do not allow us to automatically perform intelligence
analysis on attack phenomena, even less from a strategic viewpoint. Even though there
are some plausible indicators about the origins, causes, and consequences of malicious
activities, very few claims can be backed up by scientific evidence. The main reason
is that no global threat analysis framework exists to rigorously investigate emerging
attack phenomena using different viewpoints (e.g., different data sources), together with
effective aggregation methods that would enable an analyst to combine many different
attack features in an appropriate way.

1.1 Attack Attribution

Many open issues remain regarding the root causes and the attribution of most security
events observed or collected by various means. For example, who is really behind the
observed attacks, i.e., how many organizations are responsible for them? Where do they
originate? How many groups control the largest botnets used for sending spam? What
are the emerging strategies used in cyber-crime? Which “rogue networks” [69] are used



1.2 TRIAGE: Towards Automated Intelligence Analysis

as bullet-proof hosting (e.g., RBNEI, Atrivo a.k.a. Intercage, McColo, or 3FN, and maybe
some others), but more importantly, how do they evolve over time ? Are botnets able
to coordinate their actions?

As another example, we observe a growing number of malware samples of various types
spreading all over the Internet, sometimes at a very high pace. Some WOMBAT partners,
such as VirusTotal and Symantec, receive hundreds of thousands of seemingly unique
malware samples per week. Figuring out which groups of malware samples are likely due
to the same criminal organization, or could be linked to the same root phenomenon, is
a daunting task.

To succeed, defenders need to have at their disposal efficient techniques that prioritize
security events, and highlight the ones they should first look at, depending on their likely
impact. Security analysts must have tools and techniques to help them characterize the
threats and produce countermeasures in an automated way, as much as possible.

1.2 TRIAGE: Towards Automated Intelligence Analysis

All previously described issues are related to a common security problem often referred
to as attack attribution, i.e., how to attribute (potentially) different attacks to a common
root cause, based on the combination of all available evidence.

In WOMBAT deliverable D12 (D5.1), we have provided an extensive survey of root cause
analysis technique. Recall that, by root cause, we do not refer to the identification of a
given machine that has launched one specific, isolated attack (i.e., we are not interested
in what is sometimes called IP traceback). Instead, we are more interested in having
a better idea of the various individuals, groups or communities (of machines) that are
responsible for large-scale attack phenomena. Remember also that the ultimate goal of
this WorkPackage (WP5 - Threats Intelligence) is not to offer names of individuals to law
enforcement agencies. The goal is, instead, to provide models of the acting entities that
we are facing. However, through generalization, these models can help in understanding
the threats that every person or organization who connects to the Internet currently
faces.

As a result, the R&D efforts carried out by the WOMBAT consortium in WorkPack-
age 5 (WP5 - Threats Intelligence) have produced a novel software framework, called
TRIAGE [75], a multi-criteria analysis framework that supports attribution and root
cause analysis of security threats. This framework has been applied to various WOMBAT

!The Russian Business Network (RBN) is a multi-faceted cybercrime organization, which is notorious
for its hosting of illegal and dubious businesses such as phishing, spam, child pornography and
malware distribution http://www.bizeul.org/files/RBN_study.pdf.

FP7-1CT-216026-WOMBAT 9
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1 Introduction

datasets to perform intelligence analyses, by taking advantage of several structural and
contextual features of the data sets developed by consortium partners in the context of
WP3 and WP4.

As demonstrated by the experimental results of this deliverable, TRIAGE has enabled
us to get new insights into the underlying root phenomena that have likely caused
many security events observed by sensors deployed by WOMBAT partners. Throughout
experiments performed on different datasets, we illustrate how this framework enables
a precise analysis of the modus operandi of the attackers, and thus can help an analyst
to get a better understanding of how cybercriminals operate in the real-world, as well
as the strategies they are using.

1.3 Structure of the Document

The rest of this document is organized as follows. To make this deliverable as self-
contained as possible, Chapter [2| introduces the TRIAGE software framework and de-
scribes formally the various techniques we have implemented in TRIAGE components.

The next chapters provide an in-depth description of some experimental results ob-
tained with TRIAGE: Chapter [3| describes an analysis of Rogue AV campaigns (based
on HARMUR data), and Chapter {4] provides an in-depth analysis of malware variants
propagating like the Allaple malware family (based on data from SGNET, VirusTotal
and Anubis).

Chapter [5| describes another experiment performed on a large spam data set obtained
from Symantec.Cloud (formerly MessageLabs), for which TRIAGE was successfully used
to analyze spam campaigns and the spam botnets ecosystem. It is worth mentioning that
we are considering a possible technology transfer of TRIAGE to Symantec. Cloud, who is
interested in carrying out regular intelligence analyses of their spam data sets, and may
also consider the integration of TRIAGE to their Skeptic® spam filtering technology.

Finally, we conclude this deliverable in Chapter [6] where we give some interesting
perspectives on how to further improve the TRIAGE framework.

10 SEVENTH FRAMEWORK PROGRAMME



2 TRIAGE: A Framework for Attack Attribution

2.1 Introduction

This Chapter introduces TRIAGE, a generic and multi-criteria software analysis frame-
work that has been developed in WOMBAT to address, in a rigorous and systematic way,
the attack attribution problem. Such a framework must enable us to systematically
discover, extract and combine patterns from a security dataset, according to a set of
potentially useful characteristics, and with limited knowledge on the phenomena un-
der scrutiny. The underlying analytical methods must be sufficiently generic so that it
can be applied to virtually any type of dataset comprising security events (e.g., attack
events observed by honeypots, network attack events, IDS alerts, malware samples, spam
messages, etc.).

By applying TRIAGE to various security datasets, our objective is to identify attack
phenomena occurring at a larger scale, but also understand their root cause, and get
insights into the modus operandi of attackers.

TRIAGE stands for aftribution of attacks using graph-based event analysisﬂ It relies
on a novel combination of graph-based analysis with a data fusion process inspired by
Multi-Criteria Decision Analysis (MCDA). As illustrated in Fig. , TRIAGE is based
on three components:

1. Attack feature selection: we determine which (potentially) relevant attack fea-
tures we want to include in the overall analysis, and we characterize each element
(i.e., each security event) of the data set according to this set of selected features,
denoted by F = {Fy}, k = 1,...,n (e.g., by creating feature vectors for each
element);

2. Graph-based clustering: an undirected edge-weighted graph is created with
respect to every feature Fj, based on an appropriate distance for measuring pair-
wise similarities. As an additional step, a graph analysis can be performed on a
single feature basis, to identify strongly connected components within each graph.

In the medical domain, the term “triage” has a specific meaning, i.e., it refers to the process of
prioritizing patients based on the severity of their condition.

11



2 TRIAGE: A Framework for Attack Attribution

This step can help reveal the structure of the data set and the various relation-
ships among groups of security events that have strong correlations w.r.t. a given
feature;

3. Multi-criteria aggregation: this data fusion step combines the different weighted
graphs using an aggregation function that models the expected behavior of the phe-
nomena under study.

As output of TRIAGE, we obtain Multi-Dimensional Clusters (or MDC’s) which group
security events likely due to the same root cause, because all events within an MDC are
linked by a certain number of common features as defined by the analyst. Note also
that the approach is mostly unsupervised, i.e., it does not rely on a preliminary training
phase.

At this stage, it is already important to stress that, in contrast to all classical clustering
techniques, the MCDA approach enables us to model more complex behaviors regarding
the way security events are linked together. For example, the precise set (or combination)
of features needed to link security events together does not have to be specified in
advance. As a result, an MDC can perfectly be made of different subsets of events
that are characterized by different combinations of features, but all subsets of events are
still somehow interconnected by a minimum amount of features. As described more in
detail in Section, multi-criteria decision-making techniques provide a more flexible way
of combining attack features, allowing one to include more complex decision-making
constraints such as “at least 3 (out of n) features are required to attribute events to the
same phenomenon, but features F; and F} are not really independent and are somehow
redundant. On the other hand, feature F}, is twice as important as Fj, and slightly more
important than F}”.

In the next Sections, we further describe each TRIAGE component.

2.2 Attack Feature Selection

In data mining, one of the very first steps consists in selecting some key characteristics
from the data set, i.e., salient features that may reveal interesting patterns. As described
by [33], typical clustering activities involve following steps:

(i) feature selection and/or extraction;

(ii) definition of an appropriate distance for measuring similarities between pairs of
feature vectors;

(iii) applying a grouping algorithm;

12 SEVENTH FRAMEWORK PROGRAMME



2.2 Attack Feature Selection

—>
Features - Foie Z .
Selection — = -
Per-feature Multi-criteria Multi-dimensional
Graph-based clustering Aggregation Visualization
Events

Figure 2.1: Overview of the TRIAGE attack attribution method, in which multiple weighted graphs
are aggregated into a combined graph using a multi-criteria decision analysis (MCDA)
approach. As output, TRIAGE provides Multi-Dimensional Clusters (or MDC’s) that group
security events likely due to the same root cause. By using appropriate visualizations,
MDC’s can then help emphasize the modus operandi of attackers.

(iv) data abstraction (if needed), to provide a compact representation of each cluster;

(iv) assessment of the clusters quality and coherence (also optional), e.g., by means of
validity indices.

Feature selection is the process of identifying, within the raw data set, the most
effective subset of characteristics to use in clustering. The selection of these features may
optionally be completed by a feature extraction process, i.e., one or more transformations
of the input to produce features that are more suited to subsequent processing. Pattern
representation refers to the number of categories, classes, or variables available for each
feature to be used by the clustering algorithm.

More formally, we have thus a data set D composed of m objects, which are usually
defined as security events. We define a feature set F made of n different features Fy,

k=1,...,n, that can be extracted for each event e; from D (i =1,...,m).
(k)

Let us denote by x,;”’ the feature vector extracted for the event e; w.r.t. feature Fj.

(k)

In fact, x; € R? is a d-dimensional vector of real values, i.e.:

k k k
XE ) = {xil),...,%(.’d)}

where d is the dimension of the vector and is a function of the feature Fj.

FP7-1CT-216026-WOMBAT 13



2 TRIAGE: A Framework for Attack Attribution

Finally, we can group all feature vectors defined w.r.t. a given feature into a data
set X = {xgk), . ,X,(ﬁ)}. In many data mining books, it is customary to use a matrix
notation to represent a set of feature vectors Xy, i.e.:

r (k k k)T
A e
. '

_ngb,)l o xfs,)d_

where the i*" row represents the feature vector x,gk) extracted for the event e; of D,
obtained for the k" feature Fy.

Summarizing, our problem space is made of three dimensions: m is the number of
security events, n is the number of attack features, and d is the dimensionality of the

feature vector (the latter is variable and is a function of each considered feature Fy).

lllustrative example
(k)

A typical example of feature vector x;”’ can be the geographical distribution of attacking
machines for a given security event composed of several similar probes observed on a
sensor at a given point in time (e.g., honeypot, IDS, etc). In this case, for each event e;
we may want to create a feature vector ng ¢0) made of d = 229 positions corresponding to
all countries (ordered alphabetically) where attackers apparently reside. In other words,

geo)

x(9€0) _ {%(,gleo)a ceey 951(,229}

(3
where every element of the vector :cgi»eo) represents the number of attackers observed
for country j. Another standard representation for this type of feature vector would
be under the form of relative frequencies, e.g.: US(35%), CN(7%), DE(5%), CA(5%),
others(47%).

Quite obviously, the geographical origin of attackers is only one possible feature that
may be useful in root cause analysis. Depending on the type of data set and phenomenon
being studied, the analyst may want to include many other features, such as network-
related features (IP address, the /24, /16, or /8 subnets of the address, the ISP or
the ASN;, etc), DNS or Whois-related information, malware features (MD5, PE header,
and behavioral features), timing information (day-hour of the observations), or other
application-specific features (e.g., subject lines, embedded URI’s and From-domains used
in spam messages).

14 SEVENTH FRAMEWORK PROGRAMME



2.3 Single-Feature Graph Clustering

2.3 Single-Feature Graph Clustering

Cluster analysis aims at finding natural groupings from a data set and is essentially an
approach relying on exploratory data analysis (EDA) [80]. Regarding this exploratory
aspect, clustering refers to a process of unsupervised classification by which unlabeled
patterns are grouped into clusters based on a measure of similarity. As a result, all
patterns found in a “valid” cluster should be more similar to each other than they are to
patterns of another cluster. The goal of clustering consists in discovering interesting and
meaningful patterns from a data set, without any prior knowledge on the phenomena
being studied. For attack attribution purposes, this can be helpful to understand the
underlying phenomena that may have created the security events observed by any type
of sensor. Clusters can also help provide a data abstraction level, since every cluster can
be described by a prototype that is representative of all attack patterns being grouped
in a particular cluster.

There exists a plethora of clustering algorithms, which can be roughly categorized as
either partitional or hierarchical. Partitional techniques aim at finding the most effective
partition of the data set by optimizing a clustering criterion (e.g., minimizing the sum
of squared distances within each cluster). Hierarchical clustering methods produce a
nested series of partitions (i.e., a hierarchical tree-like structure) in which the decision
to merge objects or clusters at each level is performed based on a similarity criterion
and a linkage method (e.g., the smallest or largest distance between objects).

However, since clustering is mostly a data-driven process, it can be hard sometimes
to define what really constitutes a cluster, as underlined by several authors (e.g., [34]
48|, [74]). Indeed, most clustering techniques rely on several input parameters which
can largely influence the results. Furthermore, some algorithms assume some sort of
structure for the clusters (e.g., spherical, elliptical, density-based, etc). Thus, if they
are given a certain data set, most clustering algorithms will find clusters, regardless of
whether they are really present in the data or not.

As illustrated in [75], clustering real-world data sets can thus be a difficult task, and
different clustering methods will quite probably yield different results. For this reason,
the TRIAGE attribution framework is not limited to a given clustering algorithm. Re-
garding this component, the only requirement of our method is to use a graph-based
representation (i.e., edge-weighted graphs) in which all pairwise distances are calculated
ahead of time for every attack feature. We are aware of the fact that this pairwise ap-
proach can be computationally intensive for very large data sets, especially regarding
memory requirements. However, we argue that the computation of those pairwise simi-
larities can be easily parallelized since all computations are independent of each other.
Many database systems can even provide support for storing and indexing structures

FP7-1CT-216026-WOMBAT 15



2 TRIAGE: A Framework for Attack Attribution

like distance matrices.

Identifying clusters within each edge-weighted graph can provide interesting viewpoints
on the attack events being analyzed. Even though this clustering step is not really
mandatory in the overall attribution method, it can still help to find interesting patterns
among groups of security events that share common features. Furthermore, this step
can help the analyst to decide on which features to include in the multi-criteria fusion
step.

To perform the clustering, we have opted for a novel graph-theoretical algorithm that
extracts dominant sets from the graph, which is further detailed in Section Our
choice is motivated by the following reasons [75]:

e the simplicity to formulate the problem, i.e., a graph can be easily represented by
its edge-weighted adjacency matrix (or proximity matrix);

e the dominant sets algorithm does not require a number of clusters as input, and
can naturally extract the most significant groups (i.e., cliques) in the first stages
of the algorithm execution;

e finding dominant sets (or cliques) in a graph can be formulated as a straightforward
continuous optimization technique. This is interesting as it can be coded in a few
lines of any high-level programming language, and could be easily implemented in
a parallel network, should scalability become an issue;

e as it will become clear in the next Section, multiple edge-weighted graphs (as
obtained for different attack features) can be easily combined using MCDA aggre-
gation functions that model the behavior of phenomena under scrutiny.

Quite obviously, other classical clustering algorithms, such as K-Means, Hierarchical
Clustering (single or complete-linkage), Connected Components, etc, can still be used
within the framework, if necessary.

2.3.1 Dominant sets clustering

For each attack feature Fj, we build an edge-weighted graph Gj in which the vertices
(or nodes) are mapped to the feature vectors Xl(»k), and the edges (or links) reflect the
similarity between data objects regarding the considered feature. As customary, we can
represent the undirected edge-weighted graph (with no self-loops) obtained for a given
feature Fj by:

Gk = (Vk, Ek,wk) (2.1)

16 SEVENTH FRAMEWORK PROGRAMME



2.3 Single-Feature Graph Clustering

Vi = {ng), Xék), e ,ng)} is the vertex set
where E,.CV,xV, is the edge set (i.e., relations among vertices)
wr: By —» R is a positive weight function

In practice, we can represent each graph G}, with its corresponding weighted adjacency
matriz (or dissimilarity matrix), which is the m x m symmetric matrix A(4, j) defined
as:
wk(i7j)7 V(’L,j) S Ek:

Ag(i ) = { 0, otherwise. 22)

Note that the weight function wg(7,j) must be defined with a similarity metric that is
appropriate to the nature of the feature vector under consideration, as explained here
after in Section

In graph theory, many clustering algorithms consist of searching for certain combi-
natorial structures, such as a minimum spanning tree [86] or a minimum cut [66, [83].
Among these methods, a classic approach to clustering reduces to a search for complete
subgraphs, which is also known as the “complete-link” algorithm. Indeed, the maximal
complete subgraph, also called a (mazimal) clique, was considered the strictest definition
of a cluster in [2] and [59].

The concept of a maximal clique was originally defined on unweighed graphs; however,
it has been generalized to the edge-weighted case by Pavan et al. who proposed in [58]
a new framework for pairwise clustering based on dominant sets. The formal properties
of dominant sets make them reasonable candidates for a new formal definition of a
cluster in the context of edge-weighted graphs. Furthermore, Pavan et al. established a
correspondence between dominant sets and the extrema of a continuous quadratic form
over the standard simplex. This means that we can find dominant sets (or clusters) using
straightforward continuous optimization techniques such as replicator equations, a class
of dynamical systems arising in evolutionary game theory. Such systems are interesting
since they can be coded in a few lines of any high-level programming language.

The method introduced by Pavan consists of iteratively finding dominant sets in an
edge-weighted graph, and then removing it from the graph until all vertices have been
clustered (complete partitioning), or as soon as a given stopping criterion is met, which
could give eventually an incomplete partition as output. Some examples of constraints
used as stopping criterion are: (i) a minimum threshold for the remaining nodes within
the graph; (ii) a lower threshold (absolute or relative) on the sum of all remaining edge-
weights. Thus, let Worigin = Y ai; be the sum of all weights in the original graph,
then the procedure could stop when the sum of all remaining edge-weights is less than
(0.01 - Worigin)-

FP7-1CT-216026-WOMBAT 17



2 TRIAGE: A Framework for Attack Attribution

Algorithm 2.1 Dominant sets Clustering
Input: weighted graph G = (V, E,w)
Output: a partition P (eventually incomplete)
P=0
while STOPPING_CRITERION(G) do
S «+ DOMINANT_SET(G)
P+~ PU{S}
V<« V\S
end while
return P

The dominant sets clustering algorithm is described in the pseudo-code given in al-
gorithm As one can see, the cornerstone of this algorithm is the procedure DOM-
INANT_SET, which boils down to making a particular temporal expression converge.
More precisely, consider the following dynamical system represented with its discrete
time equation, where Ay is the adjacency matrix of an edge-weighted graph Gy:

(Arx(t));
(t+1) =x4(t) ———~ 2.3
with ¢ = 1,...,m. Starting from an arbitrary initial state, this dynamical system will

eventually be attracted by the nearest asymptotically stable point. Thus, the procedure
DOMINANT_SET simply involves the simulation of the system given in equation
The solution to this dynamical system is a stable point, called a characteristic vector
x%, which corresponds to a dominant set (as it has been proved in [57]).

We refer the interested reader to [75] for a more detailed discussion and an objective
comparison of various clustering algorithms against dominant sets.

2.3.2 Similarity metrics

Most clustering algorithms rely on certain distance metrics to group objects into clusters.
A similarity metric is a function that indicates how alike objects are to each other.
However, it is quite common to calculate instead the dissimilarity between two patterns
(which is just the opposite) using a distance metric defined on the feature space.

As mentioned here above (definition [2.2)), the weight function wg (4, ) must be defined
with respect to a distance metric appropriate to the type of feature vector. Clearly, the
choice of this distance metric is fundamental, since it has an impact on the properties
of the final clusters, such as their size, quality, and consistency.
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2.3 Single-Feature Graph Clustering

Probably one of the most commonly used distance measures is the Euclidean distance,
which is in fact a special case of the Minkowski metric (with p = 2):

3=

d
dp(xi,%;) = O |wig — zh ) (2.4)
=1

As observed in [46], Euclidean metrics work well when the data set contains compact
or isolated clusters, but the drawback of these metrics is their sensitivity to the scale
of the features. This problem can be alleviated with the normalization of the vectors.
However, Euclidean distances suffer from other drawbacks, e.g., they can be completely
inappropriate with high-dimensional data. This problem is known as the curse of dimen-
sionalityf?l which is caused by the exponential increase in volume associated with adding
extra dimensions to a mathematical space. In fact, several previous works have showed
that in high-dimensional space, the concept of proximity, distance or nearest neighbor
may not even be qualitatively meaningful when relying on commonly used metrics such
as Ly norms, especially in data mining applications [1].

Another common similarity measure that can be used with real-valued vectors is the
sample correlation between observations treated as sequences of values:

(xi —%)"(x; — %)

Vi —®)T(xi — %)/ (x; - %) (x; — %)

dcorr(xi; Xj) = (25)
where X represents (x; + x;)/2.

The sample correlation (also called the Pearson coefficient) reflects the strength of
the linear dependence between two real-valued vectors, which can also be viewed as a
similarity degree between the “shapes” of the vectors. It is thus directly linked to the
covariance of the vectors. A correlation value of 1 implies a perfect linear relationship
between the two vectors (as x; increases, x; increases proportionally). A closely related
similarity measure is the cosine similarity obtained by computing the cosine of the angle
formed by the two vectors, which is commonly used for clustering document data in text
mining [74].

The interpretation of a correlation coefficient depends on the context and purposes;
however, a value between 0.5 and 1 is usually considered as an indication of a strong
dependence between observations.

Finally, to measure distances between probability distributions (e.g., histograms),
there exist specific statistical distances that are more appropriate. One such technique

2This term was first coined by Richard Bellman in 1957 [I1]
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(which is commonly used in information theory) is the Kullback-Leibler divergence ([3§]).
Let x; and x; be for instance two feature vectors that represent two probability distri-
butions over a discrete space X, then the K-L divergence of x; from x; is defined as:

d

Dip(xillxj) = 3 xi(k) log ;‘Eg
k=1 J

which is also called the information divergence (or relative entropy). Because Dy, is
not considered as a true metric, it is usually better to use instead the Jensen-Shannon
divergence ([44]), defined as:

D (xi]|%) + Drcr(x;]]%)
2

Ds(xi,xj) = (2.6)
where X = (x; +x;)/2. In other words, the Jensen-Shannon divergence is the average of
the KL-divergences to the average distribution. To be a true metric, the JS divergence
must also satisfy the triangular inequality, which is not true for all cases of (x;,x;). Nev-
ertheless, it can be demonstrated that the square root of the Jensen-Shannon divergence
is a true metric ([25]).

An alternative metric for measuring the similarity of two discrete probability distri-
butions is the Bhattacharyya distance ([12]), a quite popular metric used in the signal
processing community. It gives an approximate measurement of the amount of overlap
between two frequency vectors.

Transforming distances to similarities.

To transform pairwise distances d;; to similarity weights s;;, we can use different mapping
functions. Some of the most commonly used functions are:

Sij = c— dij, for some constant ¢
(1 + dij)_l

However, previous studies found that the similarity between stimuli decay exponen-
tially with some power of the perceptual measure distance ([65]). So, it is also customary
to use the following function to do this transformation:

7.2

Sij = exp(T;]) (2.7)
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where o is a positive real number which affects the decreasing rate of s. In [75], we have
proposed an empirical method to determine appropriate ranges of values for ¢ according
to the statistical properties of the data set, and the expected similarities.

Several authors have also extensively studied problems related to proximity measures,
and how to choose them in a consistent manner based on the clustering problem and the
features at hand (see for instance [23], 6], 36]).

2.3.3 Cluster validity indices

Various cluster validity indices have been proposed in previous work to assess the quality
and the consistency of clustering results [32]. In graph clustering, most indices are based
on the comparison of intra-cluster connectivity (i.e., the compactness of clusters) and
the inter-cluster variability (i.e., the separability between clusters). In [13], the authors
provide a nice review of different validity indices that are particularly appropriate for
evaluating graph clustered structures.

In [75] , we have defined certain validity indices that are well-suited for evaluating the
quality of dominant sets found by TRIAGE, but also the clustering results obtained via
more classical methods. In particular, we have used three different validity indices:

e the Graph compactness, which indicates how compact the clusters are;

e the Davies-Bouldin index, which evaluates the inter versus intra-cluster connectiv-
ity;
e the Silhouette index, which is linked to the characteristics of nodes’ neighborhood.

To assess the quality of the experimental results presented in this deliverable, we will
mainly focus on the graph compactness, which is a quite effective, yet easy to compute,
validity index. We refer the interested reader to [13, [75] for more information on the
other cluster validity indices.

Graph compactness

The graph compactness C,, is a validity index that is very easy to calculate, and which can
be helpful to evaluate graph clustering results. C,, is mainly based on the characteristics
of graphs connectivity. That is, for any cluster C}, we can calculate a normalized
compactness index:

Np—1 N, o
B > Zj:kiJrl w(i, j)

Cre = NN = 1) 2

(2.8)
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where w(i, j) is the positive weight function reflecting node similarities in the graph, and
Ny, is the number of members within cluster k. Since C,, only depends upon similarity
values and the composition of the clusters, it can also be used to evaluate many other
clustering methods.

We can also define an average compactness index Cip for a partition made of K clusters,
which takes into account the individual compactness values of the clusters, but also their
respective sizes:

- .
Zj:l Nj

2.4 MCDA-based Attack Attribution

The graph-based clustering component (based on dominant sets) can be a useful and
effective way of extracting informative patterns from a set of security events. By repeat-
ing this process for different attack features, we obtain one set of clusters for each attack
feature, which provide interesting viewpoints on the underlying phenomena.

However, similarly to criminal forensics, a security analyst often needs to synthesize
different pieces of evidence in order to investigate the root causes of attack phenomena.
This can be a tedious, lengthy and informal process mostly relying on the analysts
expertise. A somehow naive approach of doing this aggregation of features consists in
performing cross-feature analysis by computing intersections among all clusters obtained
for each feature separately. Even though it could work in fairly simple cases, we observed
that this approach does not hold for many attack phenomena we have analyzed so far.
The reasons are twofold:

(i) the uncertainty problem, which is due to the fuzzy aspect of real-world phenomena.
Measuring similarities can be intrinsically hard for certain characteristics, and
provides usually a continuous value in the interval [0, 1] that reflects a certain
degree of correlation between two feature vectors. Based on a single value, it is
usually quite difficult to decide whether or not two attack events might be linked
to the same root cause.

(ii) the dynamicity problem, which is due to the evolutive nature of real-world phenom-
ena. As certain characteristics of attack phenomena may evolve (e.g., the origins
of a botnet may change over time, polymorphic malware try to randomize certain
aspects of their code, spammers tend to use disposable URI’s or “From domains”
for their spam campaigns, etc), it can be difficult to define a priori which set of
features must be used to link events to the same phenomenon.
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2.4.1 Multi-criteria Decision Analysis

As suggested here above, the problem of combining attack features looks quite similar
to typical situations handled in multi-criteria decision analysis (MCDA), also called
sometimes Multi-Attribute Utility Theory (MAUT). In a classical MCDA problem, a
decision-maker evaluates a set of alternatives w.r.t. different criteria, and a global
score is then calculated for each alternative using a well-defined aggregation method that
models the preferences of the decision-maker or a set of constraints.

Generally speaking, the alternatives are evaluated w.r.t different attributes (or fea-
tures) that are expressed with numerical values representing a degree of preference, or
a degree of membershiyﬂ The two most common aggregation methods used in MAUT
are the weighted arithmetic and geometric means.

Another related application is the group decision-making, where n experts express
their evaluations on one (or more) alternatives. The goal is then to combine all experts’
preferences into a single score (like in many sports competitions, where the criteria are
scores given by different judges). The most commonly-used technique for combining
experts’ scores is the weighted arithmetic mean, since experts may be assigned different
weights according to their standing.

Yet other typical examples involving an aggregation process can be found in fuzzy logic
and rule-based systems. In this case, the inference engine is made of fuzzy rules in which
the rule antecedents model attributes that are subject to vagueness or uncertainty. The
aim is to evaluate the “firing strength” of each fuzzy rule using logical connectives, and
then to combine all rules’ output into a single, crisp value that can be used to make a
decision.

2.4.2 Formalizing the aggregation problem

Aggregation functions are used in many prototypical situations where we have several
criteria of concern, with respect to which we assess different options. The objective con-
sists in calculating a combined score for each option (or alternative), and this combined
output forms then a basis from which decisions can be made.

Definition 2.1. (Aggregation function [10]) An aggregation function is formally
defined as a function of n arguments (n > 1) that maps the (n-dimensional) unit cube
onto the unit interval: fogqr ¢ [0,1]" — [0, 1], with the following properties:

30bviously, some attributes can sometimes be expressed using ordinal or qualitative values. Then,
a commonly-used approach consists in converting ordinal values to a numerical scale using utility
functions.
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(1) faggr(0,0,...,0) =0 and foger(1,1,...,1) =1
n-times n-times

(it) x; <wy; for alli e {1,...,n} implies foggr(x1,...,2n) < faggr(Y1s---,Yn)

All unit intervals [0, 1] are considered here to be continuous, i.e., a variable defined on
this unit interval may take any real value between the lower and upper bounds.

In our multi-criteria attribution method, we have n different attack features Fj, whose
indices can be put into a set N' = {1,2,...,n}. For each F}, recall that we have built
an edge-weighted graph Gy = (Vi, F,wg), represented by its corresponding similarity
matrix Ag(i,7) = wi(7, ), with wy, defined as an appropriate distance function.

For every pair of events (i, j) of the security data set D, a vector of criteria z;; € [0, 1]"
can be constructed from the similarity matrices (i.e., from the set of graphs Gy):

Zij = [Al(zaj)7A2(7fv])a7An(7’h7)] (210)

Informally, our approach consists in combining these n values of each criteria vector
z;; which reflects the set of all relationships between a pair of security events. As
illustrated in Fig the multicriteria aggregation creates a combined graph G* = Gy,
represented by its adjacency matrix A*, which is obtained by applying an aggregation
function fuggr:

A™(i,5) = fagor(2ij), V(i,j) € D (2.11)

Finally, we can extract strongly connected components from G* to identify all sub-
graphs in which any two vertices are connected to each other by a certain path:

P = components(A*)
= {P,DP,...,P,}

which gives a set of connected subgraphs P, where P, C G*, and V(i,j) € P, :
faggr(zij) > €, with € € ]0,1]. Since the events of a subgraph can form different clus-
ters with respect to individual features (or clustering dimensions), we have called these
subgraphs multi-dimensional clusters (or MDC’s).

Note that this final step turns out to be also a graph clustering problem very similar to
the per-feature clustering problem described in Section As a result, a set of MDC'’s
(or subgraphs) P could be obtained by applying the very same dominant sets algorithm
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Z;= [A1(irj); ) An(i:j)]
A

F,> G.(V,E,w,)

F, > Gy(Vy,ELw,)

NN
4
N
N\

“\\ A'(i,j) = fager(Z;), for each (ij)
Ayi) e

Per-feature weighted graphs Aggregated graph

Figure 2.2: The MCDA aggregation process is performed on n edge-weighted graphs (represented by
their respective proximity matrix), which leads to the construction of a combined graph
G™* that takes into account the semantics of the aggregation function faggr.

given in Section

However, searching for dominant sets in the aggregated graph may be too restrictive
in certain cases, since dominant sets provide very coherent groups. The attack events
within an MDC can be linked by different combinations of features, which means that an
attack event observed at instant ¢ty can have very different characteristics from another
event observed at a later point in time.

As a consequence of this evolving behavior, clusters in the combined graph G* can
present elongated shapes in which attack events are linked in a sort of chaining structure.
While this “chaining effect” is usually not desirable in single-feature clustering, it is
usually required in the case of the combined graph G* resulting from the aggregation of
multiple features.

As shown in the next Chapters, by analyzing and visualizing MDC’s through their
individual and common features, an analyst can immediately get a global picture of all
important relationships among security events and how these are interconnected, and
hence he also gets a better insight into the behavior of the underlying phenomena.

2.4.3 Choice of an aggregation function f,,,,

It is quite evident that the choice of the aggregation function fu44- used to combine
attack features is fundamental, as this function will model the behavior of the phe-
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nomenon under study. In other words, this choice must be guided by the semantics that
the analyst wants to give to the aggregation procedure, which aims at modelling the
characteristics of the attack phenomena under scrutiny.

Aggregation functions can be divided into following classes:

e averaging aggregation functions, where the aggregated value of a vector of criteria
z is bounded by

N (2) < fuggr(2) < max(z)
e conjunctive aggregation functions, where the resulting value is bounded by

faggr(z) < min(z) = min(z1, 22,...,2p)

e disjunctive aggregation functions, where the resulting value is bounded by

faggr(2z) > max(z) = max(z1, 22,...,2n)

e mixed aggregation functions, where the fy44,(2z) exhibits different types of behavior
on different parts of the domain.

In [75], we have mainly considered two families of averaging functions, namely Ordered
Weighted Averaging functions and the family of Choquet integrals, and we have showed
in details how to take advantage of them to address attack attribution problems. To
make this deliverable as self-contained as possible, we provide here after a brief overview
of these aggregation functions.

2.4.4 OWA methods

OWA functions are a family of averaging functions that basically rely on two main
characteristics: (i) a weighting vector (like in a classical weighted mean), and (ii) sorting
the inputs (usually in descending order), hence the name of Ordered Weighted Averaging.
This reordering of the components of the input vector z introduces a non-linerarity in
the aggregation function. However, it allows the decision-maker to design slightly more
complex modeling schemes when dealing with data fusion tasks.
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Ordered Weighted Average (OWA)

In [84], a new type of averaging operator called Ordered Weighted Averaging (OWA)
was introduced by Yager. The OWA operator allows one to include certain relationships
among criteria, such as “most of” or “at least” k criteria (out of n) to be satisfied in the
overall aggregation process. OWA differs from a classical weighted means in that the
weights are not associated with particular inputs, but rather with their magnitude. As
a result, OWA can emphasize the largest, smallest or mid-range values. It has become
very popular in the research community working on fuzzy sets.

Definition 2.2. (OWA) [84, [10] For a given weighting vector w, w; > 0, Y w; =1,
the OWA aggregation function is defined by:

OW Ay (z) = Zwiz(i) =< W, 2\, > (2.12)
i=1

where we use the notation z~ to represent the vector obtained from z by arranging its
components in decreasing order: 2(1) 2 Z2) = -+ 2 Z(n)-

It is easy to see that for any weighting vector w, the result of OWA lies between
the classical and and or operators, which are in fact the two extreme cases when w =
(0,0,...,1) (then OW Ay (z) = min(z)) or when z = (1,0,...,0) (then OW Ay (z) =
mazx(z)). Another special case is when all weights w; = %, which results in the classical
arithmetic mean.

Obviously, the problem of defining the weights w; to be used in OWA still remains.
Yager suggests two possible approaches: (i) either to use some learning mechanism, with
sample data and a regression model (e.g., fitting weights by using training data and
minimizing the least-square residual error), or (ii) to give some semantics, or meaning to
the w;’s by asking a decision-maker or an expert to provide directly those values, based
on domain knowledge. In many attack attribution cases, we have to rely on the latter,
since the process is mostly unsupervised, and thus we have no training samples for the
phenomena we aim to identify.

Weighted OWA (WOWA)

Weighted averaging functions, such as OWA or the weighted mean, can be quite con-
venient aggregation functions when we deal with data fusion tasks, in which criteria of
interest are expressed with numerical values (usually, in [0,1]"). However, the weights
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used in weighted mean (WM) and the ones defined for the OWA operator play very
different roles. The WM takes into account the reliability of each information source
(or each expert), whereas the weights used in OWA reflect the importance of the values,
regardless of their source.

Torra proposed in [77] a generalization of both WM and OWA, called Weighted OWA
(WOWA). This aggregation function combines the advantages of both types of averaging
functions by allowing the user to quantify the reliability of the information sources with
a vector p (as the weighted mean does), and at the same time, to weight the values in
relation to their relative position with a second vector w (as the OWA operator).

The rationale underlying the WOWA function becomes clear in certain intelligent
systems in which you have different sensors having a certain reliability (which is known,
thus we have the weights p), and where the measurements of those sensors have to be
somehow prioritized, irrespective of their reliability. Think, for example, of an automated
braking system which assists the driver in a vehicle. In this case, the reliability of the
sensors should probably be taken into account (since less reliable sensors may fail or give
erroneous measurements); however, the distance measurements to the nearest obstacles
may be even more important in certain situations, regardless of which sensors provide
the inputs. A WOWA function provides exactly this kind of combination.

In the rest of this section, we start by formally defining the WOWA aggregation
function, which can replace the OWA operator in equation ?7?7. Then, we illustrate its
usefulness in the context of the attack attribution method, and how it performs compared
to the classical WM or OWA.

Definition 2.3. (Weighted OWA [77]) Let w, p be two weighting vectors with w;, p; >
0, Y w; =1, > p; = 1. The Weighted OWA aggregation function is defined by:

WOW Ay p(2) = Y iz, (2.13)
=1

where z(; is the ith largest component of z and the weights u; are defined as

’LLZ':G ij -G ij

JEH; JEH; 1

where the set H; = {j|z; > z;} is the set of indices of i largest elements of z, and G is
a monotone non-decreasing function that interpolates the points (i/n, ngi wj) together
with the point (0,0). Moreover, G is required to have the two following properties:
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L G(i/n) =3 < wj, i=0,...,n;

2. G is linear if the points (i/n, Y <, w;) lie on a straight line.

In fact, the WOW A operator can be seen as an OWA function with the weights
u;, which are obtained by combining both vectors w, p using a generating function G.
The mathematical properties of the WOW A operator have been studied and described
in 76 [77]. Among others, it has been showed that the weighting vector u satisfies
u; > 0, and Y u; = 1. It is also worth noting that if all w; = %, then it turns out that
WOW Ay p(z) = Mp(z), the weighted arithmetic mean. Similarly, when all p; = 1,
then WOW Ay p(z) = OW Ay (2).

Obviously, the weights u also depend on the choice of the interpolation function G,
also called W* in [78]. As suggested by different authors, this function can be chosen as
a linear spline that interpolates the points (i/n, > _,; w;), or it can be also a monotone
quadratic spline as was suggested in [77],[9], as long as the function satisfies the properties
stated here above (i.e., the straight line condition). In the experiments performed in
this document, we have used the interpolation method described in [78]. Clearly, the
advantage of using the WOWA operator (instead of OWA) comes from the additional
vector of weights p, which provides more flexibility in the decision-making process by
quantifying the reliability of each feature.

2.4.5 Fuzzy integrals

In many multi-criteria problems, and by consequent also in attack attribution problems,
it happens quite often that certain criteria are not completely independent. For example,
certain combinations of criteria may show some sort of synergy (or complementarity),
whereas other subsets of criteria could have globally less importance due to the presence
of redundancy (or substitutability) among them.

Fuzzy integrals are a large family of aggregation functions that can provide effective
means for modeling this kind of behavior in MCDA problems. There are mainly two
families of fuzzy integrals:

- the Choquet integral, which is used for the aggregation of criteria defined on cardinal
scales. That is, the scores of the criteria are expressed by real numbers reflecting
a degree of satisfaction, a preference, or a degree of membership.

- the Sugeno integral, which can be viewed as the ordinal version of Choquet, i.e., the
scores of the evaluation criteria are expressed on a finite ordinal (or qualitative)
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scale, and thus the Sugeno integral involves a combination of min-max logical
operations on a fuzzy measure.

In our experiments, we have only considered the Choquet integral for combining attack
features, since most criteria we were dealing with were defined on cardinal scales (usually,
on [0, 1]). When an analyst is confronted with multi-criteria problems where criteria are
defined on both ordinal and cardinal scales, a commonly used approach consists in trying
to turn the ordinal problem into a cardinal one, or to get cardinal information from the
ordinal one, for example by counting the number of times an alternative is better or
worse than the other ones on a given criterion. When all criteria are ordinal ones, then
obviously, the Sugeno integral provides more appropriate means to aggregate them.

The purpose of this Section is to demonstrate how the Choquet integral offers a much
greater flexibility in feature aggregation by modeling interactions among subsets of fea-
tures. However, to define the Choquet integral, we need first to introduce a few essential
concepts that are associated to it.

Fuzzy measures

Fuzzy integrals are defined with respect to so-called fuzzy measures. Given a set of
criteria N (e.g., attack features), a fuzzy measure is simply a set function used to define,
in some sense, the importance (or strength) of any subset belonging to the power set of \V.
It is worth noting that fuzzy measures are not necessarily additive (i.e., the measure of a
given set is not necessarily equal to the sum of its subsets). This property of additivity
has been somehow relaxed on fuzzy measures by requiring only the monotonicity of the
measure.

More formally, a fuzzy measure (alternatively called a capacity in the literature) is
defined as follows.

Definition 2.4. (Fuzzy measure or Capacity) Let N = {1,2,...,n} be the index
set of n criteria. A capacity [15] or fuzzy measure [70] is a set function v : 2V — [0,1]
which is monotonic (i.e., v(A) < v(B) whenever A C B) and satisfies v(()) = 0. The
measure is normalized if in addition v(N) = 1.

In multi-criteria decision making, a fuzzy measure is thus a set of 2" real values where
each value can be viewed as the degree of importance of a combination of criteria (also
called a coalition, in particular in game theory). In other words, from definition any
subset A C N can be considered as a coalition of criteria, and thus v(A) reflects the
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importance of this coalition with a given weight. Note that when new elements are added
to a given coalition, it can not decrease its weight (due to the monotonicity condition).
A basic example of a fuzzy measure is

o(A) = AL (2.14)

n
for any subset A C N, and where |A| denotes the number of elements in A.

Two mathematical properties of fuzzy measures are particularly of interest. First,
a fuzzy measure is additive if for all disjoint subsets A, B C N, we have v(AU B) =
v(A) + v(B). That is, when a fuzzy measure is additive, it suffices to define the n
coefficients v({1}),...,v({n}) to define the fuzzy measure entirely. Note that in the
general case, one needs to define the 2" — 2 coefficients corresponding to the 2™ subsets
of N, except v(()) and v(N).

Secondly, a fuzzy measure is symmetric if the value v(.A) depends only on the cardi-
nality of the set A, i.e., for any subsets A, B C N, |A| = |B| implies v(A) = v(B). The
example given by equation here above is an example of a fuzzy measure which is
both additive and symmetric. Note that this type of measure is usually too restrictive in
the modeling of a multi-criteria aggregation (in fact, the integral of such fuzzy measures
coincides with the arithmetic mean).

A fuzzy measure can also be transformed into an alternative representation, called the
Mébius representation, which can be helpful in expressing various concepts or quantities
related to aggregation functions. For example, we will see in section that it is
convenient to express certain interaction indices in a more compact form. The Mdbius
representation of a fuzzy measure can be obtained with the Mobius transform.

Definition 2.5. (Mo&bius transform) [62] The Mobius transform of a fuzzy measure
v, denoted by My, is a set function defined for every A C N as:

Mu(A) = Y- (=) Flo(B)
BCA

Example of fuzzy measure.

A convenient way of representing fuzzy measures consists to use a lattice form (i.e., a
Hasse diagram) of the inclusion relation defined on the set of subsets of N ([I0]). For
example, for n = 3, we can represent the 2" elements of a fuzzy measure v as:
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v({1,2,3})
v({1,2})  o({1,3}) v({2,3})
v({1}) v({2}) v({3})

v(0)
Let v be a fuzzy measure given by
1
09 05 0.3
05 0 03
0

Then, its M6bius transform M, is given by

0.1
04 -03 O
05 0 03
0

For example,

Mu({1,2}) = (=1)-v({1}) +(=1) - v({2}) + (-1)* - v({1,2})
= —-05-0+09=04

Observe that the sum of all values in the Mobius representation is equal to 1, and the
values of v and M, coincide on singletons.

We can now introduce the Choquet integral, which is defined with respect to a fuzzy
measure.

Definition 2.6. (Choquet integral) [15] The (discrete) Choquet integral of an input
vector z with respect to a fuzzy measure (or capacity) v is given by

n

Cu(z) = 24 [v{ilz = 2)}) — v({ilz = 221)})] (2.15)

i=1

where z(1) < z(2) < ... < 2y, G€., 2(;) 1S the ith largest component of the input vector z.
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By rearranging the terms of the sum here above, the Choquet integral can alternatively
be written as ([10]):

n

CU<Z> = Z [Z(Z) - z(i—l)] ’U(HZ) (2.16)

i=1
where H; = {(i),...,(n)} is the subset of indices of the n — i + 1 largest components of
z, and z(g) = 0 by convention.

For example, let n = 3 and 22 < 21 < 2z3. Then, using equation we have

Co(21, 22, 23) = 22 [v({2, 1, 3}) —v({1,3})] + 21 [v({1,3}) — v({3})] + z30({3})

Special cases.

It is worth mentioning that the class of Choquet integrals generalizes averaging func-
tions, such as those discussed previously. In fact, it turns out that weighted means
and OWA functions are just special cases of Choquet integrals with respect to additive
and symmetric fuzzy measures respectively. More precisely, when a fuzzy measure v is
additive, the Choquet integral reduces to a weighted arithmetic mean:

n

Culz) = Y v({i}) =

i=1
When a fuzzy measure v is symmetric, the Choquet integral reduces to an OWA
function as introduced in Section 77?7, with weights given by

n

Co(z) =D (Un-it1 = Un—i) 2 ()

i=1
with v; := v(A), such that |A| = 1.
Similarly, it can be showed that the WOWA operator is also a special case of Choquet

integral [79]. Finally, the Choquet integral with respect to a symmetric additive fuzzy
measure (as the example [2.14)) coincides with the arithmetic mean.

2.4.6 Interactions among criteria

The flexibility of the Choquet integral comes also with a certain complexity, which is
mainly due to the fact that a fuzzy measure v must be defined by 2" values. As a
result, the behavior of the decision-making process does not always appear as clearly
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when looking at all values of v. Moreover, in multi-criteria problems, it is often the
case that certain criteria are not independent, i.e., there is some interaction (positive or
negative) among the criteria. For example, two criteria may point essentially to the same
concept, and hence should be considered as redundant in the aggregation. Therefore, it
is interesting to define some indices to measure the importance of a given criterion, or
the interactions among criteria.

To do this, we can use the Shapley value, which measures the importance of a criterion
i in all possible coalitions. It was first proposed by Shapley [64] in the context of
cooperative game theory.

Definition 2.7. (Shapley value [64]) The Shapley index of a criterion i € N w.r.t.
a fuzzy measure v is given by

oiy= 3 MDA G Gy - oAy

|
ACM\i w
The Shapley value is the vector ¢(v) = (¢(1),...,d(n)).

The Shapley value can be interpreted as the average contribution of each criterion
alone in all possible coalitions. With the help of the Mobius transform, the Shapley
index can be expressed in a more compact form, which can be also more convenient to
calculate: )

(i) = R’
|B]

BlieB

M.y(B)

Another important measure is the interaction index, introduced by Murofushi and
Soneda [53], which quantifies the way two criteria 7, j interact in all possible coalitions.
As mentioned before, a certain criterion may be irrelevant when considered alone, but
its importance regarding the overall decision value may sharply rise when taken in con-
junction with other criteria.

Definition 2.8. (Interaction index [53]) The interaction index between two criteria
1,7 € N w.r.t. a fuzzy measure v is given by

=y o (’:j’__j,)”f‘“ (AU, §) — 0(AU) — o(A U J) + 0(A)]
ACN\{i,j} '
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When [;; < 0, we can say that criteria 4, j are linked by a negative synergy (redun-
dancy, or substitutability). Inversely, a positive interaction I;; > 0 depicts a positive
synergy (or complementarity) between criteria ¢, j ([26] 27]). When I;; = 0, we say that
criteria 7, j are independent, because the degree of satisfaction due to their combination
is equivalent to the sum of the individual contributions of both criteria (i.e., it reflects a
null synergy).

This definition of I;; due to Murofushi and Soneda holds for a pair of criteria only,
but it was extended by Grabisch et al. [31] for any coalition A (and not just pairs) of
criteria:

I(A)= > (n— 5|~ ABL > (—pH€lyBuC) (2.17)

_ !
BN (n—]Al+1)! &

which again can be expressed in a more compact form using the Mobius transform:

1
I(A) = —  M,(B) (2.18)
BMZ;B Bl — A+ 1

Clearly, I(A) coincides with I;; for A = {i,j}, and coincides with ¢(i) for A = {i}.
As we show in the next section, those interaction indices present a special interest when
the analyst must deal with the problem of defining fuzzy measures.

2.4.7 Construction of fuzzy measures

The flexibility of the Choquet integral has also a major drawback, which is related to
its exponential complexity (remember that 2" — 2 real values must be defined in a fuzzy
measure). Just like for OWA weighting vectors, a decision-maker or an analyst may want
to define a fuzzy measure “by hand”, based on his domain knowledge. Quite obviously,
this approach becomes rapidly impractical when the number of criteria increases.

Another approach consists in fitting a fuzzy measure to empirical data, assuming
that we are able to collect a set of training samples. This can be again formulated
as an optimization problem, using either a least squares criterion or a least absolute
deviation to minimize the error [75]. However, the problem of collecting meaningful
training data remains. For attack attribution purposes, it is not so evident to gather
sound experimental measurements that can be used as training data set, since we usually
do not know the “ground truth” about the underlying phenomena.

Another issue with Choquet is the difficulty to interprete those values (certainly when
n ), and thus to analyze the behaviour of the aggregation model. To deal with these
issues, several particular sub-models have been proposed.
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A-fuzzy measures

Sugeno [70] has proposed a simplified sub-model based on A-fuzzy measures as a way
of reducing the complexity of a fuzzy measureﬂ The idea is to define the values of
the fuzzy measure v only for individual criteria, and then to solve a linear system to
determine all other values for the coalitions, based on some constraints imposing a sub-
or super-additivity on the fuzzy measure.

Definition 2.9. (A-fuzzy measure [70]) Given a parameter A € |—1,00[, a A-fuzzy
measure is a fuzzy measure v that, for all disjoint sets A, B C N, satisfies

v(AUB) =v(A) +v(B) + Av(A)v(B)

Under these conditions, all values v(.A) can be immediately calculated from the n
independent values v({i}), i = 1,...,n, by using the following formula

i=1

U(U{i}) = % (Hu + x({i})) — 1) L A0 (2.19)

where the coefficient A is determined from the boundary condition v(N) = 1, and
involves solving following equation on (—1,0) or (0, 00)

n

A1 =[]+ ({i}) (2.20)

i=1

A A-fuzzy measure is either sub- or super-additive, when —1 < A < 0O or A > 0
respectively. Note that a A-fuzzy measure is an example of a distorted probability
measure [H4].

k-additive fuzzy measures

To decrease the exponential complexity of fuzzy measures, Grabisch proposed another
sub-model called k-order additive fuzzy measures, or shorter k-additive fuzzy mea-
sures [28]. The idea is to construct a fuzzy measure where the interaction among criteria
is limited to groups of size k (or less). For example, in a 2-additive fuzzy measure, we
can only model pairwise interactions among criteria, but no interactions in groups of 3

4For this reason, A-fuzzy measures are also called Sugeno measures.
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or more. In fact, all values of the fuzzy measure for groups of size larger than k are
determined by various linear constraints.

k-additive fuzzy measures provide a good trade-off between complexity and flexibility
of the model. Instead of 2" — 2 values, they require only Zle(?) values to be defined.
1-additive fuzzy measures are just ordinary additive measures (for which only n values
are needed), but they are usually too restrictive for an accurate representation of com-
plex problemsﬂ In practice, 2-additivity seems to be the best compromise between low
complexity and richness of the model [28]. In this case, only n(n + 1)/2 values need to

be defined.

Definition 2.10. (k-additive fuzzy measure [28]) A fuzzy measure v is said to be
k-additive (1 < k < n) if its Mébius transform verifies

My(A) =0

for any subset A with more than k elements, |A| > k, and there exists a subset B with
k elements such that M, (B) # 0.

A fundamental property of k-additive fuzzy measures is

I(A) = M,(A), for everyA C N such that|A| =k

{ I(A) =0, for every A C N such that |A] > k

Defining a 2-additive measure

From a practical viewpoint, a decision-maker will usually define a 2-additive fuzzy mea-
sure, since this is a good trade-off between complexity of the model (in terms of the
number of values to determine) and its effectiveness and flexibility to include inter-
actions (synergies or redundancies) among pairs of features. To do this, two different
approaches can be used. In both cases, we start by defining the interaction indices I2(.A)
of vy, for all combinations of 2 criteria or less. In other words, for all A C A such that
|A| > 2, we can set the values of I(A) = 0 (by definition of a 2-additive measure).
Then, based on our domain knowledge about the attack features we have considered,
we have to define the interaction indices I3(A) of the fuzzy measure vy. For example,
with n = 4, we have to define the four indices of the singletons (on the lower row of

51-additivity does not permit interaction, and the Choquet integral w.r.t. 1-additive fuzzy measures is
simply a weighted arithmetic mean.
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the lattice here under), and all pairwise interactions for the 6 couples of features (on
the third row of the lattice). One possible example is given in the diagram here under,
in which we have set a strong redundancy between features 1 and 2 (note the negative
index for I5({1,2})), and a weak synergy between pairs involving features 2, 3 and 4:

0
0 0 0 0
-0.20 O 0 005 005 O
0.10 0.20 0.40 0.30
0.50

Note that the values Is(A) for singletons correspond in fact to the Shapley values
introduced previously in Definition which represent the importance factors of each
criterion alone.

Next, a first approach consists to convert I5(A) to its corresponding fuzzy measure vy
(which will be by definition 2-additive). To do this transformation I2(A) — v2(S), we
just need to use the conversion formula given by Grabisch in [29]:

o(8) =Y Blahal(A)

ACN

where [ is a quantity related to the Bernouilli numbers By, and is given by

ﬂé—zk:(f)&j, k1=0,1,2, ...

J=0

The resulting 2-additive fuzzy measure vs obtained using this method is defined by the
following values, and formula [2.15| or can then be used to calculate the 2-additive
Choquet integral C,,,.

1
0.65 0.55 0.85 0.95
0.20 055 045 0.65 0.55 0.60
0.15 0.25 0.35 0.25
0
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A second approach consists to calculate the Choquet integral directly from the values
provided by I5(A) by using the expression of C, given by Grabisch in [30]:

Coz)= > (EAz)i+ Y, (wVe)lyl+) z ¢i—%Z|I,-j| (2.21)

i,jeNl]ij>0 7:7j€N‘Iij<0 1EN Ve

where ¢; is the Shapley value of v defined in I;; is the interaction index between
criteria ¢ and j (defined in [2.8)), and z is the vector of criteria scores obtained from the
concatenation of all edge-weigted graphs, as defined previously in Section |2.3

As pointed out by Grabisch [30], the expression is remarkable for two reasons:

- It explains well the meaning of the interaction index and Shapley value: a positive
interaction induces a conjunctive aggregation of scores (necessarily both scores have
to be high to produce a high overall score), while a negative interaction induces a
disjunctive aggregation (it is sufficient that one score is high). Clearly, the Shapley
value is the linear part of the model, while interaction is the non-linear part.

- Coefficients are non-negative, and moreover, if the capacity is normalized, they
sum up to 1. In other words, this means that the Choquet integral is a convex
combination of the scores z; on all criteria, and of all disjunctive and conjunctive
combinations of scores on pairs of criteria. Hence, the coefficient of a given term
can be interpreted as the percentage of contribution of such term to the overall
score. This feature is highly appreciated in practice, because it allows an analyst
to easily understand each decision behavior between two security events. Indeed,
each non-null term of this formula can be seen as the elementary contribution of
the corresponding singleton or pairs of criteria to the overall aggregation score.

When defining interaction indices for pairs of criteria, the only conditions one must
verify are the additivity and monotonicity of the resulting measure. That is, it is suffi-
cient to verify that the following quantity is always positive Vi € N:

1
¢i — 3 Z |Ii;|| >0 (2.22)
J#i
Yet other methods have been developed to build decision-making models with reduced

complexity, such as p-symmetric fuzzy measures [51] or k-tolerant and k-intolerant fuzzy
measures [47]. However, we limit our discussion to the two aforementioned methods
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as these have been implemented in the TRIAGE framework, and we will illustrate their
application in the context of attack attribution in the next Chapters.

Note also that various practical examples are given in [75] to illustrate the use of OWA
operators and fuzzy integrals to model aggregation schemes in attack attribution. From
these examples, it turns out that 2-additive fuzzy measures best performed on difficult
decision-making cases, and could better emphasize the separation between desired and
unwanted cases of security events linkage.

2.5 Conclusion

In this Chapter, we have presented TRIAGE, a generic software analysis framework that
has been developed in WOMBAT to address in a systematic way the attack attribution
problem.

The framework relies on a novel combination of graph-based representation and clus-
tering, with a data fusion process inspired by Multi-Criteria Decision Analysis (MCDA).
In particular, we have demonstrated how an intelligent combination of multiple attack
features can effectively help a security analyst in the process of identifying attack phe-
nomena, and perhaps more importantly, how it helps to model their dynamic behaviors
thanks to different aggregation methods, such as OWA functions, or more advanced
methods like the Choquet integral.

In the next Chapters, we describe extensively the experimental results obtained with
TRIAGE and we show how this framework has been successfully applied to various WoOM-
BAT datasets to perform intelligence analyses by taking advantage of many structural
and contextual features of security data sets developed by the partners.
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3.1 Introduction

One of the requirements in the design of the our attack attribution framework was
its applicability to a broader set of problems relating to Internet threats, intelligence
analysis, or more generally to the analysis of any security data set. In this Chapter,
we demonstrate how TRIAGE has been used to address an emerging security problem,
namely rogue security software. This type of misleading application pretends to be
legitimate security software, such as an antivirus scanner, but in reality, these programs
provide little or no protection and, in fact, may actually install the very malicious code
it purports to protect against.

In the following Sections, we describe how we leveraged our multi-criteria aggregation
method to analyze the campaigns through which this type of malware is distributed,
i.e., what are the underlying techniques, server infrastructure and coordinated efforts
employed by cyber-criminals to spread their rogue software. In the experimental results,
we give a more in-depth presentation of some typical networks of rogue domains that
are likely linked to the same campaign, which helped reveal the modus operandi of
the criminal organizations behind them. Finally, we have compared our findings with
a different type of client-threats, i.e., the ones related to browser exploits. Thanks
to TRIAGE experimental results, we could underline some profound differences in the
structures and dynamics of these two threat ecosystems.

Some experimental results presented here after have been published in the Syman-
tec Internet Security Threat Report in 2009 (with a special edition Symantec Report
on Rogue Security Software [73]), and have been presented at international academic
conferences [20, [19].

3.1.1 Rogue AV Ecosystem

A rogue security software program is a type of misleading application that pretends
to be a legitimate security software, such as an anti-virus scanner, but which actually
provides the user with little or no protection. In some cases, rogue security software (in
the following, more compactly written rogue AV') actually facilitates the installation of
the very malicious code that it purports to protect against ([73]).
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Rogue AV makes its way on victim machines in two prevalent ways. First, social engi-
neering techniques, such as Web banner advertisements, pop-up windows and attractive
messages on blogs or sent via spams, can be used to convince unexperienced users that
a rogue tool is free and legitimate and that its use is necessary to remediate often inex-
istent threats found on the victim’s computer (hence, the other name scareware given to
those programs [73])). A second, more stealthy technique consists in attracting victims
to malicious web sites that exploit vulnerabilities in the client software (typically, the
browser or one of its plugins) to download and install the rogue programs, sometimes
without any user intervention (i.e., via drive-by downloads).

Rogue AV programs are distributed by cyber-criminals to generate a financial profit.
In fact, after the initial infection, victims are typically tricked into paying for additional
tools or services (e.g., to upgrade to the full version of the program or to subscribe to
an update mechanism), which are of course fictitious and completely ineffective. For the
victims, the initial monetary loss of these scams ranges from $30 to $100. Some examples
of prevalent rogue security applications (as reported by Symantec for the period July
2008 - June 2009 [73]) are known as SpywareGuard 2008, AntiVirus 2008, AntiVirus
2009, Spyware Secure, and XP AntiVirus.

Despite its reliance on relatively unsophisticated techniques, rogue AV has emerged
as a major security threat, in terms of the size of the affected population (Syman-
tec’s sensors alone reported 43 million installation attempts over a one-year monitoring
period [73]), the number of different variants unleashed in-the-wild (over 250 distinct
families of rogue tools have been detected by Symantec [73]), and the volume of profits
generated by cyber-crooks. Their business model relies on an affiliate-based structure,
with per-installation prices for affiliate distributors ([37, [73] reported earnings of as much
as $332,000 a month in affiliate commissions alone, as observed on a distribution website
called TrafficConverter.biz).

The prevalence and effectiveness of this threat has spurred considerable research by
the security community [73, 55, 56]. These studies have led to a better understanding
of the technical characteristics of this phenomenon (e.g., its advertising and installation
techniques) and of the quantitative aspects of the overall threat (e.g., the number and
geolocation of the web sites involved in the distribution of rogue programs and of their
victims).

However, a number of areas have not been fully explored. Indeed, malware code, the
infrastructure used to distribute it, and the victims that encounter it do not exist in
isolation, but are different aspects of the coordinated effort made by cyber-criminals to
spread or distribute rogue AV. We refer to such a coordinated activity as a rogue AV
campaign. Indeed, one assumption that can reasonably be made is that a campaign is
managed by a group of people, who are likely to reuse, at various stages of the campaign,
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the same techniques, strategies, and tools (for obvious reasons of development cost).

Consequently, we have applied TRIAGE to a specific data set made of 5,852 rogue web
sites, as observed by HARMUR during a two-month reporting period (July to August,
2009), with the purpose of identifying any emerging patterns in the way rogue domains
are created, grouped, and interconnected with each other, based upon common elements
(e.g., rogue AV-hosting sites, DNS servers, domain registration) that are likely due to
the same root cause, i.e., the same rogue AV campaign.

3.1.2 HARMUR Dataset

The analysis of the rogue AV threat has been performed by leveraging HARMUR, a
Historical ARchive of Malicious URLs, which was introduced in D13 (D3.3) as an
aggregator of information on web threats. HARMUR [4I] builds upon two types of
information feeds: URL feeds that provide lists of fresh URLs likely to be of interest,
and analysis feeds that build a wide range of contextual information around each URL
introduced in the system by the URL feeds. By revisiting the analysis of each URL
on a periodic basis, HARMUR is capable of providing insights on the dynamics of the
structure of these threats. In the context of this work, however, we do not take the
dynamics into account and we consider a “flat” representation of the URL metadata as
a source of contextual information on a given threat, similarly to what has been done in
D18 (D4.6) when describing the HARMUR, “feature space”.

To build an initial seed of domains associated to the rogue AV distribution, we aggre-
gated information from a number of different sources:

Norton Safeweb (http://safeweb.norton.com)

Malware Domain List (http://malwaredomainlist.com)

Malware URL (http://www.malwareurl.com)

Hosts File (http://www.hosts-file.net)

All these sources offer a rough categorization of the type of each malicious domain they
are listing, and allowed us to systematically collect all the domains that were believed
to be correlated to the rogue AV distribution by means of simple heuristics.

To complete our picture on the collected domains, we have integrated our domain
list with the information generated by freely accessible IP-NAME mapping datasets
(http://www.robtex.com). This allowed us to discover all the domain names hosted on
each IP where at least one rogue domain had been found.
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Once the initial list of domains was created, we have have used HARMUR to collect
as much information as possible on each of them, on their relation to the associated web
servers, and on the registration dynamics. In the specific context of this experiment with
TRIAGE, we have selected some of the contextual features descrbed in D18 to generate
the necessary contextual information on the identified rogue AV domains, and on all the
other domains that were discovered to be sharing the same server as rogue AV domains
thanks to DNS mapping information:

- Information on the security state of a domain.

e Norton Safeweb information. For each domain, we have queried its se-
curity status taking advantage of the Norton Safeweb website reputation ser-
Vicdﬂ This allowed us to retrieve information on a variety of threats known
to be present on each domain, ranging from browser exploits, to malware
samples, to phishing sites.

e Google Safe Browsing information. We have taken advantage of the
Google Safe Browsing APIE] to detect the presence of threats within a given
domain.

- Information on the domain.

e Registration information. We have parsed the registration data obtained
via the WHOIS protocol in order to get information on the identity of the
registrant and of the provided contact email address, as well as the name of
the registraif’|

e DNS relations. By means of DNS queries, we have retrieved for each do-
main the associated NS records and all the A records associated to all the
hostnames known to belong to it. Whenever only one domain name was
available and we had no information on the associated hostnames, we con-
sidered as hostnames the domain name itself and the hostname generated by
prepending the standard “www” name.

- Information on the servers.

"http://safeweb.norton.com

2http://code.google.com/apis/safebrowsing/

3The WHOIS specification requires WHOIS records to be human readable, and does not specify their
syntax and their semantics. As a consequence, the data stored by different registrars is often in
different formats. We have built a generic parser that handles a vast number of registrars and 17
specific parser for other common registrars, but despite of this effort registration information is not
available for all the domains taken into consideration.

44 SEVENTH FRAMEWORK PROGRAMME


http://safeweb.norton.com
http://code.google.com/apis/safebrowsing/

3.1 Introduction

e Geolocation and AS information. For each web server associated to the
rogue domain through a DNS A record, we have collected information on its
geographical location as well as its associated Autonomous System number.

e Server uptime and version string. By means of HI'TP HEAD packets,
we have tested the responsiveness of the discovered servers and, by looking
at the HTTP response headers, we have collected information on the server
configuration by looking at the advertised server version string.

By periodically iterating the collection of this information, we have been able to gen-
erate a complete dataset on the structure and the dynamics of the rogue AV threat
landscape.

Experimental dataset

The HARMUR data set we have considered for this analysis was collected over a period
of approximately two months, in July and August 2009. The rogue AV-hosting servers
were identified through a variety of means, including automated and manual feeds.

To build our experimental data set, we considered 5,852 DNS entrieﬂ pointing to
3,581 distinct IP addresses of web servers that were possibly hosting rogue security
software. After analysis, the 3,581 Web servers have been broken down into the following
categories:

e 2,227 Web servers (as identified by their unique IP addresses) were hosting domains
serving only rogue security software,

e 118 servers hosted rogue security software along with domains that served malicious
code,

e the remaining IP addresses served malicious code along with innocuous domains.

It is worth noting that at least 45% of these domains were registered through just 29
out of several hundred existing domain registrars. This may indicate that rogue security
software distributors are choosing specific registrars, possibly because of perceived lax
security or oversight of the registration of names.

Looking at the email addresses provided by all Registrants of rogue AV domains,
we observed that, besides a list of popular email hosting services (like Gmail, Yahoo!
Mail, Lycos, etc.), about 26% of the analyzed domains make use of anonymous do-
main registration services such as domainsbyproxy.com, whoisprivacyprotect.com,

“In the paper published at RATD [20], we extended this list of rogue AV domains to 6,500 DNS entries.
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Figure 3.1: Map of rogue AV servers, as monitored by HARMUR over a period of two months, in July
and August 2009.

id-private.com, and |space.kz. In some other cases, we also observed that certain
ISPs, even though they do not formally offer anonymous domain registration services,
are rather lax in their verification of registrant identities and email addresses. For in-
stance, Namecheap. com is often associated to weird registrant names such as “Kyle”, or
“AA”.

Regarding the geographical distribution of these servers (Table , we observed that
53% were in the USA, far more than any other country. The high ranking of the US may
be due to the methods used for identifying rogue AV sites, which more easily identified
English-language sites than sites marketing scams in other languages. Germany ranked
second in this survey, accounting for 11% of the total servers hosting rogue security
software identified. Fig. [3.I] graphically depicts the geographical distribution of rogue
AV servers, where each red dot represents a distinct server, while the different gradients
on the background underline the areas with highest density of deployed servers.

3.2 Selection of Domain Features

We turn now to the application of our attack attribution method to this data set of 5,852
rogue AV websites. As described previously, we want to identify emerging patterns in
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Table 3.1: Geographical distribution of rogue AV servers, as monitored by HARMUR over a period of
two months, in July and August 2009.

Rank Country Percentage
1 United States 53%
2 Germany 11%
3 Ukraine 5%
4 Canada 5%
5 United Kingdom 3%
6 China 3%
7 Turkey 3%
8 Netherlands 2%
9 Ttaly 2%
10 Russia 1%

the way domains (and servers) are grouped and interconnected with each other, based
upon a series of common elements.

In this Section, we describe which domain features we found relevant for analyzing
rogue AV campaigns. Some illustrative examples of these features are summarized in

Table B.21

3.2.1 Server IP addresses

Every web site (or web domain) has to be hosted on a publicly available Web server, to
which an IP address has been assigned. The mapping between a web site and the server
IP address is maintained via the Domain Name System (DNS), a hierarchical naming
system for computers, services, or any resource connected to the Internet or a private
network. Via specific requests to DNS servers, one can know the IP address of the server
hosting a given domain name, as well as the authoritative nameserver (i.e., the DNS
server responsible for keeping the records of the domain name).

As a result, if cyber-crooks want to distribute their rogueware to innocent victims,
they have to i) find some hosting web server with a publicly available IP address; and
ii) register their domain names and let them point to those server IP addresses. Due
to the fraudulent aspect of their business, we could a priori believe that cyber-criminals
would host rogue AV websites on compromised computers (e.g., on zombie machines
that are part of a botnet), as it is often the case with phishing pages, illegal porn and
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warez websites. However, our experimental analysis tends to show that a large majority
of those rogue domains are hosted by some popular commercial domain registrars and
web hosting companies (e.g., GoDaddy, eNom, Tucows, OnlineNIC, etc).

Assuming that cyber-criminals want to make their efforts profitable, they will proba-
bly look for a certain type of hosting infrastructure that is not too expensive, somehow
“reliable” for them (i.e., offering some oversight regarding the registration of suspicious
names, and slow in taking down fraudulent domains), and possibly allowing to automate
certain administrative tasks, such as the bulk registration of new web domains. Further-
more, due to the affiliate structure and the social networking aspect of those criminal
organizations, we hypothesize that many affiliates belonging to the same community will
most likely reuse the same tools in order to quickly create new domains, distribute rogue
AV and thus make some profit.

Consequently, our intuition about a rogue AV campaign is that cyber-crooks of a same
organization will, at various stages of the campaign, reuse the very same techniques to
create and register their domains. They may also choose for a specific domain registrar
or web hosting company, for the very same reasons explained here above.

However, to reduce the cost of ownership, most web hosting companies offer some
shared hosting on server farms, which means that two domains registered during the
same campaign can perfectly be hosted on two different servers of the same Web company
(e.g., GoDaddy), having thus nearby IP addresses (i.e., located within the same IP
subnet). For this reason, we observed that it is sometimes useful to group server IP
addresses by Class C or Class B-subnet, such that we can compare the IP subnets on
which two rogue sites are located, instead of the exact IP addresses (see for example
domains 465709 and 465706 in Table on page .

It is also worth noting that some rogue AV domains were observed as being hosted on
more than one server, which may be an attempt to reduce the effectiveness of mitiga-
tion measures such as IP blocking or blacklisting servers, by providing a certain level of
redundancy with spare IP addresses being reserved for a given domain. That is, when
cyber-crooks detect an attempt of blocking certain IP addresses, they just need to ac-
tivate a spare IP address and let their rogue domain point to this new address (i.e., by
changing the "A’ record of the rogue domain in the nameserver).

In conclusion, the considerations here above lead us to define the following domain
features, which can be fed to TRIAGE and used to link rogue domains to the same
campaign:

e Frp, which represents the IP address(es) of the web server(s) hosting a given rogue
domain. The corresponding feature vector is thus a set of server IP addresses;

e Fcic, which represents the Class C-subnet(s) of the web server(s) hosting a given
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rogue domain. The corresponding feature vector is thus a set of Class C-subnets;

e Foi g, which represents the Class B-subnet(s) of the web server(s) hosting a given
rogue domain. The corresponding feature vector is thus a set of Class B-subnets;

e [Fyg, which represents the IP address(es) of the authoritative nameserver(s) for a
given rogue domain. The corresponding feature vector is thus a set of nameserver
IP addresses.

Finally, it is important to note that none of these network observables, if considered
alone, is sufficient to attribute with high confidence two rogue domains to the same
campaign. Indeed, using a specific web hosting provider, or pointing to the same web
server, does not necessarily mean that the hosted domains are part of the same rogue
campaign. In fact, many legitimate web sites are being hosted on the very same servers
as those of rogue sites. Additional features are thus needed to bring stronger evidence
of two domains likely involved in the same Rogue AV campaign.

3.2.2 Whois information

Whois [22] is a query/response protocol that is widely used for querying databases in
order to determine the registrant or assignee of Internet resources, such as a domain
name, an [P address block, or an autonomous system number. By performing periodi-
cally Whois lookups, HARMUR can retrieve and store some valuable information about
each web site being monitored, such as the registrant name (usually, an email address),
the domain registrar, the geolocation of the hosting web server, and the creation date of
the domain.

For the very same reasons as those stated here above, we hypothesize that two domains
created by the same criminal organization, for the purpose of running a rogue campaign,
will have commonalities in one or several Whois features (i.e., same registrant address,
or same registrar and creation date for domains that are create in bulk using automated
tools).

This leads us to define the following site features related to the available Whois infor-
mation:

® FRey, which refers to the name or email address of the registrant;
e Fpyr, which refers to the name of the Registrar;

e [geo, which refers to the geolocation of the web server hosting a given domain
(i.e., a country);
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Site Id Fpom Fip Foic Fous y Freg FRrar Fgeo Forea
271665 | windowsantivirus2008.com 74.54.82.219, 74.54.82 74.54 74.54.82.119 domadmin DIRECTI US  2008-06-04
209.62.20.233 209.62.20 209.62 @privateregistrations.ws
271621 Xp-2008-Antivirus.com 208.73.210.27, 208.73.210 208.73 204.13.161.55, - - US -
208.73.210.121 204.13.160.55
272656 | malwaredefender2009.com 67.43.237.75, 67.43.237 67.43 208.76.62.100, jstsl2341@googlemail.com Regtime Ltd. CN  2009-03-04
211.95.73.189 211.95.73 211.95 75.102.60.66
211552 anti-malware-2010.com 74.205.8.7 74.205.8 74.205 216.69.185.2, ANTI-MALWARE-2010.COM GODADDY.COM  US  2009-05-31
208.109.255.2 @domainsbyproxy.com
122287 antivirus360remover.com  174.132.250.194 174.132.250 174.132  207.218.223.162, ANTIVIRUS360REMOVER.COM GODADDY.COM US  2009-02-22
207.218.247.135 @domainsbyproxy.com
272539 | norton-antivirus-2010.com 74.208.42.60, 74.208.42, 74.208, 74.208.3.8, proxy1994891 GODADDY.COM  US  2007-07-08
74.208.156.41,  74.208.156,  82.165 74.208.2.9 @land1-private-registration.com
82.165.245.27 82.165.245
272540 nortonantivirus2010.com 69.64.145.229, 69.64.145 69.64 209.249.221.130, support@NameCheap.com ENOM US  2006-08-13
209.249.222.18,  209.249.222  209.249 72.34.41.47,
208.116.34.163  208.116.34  208.116 74.81.64.51
334096 home-antivirus2010.com 72.52.210.132 72.52.210 72.52 76.73.35.154, blair@8081.ru ONLINENIC US  2009-07-14
72.52.210.132
334091 homeanti-virus-2010.com 72.52.210.130 72.52.210 72.52 76.73.35.155, blair@8081.ru ONLINENIC US  2009-07-14
72.52.210.130
389838 homeav-2010.com 72.52.210.133 72.52.210 72.52 76.73.35.158, tours@infotorrent.ru ONLINENIC US  2009-07-14
72.52.210.133
465709 pc-anti-spyware-2010 174.139.5.50, 174.139.5,  174.139, 174.139.5.50, argue@8081.ru ONLINENIC US  2009-07-29
209.31.180.235  209.31.180 209.31 209.31.180.235
465706 pc-anti-spy2010.com 174.139.243.45 174.139.243 174.139  174.139.243.45, pixie@ml3.ru ONLINENIC US  2009-07-29
209.31.180.233  209.31.180 209.31 209.31.180.233
465710 anti-spyware-2010.com  174.139.243.46, 174.139.243 174.139  174.139.243.46, kites@e2mail.ru ONLINENIC US  2009-07-29
209.31.180.234  209.31.180 209.31 209.31.180.234

Table 3.2: Network observables used as domain features for a set of rogue AV domains and associated web servers.
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® Foyeq, which refers to the creation date of the domain, as given in the registration
data.

As with the previous ones, these features can be used to link rogue domains to the
same campaign, but none of them is sufficient by itself to identify a rogue campaign in
a reliable fashion.

3.2.3 Domain names

When cyber-crooks want to create dedicated web sites for hosting rogue AV software,
we observed that, in many cases, they tend to choose some appealing names that can
easily lure users into believing that their web sites are genuine and legitimate. Fur-
thermore, the domain names may also be chosen to be consistent with the “brand
name” given to the distributed rogue software, for example windowsantivirus2008. com,
xp—-2008-antivirus.com, malwaredefender2009.com, or pcregistrycleaner.com.

Consequently, a good reason to look at domain names patterns is that rogueware
distributors and their affiliates can possibly rely on the same software tools to quickly
create new domain names in an automated fashion, e.g., by combining (randomly or with
a given logic) different text tokens that are commonly used in the names of legitimate
anti-malware products (e.g., XP, anti, virus, spyware, malware, registry, home, cleaner,
defender, etc).

Identifying patterns and commonalities among domain names may thus give a good
indication on the tools or techniques that are being reused by criminals during the same
campaign when creating new rogue domains. We denote this feature as Fpom.-

3.2.4 Other possible features

Some other network observables could be useful for the identification and analysis of
rogue AV campaigns. While we haven’t used those features in the multi-criteria fusion,
we believe they can bring other interesting viewpoints on groups of domains attributed
to the same campaign.

Software version

A first additional feature we may want to consider is the software version of the HT'TP
server hosting the rogue domain. This feature can be obtained either from the HT'TP
header sent by the server, or sometimes also from Whois servers. Some possible values
of server version are, for example, “Apache/2.2.3 (Red Hat)”, “Microsoft-IIS/6.07,
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but also “nginx/0.6.35”, “lighttpd/1.5.0”, “LiteSpeed”, or eventually some other
not-so-commonly-used software like “Oversee Turing” and “gws”.

As such, two domains hosted on different web servers running the same HTTP software
may not indicate anything useful if we consider this feature alone. However, looking at
the distribution of software versions for a group of domains that we suspect of being
part of the same phenomenon may help us to confirm the results. More precisely, we see
two main reasons for this:

e if cyber-criminals are hosting their rogue web site on compromised servers (as they
don’t want to pay a commercial provider for hosting hundreds of domains), chances
are high that they will reuse the very same technique (or exploit) to take advantage
of a given vulnerability they discovered in a specific version of a server software
(e.g., an exploit only targeting Apache/2.2.3 running on Windows platforms).

e cyber-criminals can also decide to hire zombie machines that are part of a botnet
to host their server infrastructure. In this case, the available server software will
depend on the bot software used to control the compromised machines, and in most
cases, the web server is then based on some custom, lightweight server software
that can be easily downloaded and installed, in a stealthy manner, on zombie
machines with high-speed connections and public IP addresses. Since the bot
herder has usually full access to the underlying operating system of the bots, he
can even configure the HT'TP server software in such a way that standard banners
are replaced by a stealthier one (of his own choice).

Threat type

Another useful feature that we could include in the analysis of rogue AV campaigns
is the type of threats found on each rogue web site, such as possible browser exploits,
trojan downloads, obfuscated (malicious) javascripts, or fake codecs installation. This
kind of information is available via web site reputation services, such as Norton SafeWeb,
which is used as analysis feed by HARMUR. Those reputation services usually rely on
high-interaction honeypots to effectively detect these client threats.

In our measurements, only a small fraction of the monitored rogue domains also in-
volved the hosting of additional threats, such as browser exploits, malware downloads,
etc. However, we hypothesize that using this feature in combination with others may
be helpful to identify and characterize malicious domains that are controlled by the
same group of criminals, as they will quite likely reuse the same techniques to distribute
malware or to compromise new victims.
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3.3 Graph-based Clustering

Based on the feature analysis here above, we have selected the following 6 features for
the application of the graph-based clustering component: Fpop,, Frp, Foi.c, Fci.B, Freg
and F NS-

The other features were not selected mainly for two reasons: (i) for certain aspects,
the data collected by HARMUR was, at the time of this analysis, either too generic or
incomplete to be used as clustering feature (like threat types or Whois information, also
because some web sites were not active any more); and (i) features like Fge, and Frer
were too redundant with other selected features, such as the information provided by
IP subnets, and the software module for running an aggregation by means of Choquet
integral (which can model redundancies and synergies, see Section was not yet
implemented or fully operational.

One could argue that Fg; ¢ and Fgy g are somehow redundant with Frp. However,
as explained previously, those features are less specific than Frp but still more precise
than Fre-, and can better grasp the fact that rogue domains created during the same
campaign can point to different server IP’s with nearby addresses (which may belong to
the same web provider). Moreover, we note that domains registered through the same
Registrar on very close dates are usually hosted on nearby servers (as it is the case with
domains 465709, 465706 and 465710 in Table on page , which further justifies the
choice of Fy o and Fgy g as clustering features.

Prior to running the clustering analysis, we need to define appropriate distance metrics
for all features.

3.3.1 Distance Metrics
IP addresses

Since feature vectors defined for Frp, Foio, Foi.p and Fyg are simply sets of IP ad-
dresses (or sets of IP subnets), it is relatively easy to calculate a similarity between two
sets by using the Jaccard coefficient which is defined by following expression:

o 1SN S
sim(i,j) = S US| (3.1)

where S1, Sy are two sample sets.

For example, looking at domains in Table (page :
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e for domains 465709 and 465706, comparing IP addresses (Fyp) with the Jaccard
coefficient gives a similarity equal to 0, whereas the same operation for F; o and
Fey g yields 0.5 and 1 respectively.

e idem for domains 334096 and 334091, where the similarity for Fyp is zero, but the
IP subnets (Class C and B) are identical.

Registrant names

The most straightforward way of measuring a similarity between two registrant names is
simply to check their equality. However, this does not allow us to grasp commonalities
in the way registrant names (i.e., email addresses) have been created, e.g.:

e people can use automated tools to create new email accounts, usually offered by
specific email providers (such as Gmail, Hotmail, Yahoo, etc), and use them after-
wards to automatically register rogue domains;

e we have observed some recurrent patterns in the email addresses of certain regis-
trants, like the use of specific keywords, or string tokens (often borrowed from the
domain name being registered), probably also created in an automated fashion;

e a substantial amount of rogue domains have been created using third-party com-
panies offering domain privacy protection services (e.g., domainsbyproxy.com,
whoisguard.com, privateregistrations.ws, or eNom’s “Whois Privacy Protec-
tion Service”). Consequently, comparing which specific email domain is used by
registrants can reflect a certain strategy used by cyber-crooks (in this case, pro-
tecting their identity).

These considerations have led us to define a heuristic distance for comparing email
addresses used by registrants. More precisely, for two given rogue domains:

(1) we start obviously by checking the equality between the two registrants addresses;

(2) when the value given in (1) is zero, then we further compare the three following sub-
features: email domain, username, presence of AV-keywords. The final similarity
value is then given by a weighted mean, defined by the following empirical weighting
values: [0.2, 0.2, 0.5].

The latest sub-feature refers to the screening of about 30 commonly-used AV-keywords
within the email addresses, such as {anti, virus, cleaner, remove, malware, spyware, . . .}.
When at least 2 different tokens are found, this sub-feature is equal to 1. This simple

54 SEVENTH FRAMEWORK PROGRAMME


domainsbyproxy.com
whoisguard.com
privateregistrations.ws

3.3 Graph-based Clustering

heuristic distance proved to be effective in grouping registrants addresses that looked
semantically related.
Let us consider a few examples from Table (page :

e for domains 334096 and 334091, the similarity for Fgr.4 is equal to 1:
e for domains 334096 and 465709, the similarity is equal to 0.2 (same domain only);

e for domains 211552 and 122287, the similarity is equal to 0.7 (same domain and
presence of at least two AV-related keywords);

Domain names

Regarding Fpom,, we need to catch commonalities between rogue domain names having
similar patterns, or common sequences of the very same tokens, which can indicate that
the very same tool has been used to dynamically create new names based on a given
set of keywords. A commonly used technique for measuring the amount of difference
between two sequences (or two strings) is the Levenshtein distance, also called the edit
distance, which is used in various domains such as spell checking, information retrieval,
text and web mining, or DNS sequence analysis.

The Levenshtein distance is given by the minimum number of operations needed to
transform one string into the other, where an operation is an insertion, deletion, or sub-
stitution of a single character. It can be considered as a generalization of the Hamming
distance, which is used for strings of the same length and only considers substitution
edits.

The Levenshtein distance is zero if and only if the strings are identical, and the upper
bound is given by the length of the longer string. Let us consider a few examples of
distances between rogue domain names we have observed:

e the distance between scand4lite.com and scand4life.com is only 1, whereas the
distance between |[scand4lite.com and scandsafe.comn is equal to 3;

e the distance between gofilescan.com and gofullscan.com (resp. fast4scan.
com) is 2 (resp. 6);

e in Table[3.2] the distance between home-antivirus2010.com and homeanti-virus-2010.
com (resp. homeav-2010.com) is 3 (resp. 8);

e in Table[3.2] the distance between home-antivirus2010.comandpc-anti-spy2010.
com (resp. anti-malware-2010.com) is 9 (resp. 12).
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Since Levenshtein gives a distance (and not a similarity) metric, we still need to
tranform those values into similarities, for example by using equation ??. Similarly to
the calibration procedure performed in Chapter ?? (on page ?7), we need to determine
a constant o that reflects the decreasing rate of the similarity as an exponential function
of the distance.

By considering a large number of domain names in our data set, we observed that an
edit distance of 5 or 6 was in most cases reflecting an average similarity between two
rogue domains names, with a sufficient number of common tokens justifying a similarity
value around 0.5, whereas a Levenshtein distance above 12 was clearly indicating that
the two domains had almost nothing in common in their name schemes (or at least, no
significant pattern in common). Based on those observations, we have derived an empir-
ical value for 0 = 7. The similarity values obtained from transforming some Levenshtein
distances are showed in Table [3.3] which correctly translates our requirements regarding
the measurement of similarities between rogue domain names.

Table 3.3: Transforming Levenshtein distances into similarity values using ¢ = 7 in equation m

Levenshtein | 0 1 2 3 4 5 6 7 8 9 10 11 12
Similarity 1 098 092 083 0.72 0.60 0.48 037 0.27 0.19 0.13 0.08 0.05

Note that some other types of string or text distances could be used to better grasp
commonalities among domain names. For example, we could try define a “token-based
distance”, which computes the number of common tokens between two domain names
(based on a predefined list of commonly-used keywords), and normalizes this value by
using the Jaccard coefficient (equation [3.1).

Another possiblity would be to rely on more complex distances, such as semantic
matching, or certain metrics defined in Latent Semantic Analysis (LSA), to analyze the
possible meaning of each domain name and consequently, to determine whether two
domain names are semantically related (i.e., similarly to what a human expert tries to
do). However, we leave the study of these options as future work, as the Levenshtein
distance has performed very well on this data set, and meaningful clusters have been
obtained with this metric.

3.3.2 Cluster Analysis

Based on the previously defined features and distance metrics, we have then applied
the graph-based clustering to each individual feature, using the dominant set framework
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introduced in Section 2.3.11

An overview of the clustering results is given in Table where we can compare
the global performance of site features individually. As usual, the consistency of the
clusters can be assessed through the average compactness value of all clusters, given by
the column ﬁp. We have also calculated an average compactness for the first 20 clusters,
represented by Cp 20, as these are usually the most meaningful clusters found by the
dominant sets algorithm. The column size refers to the average size of the clusters.

First, we can observe that the features related to IP addresses (Frp) or to IP subnets
(Fer.c and Fey ) provide apparently very compact clusters, i.e., very high C), (even
close to 1). This seems to indicate that rogue AV sites are located in a limited number
of IP subnets (between 61 and 73% of all rogue sites could be clustered in only 110 to
192 clusters), and they tend to form very tight clusters. This can be observed in more
details in Fig. showing the individual compactness values for the first 20 clusters.
Furthermore, a large majority of the sites is included in the first 20 clusters, as the
evolution of the cluster size seems to show (curve in magenta in Fig. (b), (c) and
(d)). As we could expect, features related to IP subnets (Class C and B) give fewer
clusters than F7p, and they are also larger and more compact.

Table 3.4: Overview of the graph-based clustering results for the rogue AV data set.

Feature | Nr clusters Nr sites size ﬁp Cp,20
Fpom 132 4,117 (70%) 31.2 0.46 0.53
Frp 192 3,559 (61%) 18.5 0.82 0.98
Foio 110 3,667 (63%) 33.3 0.97 0.99
Fois 122 4,250 (73%) 34.8 0.98 1
FReg 19 2,937 (50%) 172.2 0.78 0.78
Fyng 40 2,529 (43%) 63.2 0.95 0.99

Regarding domain names (Fpem), it is quite surprising to see that about 70% of
this data set has been clustered based on commonalities in domain name patterns. The
average compactness of the clusters is, admitteddly, a bit lower than for IP addresses, but
still acceptable (see also Fig. (a)). Still, the largest cluster found for Fp,, contains
about 800 domain names. These results, in addition to some illustrative patterns of
domain name clusters given hereafter, seem to confirm the intuition that miscreants are
likely using very effective, automated tools to create large amounts of domain names
with common patterns, in a bulk fashion.

Even more surprisingly, only 19 clusters of registrant names were found, accounting
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for 50% of the data set. The mean cluster size for this feature is also the largest one,
with (on average) about 170 rogue sites associated with the same registrant(s) ! The
individual C}, values of the clusters, showed in Fig. (e), indicate that all registant
clusters are quite consistent, i.e., there are apparently very good reasons to group those
rogue domains based on the registrant names. Here too, we hypothesize that cyber-
crooks are able to create new email accounts using highly effective, automated tools,
and those new email addresses are then used to create and register new domain names
quite anonymously. An in-depth analysis of the cluster patterns further confirmed this
assumption, as illustrated hereafter with some detailed results.

Finally, looking at clustering results obtained w.r.t. nameservers (Fyg), we note
that rogue domains are apparently not as much correlated than by the other IP-related
features. The number of clusters found with this viewpoint is significantly lower (only
40 groups comprising totally 43% of the sites). However, those clusters are still very
compact, but also larger than clusters of IP addresses or IP subnets.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘

(a) Fpom (b) Frp (c) Feic

Figure 3.2: Compactness values of the clusters (in blue) and their respective sizes (in magenta) for the
first 20 clusters found in the Rogue AV data set (5,852 rogue domains).
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Some detailed results

To visualize the clusters, starting from the similarity graphs built for the various features,
we have created 2-dimensional maps using a dimensionality reduction technique called
t-distributed Stochastic Neighbor Embedding, or ¢-SNE [81]. t-SNE is a non-linear
dimensionality reduction technique that aims at preserving as much of the significant
structure of the high-dimensional data as possible in the low-dimensional map. That is,
we can verify that two nearby data points on the 2-dimensional map have highly similar
feature vectors, whereas two distant points should have nothing in common. This can
be helpful to visualize a high-dimensional data set, but also to assess the consistency of
clustering results.

For the sake of illustration, we have considered all rogue sites involved in the largest
clusters only, which are the most representative of the kind of results we have obtained.
Also, we illustrate some detailed results only for the four features Fpem, Frp, Foi.p and
FRey. However, very similar visualizations can be obtained for the other two features
(Fns, Ferc), with similar interpretations regarding cluster patterns.

Let us consider Fig. (a) (on page [61]), on which we can visualize the 20 largest
clusters obtained w.r.t. rogue domain names (Fp,,), and comprising 3,151 rogue
sites. On this map, each pixel represents the domain name of a given site, and the pixel
color refers to which cluster the site belongs to (notice the numbers around certain points
to indicate the cluster id’s). The relative interpoint proximities have been mapped to the
inter-domain similarities, as calculated with the chosen distance metric (i.e., Levenshtein
in this case). As we can observe, the overall structure of the map seems to indicate that
there are basically two regions: (i) a region with well-separated clusters of domain names
(like clusters 1, 11, 20, 7, 12); and (%i) a quite large and “messy” zone, where data points
are somehow mixed and clusters overlap with each other (like clusters 2, 4, 6, 3, 5, 16,
19, etc).

This aspect can be easily explained by looking at the cluster patterns, like those
explicitely given in Fig. (a). In this table, some domain name patterns are represented
using regular expressions for the variable parts of the names, whereas fixed string tokens
(common to all domains of the indicated cluster) are highlighted in bold. This can
help the analyst to understand, very quickly and via a single global picture, the inter-
relationships among those domain name patterns. For example, cluster 1 (which contains
about 794 sites) is made of domain names that are built with exactly 5 randomly-chosen
alphanumeric characters, whereas cluster 11 (containing 110 sites) represents domain
names made of 7 to 8 alphanumeric characters (most of them also randomly chosen).
This does not mean, per se, that the two clusters are due to the same root cause (or the
same tool); however, it already explains their mutual proximity on the map.
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The same reasoning holds for clusters 7 and 12, where some common string tokens
(e.g., scan and .info) tend to tie those clusters close to each other (idem with clusters 2
and 8). Regarding the fuzzy area in which we find clusters 4, 6 and many others as we
move towards the top of the map, we observed that those overlapping clusters represent
domain names with commonly-used words, made of 4 to 10 alphanumeric characters,
and involving many keywords usually related to anti-malware or anti-spyware software,
which explains why those domains are somehow inter-related with many others. In
other words, the variability of those patterns combined with the numerous commonalities
among some of them explains why the t-SNE algorithm had difficulties to clearly separate
those domain names on a reduced map with only 2 dimensions.

As we could expect from the global clustering results, the two-dimensional maps ob-
tained for the viewpoints related to IP addresses (Fig. (b)) and IP subnets (Fig.
(d)) reflect the strong correlating aspect of those features. In both maps, we have con-
sidered the 20 largest clusters, which comprise about 1,269 and 2,589 rogue AV sites for
Frp and Fgy g respectively. Most of the clusters are apparently well-separated. How-
ever, we can observe a few overlapping clusters, for example clusters 4 and 16 (in both
maps), or clusters 7, 9, 10 in the F; g map, which can again be easily explained by the
corresponding patterns given in Fig. (b),(d). We note also that clusters found w.r.t.
Fey g are quite obviously much larger than those found with Frp.

Even though IP-related clusters tend to form very tight clusters, we argue that this
feature alone is probably not sufficient in many cases to identify a rogue AV campaign.
In our opinion, all web sites hosted on the same IP subnet (or even on the same web
server) are not necessarily created by the very same group of cyber-crooks. There are,
apparently, several popular Web providers among those communities (probably for good
reasons), and thus the same web server can perfectly host (malicious) domains created
by different groups or communities.

Finally, we have represented in Fig. (c) the 10 largest clusters obtained with Fre,.
Those clusters contain 2,501 rogue sites, and each data point on the map represents
here the domain registrant. The patterns corresponding to those clusters are given in
Fig. (c), where variable parts of the registrants are again represented by regular
expressions, and fixed tokens are emphasized in bold style. These registrant patterns
can explain why we find a very large mixed cluster (1,197 points) in the center of the
map, due to two inter-related clusters (1 and 3) that are composed exclusively of email
addresses from the |gmail.com domain. Idem with clusters 4, 5 and 9, but this time
within the email domain yahoo.com. As such, observing two domains whose registrants
use an email address of the same domain does not mean anything special. However,
other clusters are well-separated, showing more interesting patterns like clusters 2 and 8
(cn@id-private.com and cn@space.kz), or cluster 6 and 17 for which we can see that
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Id. | Cluster pattern Id. | Cluster pattern

1| [a-20-9]{5}.cn 1 [ 84.16.247.12, 89.149.236.145
11| [a-20-9{7, 8}.cn . 2 | 209.44.126.102

7 S(%an[él.\G] {lite, live, home, user .. .}.Tnfo 7 | 909.44.126.241

12 | {lite, live, home, user ...} [4|6]scan.info

. . . 11 | 69.64.155.119

20 | {assist, beers, cds, cigars, sofas, ...}online.cn

9 . ’ . . 4 ] 64.191.92.197

{any, av, best, easy, fast, go, lite, ...}scan.com

46 | [a20.9] {4, 10}.com 16 | 61.191.92.197, 91.206.231.146
10 | adware{2009, clean, alert, bot, pro, ...}.com 3 | 195.95.151.174

8 | goscan{-pro, data, dlite, file, gate, lite, . ..}.com 19 | 195.95.151.174, 195.95.151.138, 91.212.41.114

(a) Fpom (b) Frp
Id. | Cluster pattern

Id. | Cluster pattern 1 | 84.16, 89.149

1,3 | [a-z0-9]"@gmail.com 3 | 195.95

2,8 | cn@id-private.com, cn@space.kz 5 | 63.146
4,59 | [a-z0-9]"@yahoo.com 7 | 209.44

6 contact@privacyprotect.org 9 | 209.44

7 admin@mas2009.com 10 | 209.44, 69.64

10 | support@NameCheap.com 4 | 64.191

17 | { AV-keywords }@domainsbyproxy.com 16 | 64.191, 91.206

20 | 210.51, 220.196, 222.73, 91.212

(C) FReg (d) Feis

Figure 3.4: Some cluster patterns found for each feature of the rogue AV data set. For clusters con-
taining multiple string patterns (Fpom, Freg), variable parts are represented with a syntax
based on regular expressions, whereas fixed string tokens are highlighted in bold. For
Freg, AV-keywords refers to a set of about 30 AV-related keywords, such as adware, anti-,
malware, spyware, av360, repair, tool, virus, bot, registry, remove, ...

domain owner(s) also protect their privacy by using different whois domain protection
services.

In conclusion, we note that most of the clusters obtained w.r.t. each site feature
can reveal interesting and meaningful patterns revealing how those rogue sites have
been created and managed. In fact, each feature can be seen as a viewpoint giving a
certain perspective on the underlying phenomenon (or root cause), which in turn can
also highlight interesting aspects of the modus operandi of the miscreants.

However, it becomes difficult (and time-consuming) to combine those viewpoints man-
ually when the number of features increases, even when we rely on graphical visualiza-
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tion techniques such as those presented here. Furthermore, the fact that rogue sites
have been clustered w.r.t. a given aspect, or even two clusters that are lying in the same
neighbourhood on a given 2D map, does not mean that the rogue sites under scrutiny
are necessarily due to the same root cause. As explained previously, only one com-
mon feature can be merely due to a coincidence, to a commonly-seen pattern, or to a
commonly-used technique.

To identify the underlying phenomena in a more systematic and reliable manner,
certain clusters are likely to be merged whereas some others may have to be split. To
aid the analyst to make such a decision, the multi-criteria aggregation component will
be used to effectively combine all these viewpoints, such that the final result models the
expectations of an expert regarding the (combination of) features that must be satisfied
in order to attribute two rogue sites to a common root cause.

3.4 Multi-Criteria Aggregation

3.4.1 Defining parameters

We are now in a position to combine all site features using an aggregation function, with
the purpose of identifying rogue AV campaigns whose rogue domains are automatically
grouped together based upon common elements likely due to the same root cause.

As a first exploratory approach, we have used two different Ordered Weighted Av-
eraging functions (OWA and Weighted OWA) as aggregation means, which have been
described in Section However, nothing forbids us from performing the very same
analysis using more complex aggregation methods, such as the Choquet integral, if we
need to model important synergies or redundancies among features.

Based on the feature analysis performed in Section and considering our intuition
on rogue AV campaigns, we have defined the following weighting vectors to be used in
the (W)OWA aggregation:

w = [0.10, 0.10, 0.20, 0.30, 0.20, 0.10 ]
p = [0.20, 0.20, 0.15, 0.10, 0.25, 0.10 |

By defining the weighting vector w, we give more importance to criteria starting from
the third highest position, which means that the two highest scores will have lower
weights (0.10) and thus at least three strong correlations will be needed in order to have
a global score above 0.3 or 0.4.

Regarding the weighting vector p, we give a little more confidence to the features
Fpom, Frp and Frey. Intuitively, we can reasonably assume that a combination of those
specific features will yield a high probability that correlated rogue sites are likely due to
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the very same campaign. On the other hand, we give a little less confidence to Fgy ¢,
Fe g and Fyg, as these features are obviously less specific, and even somehow redundant
with some of the previous features.

It is worth reminding that a strong advantage of these agregation techniques is that
the analyst does not need to determine beforehand which set of features are the most
relevant ones in the aggregation.
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Figure 3.5: Sensitivity analysis of (a) OWA (b) WOWA aggregation techniques; to determine appro-
priate ranges of values for the threshold e. The regions 1, 2 and 3 indicated on the graphs
correspond to the 3 phases described in Fig. ??. The axis on the right (in magenta) shows
the size of the largest phenomenon (or rogue AV campaign) for each threshold value.

The last important parameter to define is the decision threshold ¢, which is used
to eliminate unwanted links in the combined graph, and thus also to identify connected
components from it. As usual, we can determine an appropriate range of values for € by
performing a sensitivity analysis, i.e., we let € increase from a very low to high value,
and we observe the number of components (or MDCs) that we can find in the resulting
graph, as well as the size of the largest MDC. This is illustrated in Fig. [3.5] where we
can observe the impact of the threshold on (a) the OWA aggregation method, and (b)
on the Weighted OWA. We have indicated on the plots three regions of interest in the
determination of e.

In the first region of the plot, edges with a lower weight in the aggregated graph are
being removed, and large connected sub-graphs start to split into a number of more
meaningful sub-graphs.

In the second region, we can observe a sort of plateau starting around the values
e = 0.25 for OWA, and ¢ = 0.35 for WOWA, which seems to indicate some reasonable
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values for our decision threshold (as the number of large phenomena becomes stable).
Even the size of the largest phenomenon becomes fairly stable at those threshold values
(certainly with the WOWA operator).

Increasing further € up to an excessive value can then lead to a significant loss of nodes
and edges in the aggregated graph, which means that we also loose a lot of information
and thus few semantics can be derived on the phenomena under study from the MDCs.
We observe also that an appropriate range of values for € lies usually around k/n, with
k the minimum amount of correlated features desired by the analyst to link two events.

3.4.2 Results overview

In Table we briefly compare the performance of each aggregation method. Overall,
we note that the two sets of phenomena found by the two techniques are consistent
with each other, both in terms of size as well as with respect to the composition of each
phenomenon. As it could be expected, the WOWA technique performed a little better
than OWA, which is due to the use of a second weighting vector p that models the
reliability of site features.

Table 3.5: Comparison of OWA and WOWA aggregation methods for the rogue data set.

Characteristic OWA WOWA
Threshold ¢ 0.30 0.35
|P| 161 173
|P|, with |P;| > 10 39 44
Nr of sites 4,049 (69%) 3,586 (61%)
Average C), 0.46 0.51

To further evaluate the consistency of the results, we have represented in Fig. the
global graph compactness C), for the largest phenomena, as calculated individually for
each feature. This interesting view can be used to determine which features tend to
group rogue sites together within each phenomenon P;. First, we note that most of the
phenomena have globally high compactness values, except for a few ones (such as P; and
P; found with OWA). A deeper inspection of those phenomena reveals that these are
also very large connected components, which explains why they are less compact since
they are usually made of several loosely connected subgraphs.

Quite naturally, we see also on Fig. that IP-related features contribute the most to
the correlation of rogue sites. In many cases, Frey seems to complete or reinforce those
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correlations. It is also interesting to see that some phenomena are correlated by Fgy.o
and F¢y g, but not by Frp (such as Py7 found with OWA), which justifies the selection
of those features.

Fpom has in general lower C), values, but there are still 3 or 4 phenomena in which
domain name correlation plays a significant role (like for Py, Pjyp and P34 found by
OWA). Finally, we observe that each P; can be characterized by varying degrees of
correlation regarding each feature, but overall there are always at least three different
features having a high correlation (except for Pj, the largest phenomenon comprising
more than one thousand sites).
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Figure 3.6: Evaluation of the results consistency using the global compactness (C},) of the largest
phenomena found using (a) the OWA aggregation; and (b) the WOWA aggregation. Each
color refers to the C, index of each site feature individually.

3.5 Analysis of Rogue AV Campaigns

In this final Section, we present a more in-depth analysis of some illustrative case studies,
in order to show the kind of insights we can get into the behavior of so-called Rogue AV
campaigns (shortly written RC’s in the following), which were identified, in a systematic
and automated manner, by our multi-criteria clustering technique.

The different RC’s that are studied in this Section are summarized in Table 3.6l Tt
is worth mentioning that these experimental results are based on case studies that have
been presented in [73} [19].
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Table 3.6: High-level characteristics of some typical Rogue AV campaigns (RC’s).

RC | # sites # Reg. # Registrar +# IP’s # Class B Timespan Server countries
3 438 115 6 50 15 03 Oct 2008 - 03 Jun 2009 UA, CN, KY, SG
4 752 4 1 135 7 22 Jun 2008 - 27 Feb 2009 US, DE, BY
5 310 17 1 13 5 17-20 Oct 2008 CN, DE
27 15 3 1 8 4 25 Jun - 14 Jul 2009 Us
34 14 3 1 19 2 29 Jul 2009 Us

3.5.1 PC-Security and PC-Anti-Spyware campaigns

As a first illustration, we present two relatively simple yet interesting phenomena identi-
fied TRIAGE, namely RC 27 (Fig. and RC 34 (Fig.[3.8). In those figures, the domain
names are shown in light blue, the web server /24 subnets in yellow, nameservers in pur-
ple, and the email address of the Registrant in red. Double-edged purple boxes indicate
servers with co-located DNS and web servers.

Both RC’s are composed of a small number of rogue sites, and these are mostly
correlated by server IP addresses and by common patterns in the domain names (notice
that this is consistent with the assessment of graph compactness in Fig. . Note
also that all domain names are clearly referring to anti-virus or anti-spyware software
“products”.

Although the two RC clusters initially appear to be distinct, they present a number
of similarities:

e Both clusters use the exact same domain naming scheme (except that one uses
“spyware” while the other uses “virus”);

e All of the domains in each cluster use the same registrar (OnlineNIC) and are
serviced by the same two ISPs;

[13

e The email addresses of all domain registrants are in “.ru” domains;

e The servers were on consecutive IP addresses;

Perhaps even more conclusively, we found that the content of each site was identical,
with the exception of one differing image (recall that the site content was not a feature
of our clustering system).

In fact, cyber-crooks used for both RC’s a single registrar (OnlineNIqﬂ ) which ap-
parently offers the free use of their registration API/template system. The similarities
described here above strongly suggest that the task of registering, creating, and hosting

Shttp://www.onlinenic.com
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these rogue security software domains was automated and that the same entity may be
responsible for both clusters.

Also worth noting is that both clusters are split between two different ISPs, suggesting
an attempt to provide some level of redundancy in case a cluster is taken offline by the
ISP. Finally, we observed that all of the hosting web servers were located in the US.

tours@infotorrent.ru

767335158

69.50.221
homeav- 2010.com
767335
69.50221.71
76.73.35.157
N (home-av-2010.com )
pesecurity-2009.com
7252210133
. pesecurity-09.com 7252210130
candy@e2mail.u
76.73.35.155
7252210

7250210133

7250210
homeantivirus2010.com

7252210132
7252210131 blair@808L.ru
52010

76.7335.154

69.50.192.70

Figure 3.7: RC27: a rogue campaign related to Anti-virus2010.

3.5.2 Two different large-scale campaigns within the .cn TLD

The TRIAGE attribution process has also identified some other clusters that represent
more sophisticated campaigns. Two such examples are RC 4 and RC 5, which are two

68 SEVENTH FRAMEWORK PROGRAMME



3.5 Analysis of Rogue AV Campaigns

pcantispyware2010.com
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Figure 3.8: RC34: a rogue campaign related to Anti-spyware2010.

different campaigns observed within the .cn top-level domain (TLD). Regarding cluster
RC 5, about 310 .cn domain names were registered in only three days, as represented
in Fig. on page The domain names (in blue) point to 13 IP addresses residing
in five subnets (yellow) and were registered by a number of Web-based email addresses
(red) in three days (purple). The prevalent use of popular Web-based email accounts
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(e.g., yahoo.com, gmail.com and hotmail.com) to register these domains is assumed to
be because these email services are easily anonymized.

Interestingly, all of the domain names in RC 5 are referring to various popular web
categories, such as games, fun, e-cards, casino and even porn sites, but apparently not
a single domain name seems to relate to AV software. However, since they have been
included in our rogue data set, they were still somehow related to rogue AV. One could
think that some of those web sites are possibly “legitimate” ones that have been com-
promised, so that they could serve rogue AV software. Note also that we found many
of these sites were also hosting malware (e.g., trojans, fake codecs). Considering the
abnormal pattern showing the registration of all those domains “in bulk”, a more likely
explanation is that (i) cyber-crooks try to diversify their activities, by hosting different
types of threats, and (i) they want to optimize the monetization of their web sites by
attracting as many users as possible with popular web categories. Finally, all of the
domains have been registered at a single Chinese registrar (Era of the Internet Technol-
ogy), and 97% of the web servers are located in China.

In the next cluster, RC 4, about 750 rogue domains have been registered also in the
.cn TLD (resolving to 135 IP addresses in 14 subnets), on eight specific dates over a span
of eight months (Fig. on page [76). However, differently from RC 5, the majority
of the TP addresses of the hosting servers (pointed to by these domains) were hosted in
the United States, Germany, and Belarus. In fact, no server could be identified as being
located in Chinall

Like in RC 5, the same Chinese registrar (Era of the Internet Technology) was used by
cyber-crooks for the registration of all domain names. However, differently from RC 5,
all of the domain names are composed of exactly 5 alphanumeric characters, apparently
chosen in a random fashion, which again indicates the use of automated tools to create
those domains. Finally, a noteworthy characteristic of this RC is that the registrant
responsible for 76% of the domains makes use of a whois domain privacy protection ser-
vice (cn@id-private.com), which is also a commonly observed characteristic in certain
rogue campaigns.

3.5.3 An affiliate-based rogue network

Our multi-criteria method has identified RC 3, a rogue network showing an even more
complex structure, as represented in Fig. on page In this cluster, more than

Tt should be noted that the .cn top-level domain (i.e., the domain designation for China) has no
registration restrictions, and non-Chinese based operators can easily register .cn domain names for a
very cheap price.
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430 rogue sites (in blue) are forming some sort of “bubbles” that are interconnected by
common registrants (in red) and common hosting servers or IP subnets (in yellow). We
hypothesize that this weird and complex network of rogue AV websites is likely to reflect
the affiliate-based structure used by cyber-crooks to propagate rogue security software.
Different reasons support this assumption:

e there is a large number of registrants, and most of them are responsible for a single
domain;

e the domains are registered at 6 different registrars, which are quite popular for
hosting malicious web sites;

e besides rogue AV names, many other domain names are also associated to other
web categories that are often used for hosting dubious or suspicious websites, e.g.:
online pharmacy (like pharmacyeasy.cn), casino (like smilecasino.cn), porn
sites (like hot-girl-sex-tube.com), and there are even a few examples of typo-
squatting web sites (like disenyworld.com or rapidhsare.com). This indicates a
possible diversification of activities maybe performed by different affiliates;

e many other types of web threats have been found on a significant number of those
sites (almost 50% of them), which can again indicate that affiliates attempt to
monetize their domains by serving other malicious purposes as well;

e in this cluster, the numerous commonalities found among subsets of rogue sites
indicate that several groups of affiliates are probably reusing the very same tech-
niques, e.g.: creating and registering new domains at the same registrar or ISP
(which does not really care about suspicious domain names), reusing the same
browser exploits for hosting drive-by downloads, or serving the same malware or
trojan (only 8 unique MD5 were found among all malicious binairies hosted on
these web sites).

Also worth noting is that this cluster RC 3 has been observed in a span of time of 8
months. However, we observe once again that most of these sites are being registered in
large groups during three phases, each one having a timespan of only a few days, which
obviously requires a high level of coordination.

Finally, the geographical location of the web servers has also an interesting pattern,
with 42% of the servers in Ukraine (UA), and the rest of the servers is spread in China
but also in Cayman Islands (KY), Singapore (SG), and a few of them in Latvia (LV).
We note again the prevalent use of Web-based email domains for registrants (more than
40% of gmail.com and about 26% of yahoo.com).
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3.6 Lessons learned and countermeasures

This study leverages the analysis of real data to shed some light on the characteristics and
dynamics of a specific threat landscape, that of rogue security software. We identify the
specificities of such threat landscape and their foundations in a particularly favourable
market. Such knowledge has direct repercussions on nowadays security practices, and
helps underlining weaknesses in currently employed techniques as well as potentials for
new research avenues.

Users. Despite of a minor number of cases in which rogue AV domains were observed
also in association to other type of threats such as drive-by downloads, the main propa-
gation vector for this type of threat is the psychological impact on the user. The in-depth
study of the reasons for the successfulness of the interaction between victims and rogue
campaigns is out of the scope of this work, but our analysis clearly shows that users have
an important role in the successfulness of rogue AV campaigns. As suggested in [?], the
cost-benefit trade-off associated to the offering of security services is often badly received
by the users, that tend to reject the necessity of performing monetary investments to be
shielded from hypothetical security threats. Rogue security software leverages this social
reality to its own advantage. Increasing user awareness on the cost implicitly associated
to security may have an impact on the relatively high conversion rates observed in this
study, and may impact the return on investment associated to rogue AV campaigns.

Blacklisting is strained. Our study revealed two characteristics of the infrastructure
used to spread rogue AV that have important consequences on the effectiveness of coun-
termeasures against this threat, and, specifically, of blacklisting, a technique commonly
used to prevent end users from accessing malicious resources.

As described in Section the rogue AV infrastructure comprises both servers
that exclusively host a very large number of rogue AV sites and servers where rogue
AV sites coexist with legitimate ones. This situation is a worst case for blacklisting.
In fact, IP-based blacklisting (where access to a specific web server IP is blocked) is
bound to generate many false positives, thus preventing users from visiting benign sites
that happen to be hosted on server IPs that also serve malicious sites. In fact, a naive
IP-based blacklisting approach, listing all the servers we identified, would have incor-
rectly blocked access to 129,476 legitimate web sites. Conversely, domain name-based
blacklisting (where access to a specific domain is blocked) is undermined by the easiness
with which malicious actors can register large batches of domains. The registration of
hundreds of automatically generated domain names observed in the different campaigns
is likely to be an active attempt to evade such lists. For example, 77 of the rogue-specific
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servers that we tracked were associated with more than twenty different domains, with
a maximum of 309 domains associated to a single server.

Taking-down rogue AV campaigns. What would be a good strategy then to ef-
fectively fight rogue AV campaigns? Through an analysis of the victim access dataset
performed in [20], it appears that taking down payment processing sites could help stop
emerging rogue AV campaigns. Indeed, payment sites appeared to be far less in number
than other rogue AV sites (we showed in [20] that 7 payment sites supported almost
200 front-end “scanning” sites) and seemed to change less frequently. Furthermore, by
disrupting the sites generating revenue, defenders are likely to significantly affect also
other parts of the rogue AV operations (e.g., registering new sites and paying for hosting).

DNS-based threat detection. This study has highlighted once more the important
role of the DNS infrastructure in Internet threats. Rogue AV campaigns often rely on
misleading DNS names to lure victims into trusting their products (e.g., pcsecurity-
2009.com). Also, we have seen how such campaigns often lead to the automated deploy-
ment of large numbers of domains pointing to a few servers and following well-defined
patterns in their naming schema. For all these reasons, as already noted in [?] for other
type of threats, DNS seems to be a promising point of view for the detection of such
anomalies.

Finally, even though we have used TRIAGE as a means to attribute known malicious
sites to rogue AV campaigns, we envision an extension of these techniques by which new
web sites that are likely to be part of a rogue AV campaign could be identified pro-
actively. For example, we may attempt to classify a newly registered domain into one of
the rogue AV clusters that we have identified during this study. A positive classification
(i.e., the site’s network observables are similar to those used in a campaign) would
indicate that the site could have been registered by the same individuals responsible for
the campaign, and, thus, would warrant further inspection or close monitoring of the
domain.

3.7 Summary

In this experimental application, we have performed a longitudinal analysis of the in-
frastructure and the dynamics associated with an increasingly popular threat, that of
rogue security software. By attributing rogue web sites to common root causes based
upon a series of common features, we have showed how TRIAGE could provide a unique
perspective on how rogue AV campaigns and their server-side components are effectively
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organized, created and managed. Starting from nearly 6,000 suspicious domains, we
could identify about 40 campaigns that were quite likely coordinated by criminal or-
ganizations. An in-depth analysis of some campaigns highlighted the kind of insights
we could obtain on the behavior of those organizations, in a systematic and automated
manner.

These results can be leveraged in several ways. First, they give a more explanatory
description of the rogue AV or client-side threats, in which, for example, individual,
disconnected sites are substituted by sets of related sites in which time relationships
(e.g., creation dates) are more explicit. Second, campaign-level information reveals the
modus operandi of the criminals orchestrating the campaign, i.e., how they register the
domains, what are their hosting partners, the duration of their efforts, the sophistication
of the tools available to them (e.g., to automate the registration of domain names),
and the countermeasures they employ against take-down efforts. Finally, the patterns
discovered by this TRIAGE analysis could yield means for identifying additional rogue
AV sites pro-actively or reactively, for example through a closer monitoring of DNS
registration patterns.
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Figure 3.9: RC5: A rogue AV campaign within the .cn TLD.
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Figure 3.10: RC4: A different rogue AV campaign within the .cn TLD.
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4 Analysis of Allaple Variants

4.1 Introduction

Polymorphic techniques have introduced a new challenge in malware analysis: it is often
difficult to discern the instance of a known polymorphic malware from that of a newly
encountered malware family, and to evaluate the impact of patching and code sharing
among malware writers to prioritize analysis efforts. According to [14], the amount
of samples submitted to VirusTotal [82], a popular virus scanning platform, is in the
order of millions of samples per month. Such numbers translate into a daily load of
approximately 30,000 samples per day. This load can be partially explained by the
easiness with which malware writers can generate new code by personalizing existing
code bases, or by re-packing the binaries using code obfuscation tools [52, 45, R5]. In
addition, malware sample counts are biased by the increasing usage of polymorphic
techniques [§].

In order to investigate the feasibility of using TRIAGE in combination with SGNET
data, we have decided to focus our attention on a well known phenomenon, already
investigated from different perspectives in previous WOMBAT deliverables: the Allaple
worm outbreak [67], 24]. Discovered in late 2006, Allaple was one of the first widespread
polymorphic malware: the worm mutates its content at every propagation, in an attempt
to evade classical signature-based detectors. In the context of this deliverable, we propose
a streamlined process for the analysis and generation of intelligence on a very specific
process. In the context of WP4 we have explored several solutions to tackle the analysis
and the clustering of Allaple-related polymorphic malware samples:

e In D16 (D4.2) we have shown how the clustering of behavioral profiles obtained
through the execution of malware in sandboxed environments could be of great
help to the problem of malware polymorphism. More specifically, the work in [7]
showed how similar methodologies could successfully group the execution of Allaple
samples into two main behavioral groups associated to two known variants of this
worm. In the very same paper, we have once more underlined the large amount of
inconsistencies associated to standard AV labeling (as originally reported in [14]
and [3]).
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e In D17 (D4.4) we have presented the results obtained by applying a highly scalable
and simple technique to cluster malware samples according to their structural
characteristics, called “feature-based” malware clustering. We have shown how
the current level of sophistication of polymorphic engines is such to allow the
identification of different malware recompilations by simply looking at the content
of specific portions of the PE headers.

e In D18 (D4.6) we have described the contextual information generated by the
SGNET honeypot deployment for each collected malware sample. We have shown
how SGNET can provide highly valuable insights on the population infected by
a specific malware variant, as well as detailed information on the structure of its
propagation strategy.

e In D21 (D4.7) we have underlined the complementarity of all the previously de-
scribed approaches at generating a more complete picture of the malware land-
scape. We have presented in [40] an empirical study showing the importance of
factoring together multiple approaches and multiple malware clustering techniques
to 1) detect the limitations of a specific clustering approach; and 2) generating
additional semantics for the malware analyst that would not be apparent when
considering each approach in isolation.

SGNET Dataset

The SGNET deployment was described in detail in D13 (D3.3) [42, B9]. In contrast to
other malware collections, SGNET focuses on the collection of detailed information on
code injection attacks and on the sources responsible for these attacks. This is made
possible through a layered approach, that focuses on the emulation of each stage of a
code injection attack by building upon a model initially introduced in [2I] called EGPM.
The EGPM model structures each injection attack into four distinct phases:

e Exploit (¢). The set of network bytes being mapped onto data which is used for
conditional control flow decisions. This consists in the set of client requests that
the attacker needs to perform in order to lead the vulnerable service to the failure
point.

e Bogus control data (). The set of network bytes being mapped into control
data which hijacks the control flow trace and redirects it to somewhere else.

e Payload (7). The set of network bytes to which the attacker redirects the control
flow through the usage of € and ~.
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4 Analysis of Allaple Variants

e Malware (1). The binary content uploaded to the victim through the execution
of 7, and that allows the attacker to run more sophisticated operations that would
be impossible in the limited space normally available to the payload .

On top of code injection information, the SGNET dataset is structured to contain a
variety of information on the context of a code injection event, on the location of the
attacking source, its configuration (obtained through passive OS fingerprinting) and on
the location of the victim honeypot targeted at a specific point in time. The interested
reader can find in D18 (D4.6) a comprehensive description of the information collected
in the SGNET dataset.

In the context of this experiment, we have focused on a peculiar propagation charac-
teristic that is known to be associated to the spread of the Allaple worm: the shellcode
is designed to force the victim system to open a TCP port on a specific port (9988) over
which the malware sample is uploaded. We have default selected a very specific shellcode
behavior, and looked at all occurrences of such behavior since the very beginning of the
SGNET deployment. This led to the identification of 10,162 SGNET events (i.e., code
injections) related to the Allaple propagation in the period from September 13, 2007
until December 31, 2009.

4.2 Selection of Malware Features

Table summarizes the features taken into consideration for the analysis. Mirror-
ing the results obtained in the context of WP4, we take into consideration three main
classes of information: information on the propagation context, information on the mal-
ware structure, and information on the malware behavior as generated by running each
collected malware sample in the Anubis sandbox for a period of 4 minutes. The right-
most column in Table represents the cardinality of each feature, that is the number
of distinct values associated to all the code injection attacks taken into consideration in
this context.

By looking in depth at each feature, we can infer some insights on their ultimate
usefulness at understanding the phenomenon under analysis. From this set of features,
we have thus selected a subset of malware-related features (both static and dynamic)
to perform an multi-criteria analysis with TRIAGE. Recall that the purpose of such an
analysis is to see if TRIAGE can help an analyst to distinguish the various code variants
belonging to the same polymorphic malware family, but also to better understand the
structures of those variants and their inter-relationships (e.g., commonalities and differ-
ences between variants due to patching, recompilation with different packers, adding of
new functionalities, etc). Hence, a preliminary analysis of the features has guided us
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Contextual features

Event timestamp Time of occurrence of the code injection attack. 10,160
Source address IP address of the attacking source. 7,200
Source AS number Autonomous system number of the attacking source (when avail- 848
able).
Source country code Mapping of each attacking source to a country of origin by means 110
of the Maxmind database.
Destination address Address of the honeypot that was targeted by the attack. 50
Source/destination ad- The set of shared bits between source and destination address. The -
dress overlap feature can be effective to detect bugs in the random number gen-
erator of the malware sample, or in detecting localized propagation
strategies.
ScriptGen exploit clas- By leveraging the protocol learning techniques used in SGNET [43] 39
sification we can classify the network interaction and discern network inter-
actions likely to be associated to the activity of different exploit
implementations.

Static malware features

MD5 hash The MD5 hash of the malware sample content. It is worth noting 7,379
that the full hash content can be used to identify non-polymorphic
malware samples, that do not mutate the binary content upon prop-

agation.
File size The size in bytes of the malware sample file. 409
File type The file type as classified by libmagic. 3
PE section names The name of the different sections defined in the file header accord- 20
ing to the Portable Executable (PE) format (when applicable).
PE DLL imports Name of the DLL files to be imported as specified in the Import 2

Address Table (IAT) in the PE format.

PE kernel32 symbols List of symbols to be imported from kernel32.dll as specified in the 6,386

IAT.
PE linker/OS version, Version number for the linker and OS, as well as machine type, as 3/1/1
machine type specified in the PE header.

Dynamic malware features

Anubis execution sum-  Set of high level operations performed by the malware upon exe- 25
mary cution in the Anubis sandbox. For instance, the set contains the
flag IRCBOT if the malware sample is seen generating IRC traffic
towards one or more destinations throughout its execution.

Anubis syscall types Set of types of system calls triggered by the malware sample during 13
execution. For instance, the type registry is associated to any system
call invocation related to Windows registry manipulations.

Anubis syscall targets Extension of the previous feature meant to include also the full name 1,165
of the target of the system call operation performed by the malware
sample. For instance, a Windows registry operation is associated
here to the type registry, as well as to the name of the registry entry
being affected by the modification.

Table 4.1: SGNET features available for the Allaple analysis (right column represents cardinality)
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to select certain characteristics instead of others, based on their expressiveness or their
“potential” to highlight meaningful similarities and differences between code variants.
4.2.1 Static malware features

As already suggested here above, certain malware features related to the static analysis
of the binaries may obviously reveal some interesting information. For each code injec-
tion, we have in particular selected the following features to be included in this TRIAGE
analysis:

- Fruwmds: the MD5 hash of the malware sample, which can help to identify non-
polymorphic malware samples.

- Frw_size: the size of the malware sample (in bytes).

- Fpe_sections: the set of section names defined in the Portable Executable (PE) file
header. For example:

.text\x00\x00\x00|rdata\x00\x00\x00|.data\x00\x00\x00

- Fpe linker: the version number of the linker used for the compilation of the malware
sample (e.g., 92).

- Fpe kerneiz2: the set of symbols that are imported from kernel32.d11, as specified
in the Import Address Table (IAT). For example:

(GetProcAddress, LoadLibraryA, CreateActCtxA, GetComputerNameA)

4.2.2 Dynamic malware features

There are mainly three behavioral features that are of particular interest for the analysis
of the Allaple variants:

- Fyp_optypes: the set of high-level system call types triggered by the malware sample
during execution in the Anubis sandbox. For example:

network|service|process|section|random|sync|thread|registry

- Fyh_summary: @ sequence of high-level behaviors performed by the malware upon
execution in the Anubis sandbox. For example:

addressscan|file modification destruction|all _reg activities
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- Fyh_fuliops: an extension of bh_optypes that includes the type as well as the full name of
the target of the syscall operation performed by the malware sample. For example (for
conciseness, some of the entries have been omitted):

file|C:\WINDOWS\system32\shel132.d11,
file|C:\WINDOWS\system32\urdvxc.exe,...,

network|AddressScanner TCP,network|IcmpScanner, ...,

process|C: \WINDOWS\system32\urdvxc.exe,...,
registry|HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\ TCPIP\PARAMETERS\WINSOCK, . . .

4.2.3 Other features
Exploit

The exploit information, despite being associated to multiple FSM traversals, has lim-
ited usefulness in this specific context. An in-depth analysis of the traversals showed
that they were all associated to the same vulnerability, namely the ASN.1 vulnerability
(MS04-007) exploited on TCP port 139. The existence of multiple traversals is biased
by the fact that, in this specific exploit, the IP address of the destination is part of
the application-level payload. This tricks the ScriptGen algorithm (that approaches
application-level payloads in a completely protocol-agnostic way) to generate traversals
that match exploits targeting only specific address ranges. The exploit information is
therefore not considered in this specific analysis.

Anti-virus signatures

Each malware sample collected in SGNET is automatically submitted every day to
VirusTotal [82] for a certain period of time, according to a given scheduling policy. This
means that we have at our disposal the AV signatures of most of the samples considered
for this analysis. These signatures could have been included as additional features in the
MCDa analysis. However, many research groups (including previous work carried out
in the project) have pointed out the unreliability of AV labels at consistently grouping
malware variants [7, [14] [3].

Nevertheless, we have kept these AV signatures as “labeling features”, as a baseline to
analyze our experimental results and to compare the structure of the Multidimensional
Clusters (MDCs) given by TRIAGE with the labels given by various well-known AV
products, as obtained from VirusTotal [82].
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Propagation context

Finally, our analysis also revealed that contezrtual features (such as the origins of infected
machines, the targeted sensors or the timestamps of the events) were apparently not
sufficiently discriminant to be included in the MCDA analysis. That is, code injection
attacks related to the Allaple propagation and shellcode behavior were apparently always
coming from the very same networks, and were observed by the very same sensors, and
this almost continuously in the whole analysis timeframe. For this reason, we decided to
use in a first-stage analysis only the most relevant code features (static and dynamic) to
try to highlight the different malware variants. Then, we used the contextual features
in a second-stage analysis, to find out if we could get another useful perspective on the
propagation context of those Allaple variants.

4.3 Multi-Criteria Analysis
4.3.1 Graph-based Clustering

Based on the feature analysis here above, we have performed a graph-based clustering
of the 8 code-related features described in previous Section. Regarding distance metrics,
we have used only two different distances:

(i) a simple equality for all feature vectors made of a generic value (or an ordered
sequence of values), i.e, for:

me,mdBa me,sizea Fpe,sectionSa Fpe,linke’m th,optypesa th,summarya th,fullops

(ii) the Jaccard distance (equation [3.1)) for the feature vectors of Fe kerneiz2, which
are sets of values.

An overview of the clustering results is given in Table where we can compare the
underlying structure of each malware feature separately. Quite obviously, all features
represented by generic values and involving a very simple distance metric (i.e., the simple
equality) are very straightforward to cluster, since it boils down to executing simple
queries directly on the TRIAGE database. For Fpe, gernei32, however, we have used again
the dominant sets algorithm, which is more appropriate in this case as similarity values
within the edge-weighted graph involve continuous values in the interval [0, 1].

In Table it is interesting to see that apparently not all malware samples are
polymorphic ones. Regarding F},,, md5, there is indeed one big cluster of 1,284 samples
having the very same MD5 hash. Besides that cluster, there are also a couple of other
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Table 4.2: Overview of the clusters by feature for the Allaple data set.

Feature Nr clusters Nr samples size Max. size ﬁp
Frw mds 71 2,471 (24%)  34.8 1,284 1.0
Finw._size 141 9,729 (95%) 69 2,395 1.0
Fpe _sections 15 10,147 (99%) 676.5 7,578 1.0
Fpe tinker 3 10,155 (99%) 3,385 8,510 1.0
Fpe kernel32 1 3,719 (36%) 3,719 3,719 1.0
Foh_optypes 8 7,715 (75%)  964.3 4,755 1.0
Foh_fullops 156 6,440 (63%)  41.3 1,388 1.0
Fon_summary 21 7,693 (75%)  366.3 3,442 1.0

ones of moderate size (in the order of few hundreds); however, all other MD5 clusters
are rather small in size.

With respect to Finup_size, there seem to be some very popular binary sizes (the largest
cluster contains not less than 2,395 samples of the same size), which is quite surprising
for a data set comprising a large amount of polymorphic malware samples. The two
most popular binary sizes are 57,344 and 57,856 bytes. For the section names defined
in the Portable Executable (Fpe_sections), We can see that there are only a few different
patterns, with one particular section pattern that encompass about 75% of all data set
samples (.text\x00\x00\x00|rdata\x00\x00\x00|.data\x00\x00\x00).

About the linker versions used to compile the malware binaries, we see that only three
different linkers seem to be used for this malware data set. More than 85% of the samples
have been compiled using linker version 92, about 14% with linker version 96, and only
a few ones with a less popular linker (version 140).

The structure of feature Fje pernes2 is somehow different and quite interesting: TRIAGE
has found only one large cluster of samples having the same set of symbols imported
from kernel32.d11 (i.e., GetProcAddress, LoadLibraryA). All other malware samples
have apparently randomized sets of symbols, which is probably due to the polymorphic
nature of the code.

Regarding the behavioral features, we can see that Fyj_oprypes and Fpp_summary have
fairly similar structures: between 34 and 47% of the samples have apparently exactly
the same behavior when executed in the Anubis sandbox. The most popular patterns
for these high-level behaviours are given here below, together with their cardinality. A
deeper analysis of all other clusters revealed that most of these summarized behaviours
are fairly similar, with minor modifications in the sequences of high-level operations;
however, they might still be useful to discriminate different malware variants.
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th,optypes
network|service|process|section|random|sync|thread|registry|file|time 4,755

th,summary
addressscan|filemodification_destruction|all reg activities|win dir_copy 3,442
addressscan|file modification destruction|all reg activities 2,382

Finally, when we consider more detailed behavioral information, with the full name
of the target of the syscall operation performed by the malware (thffu”ops), we can see
that this feature generates much more clusters with diverse patterns. Even though the
high-level behavior is usually quite similar, differences can be detected when looking at
lower level patterns. While some of these differences are normal artefacts generated by
the differing execution contexts, others may be active attempts of the malware samples
to somehow randomize their behavior (e.g., choosing random propagation targets).

We can conclude from this simple cluster analysis of the various features that some
of them (Fywmds, Fpekerneizz) may reveal some hints on the polymorphic or non-
polymorphic nature of the malware samples, whereas some others (like Fiyu_size; Fpe_tinker
Fpe_sections Foh_optypes> Foh_summary) do not seem to be of straightforward help in this spe-
cific case. For this reason, it might be useful to try to combine all features by relying on
the multi-criteria fusion component of TRIAGE, with the purpose of identifying multi-
dimensional clusters reflecting different code variants.

4.3.2 MCDA Aggregation

Even though a cluster analysis of individual features may give some interesting view-
points and reveal informative patterns, we still lack the global picture, and it might be
even more interesting to try to “connect all dots”.

In this Section, we report on the experiment performed with the aggregation of the
eight malware features (static and dynamic) of all A1laple samples. As described before,
the objective of such a MCDA analysis is to help separate the various code variants
(polymorphic, non-polymorphic, and possible other families like bots or trojans) from
the set of 10,162 malware samples. We have used two different aggregation functions
and have compared their performance.

First, we have defined an OWA aggregation function (defined in Section that
reflects our expectations regarding the minimum number of features required to attribute
samples to a given malware variant with high confidence:

w = [0,0,0.10,0.20,0.40, 0.20, 0.10, 0]
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By defining such an OWA weighting vector, we completely remove the influence of the
two highest scores, no matter which features they are related to. We start then to give
some importance to the third highest score, with the highest weights given to the fourth
and fifth highest positions. This means that at least four strong correlations will be
needed in order to have a global score above 0.5. Recall that we do not need to specify
in advance which combination(s) of four malware features are required to link malware
samples.

The second method we have used to model the aggregation of all features is a fuzzy
integral based on Choquet. Defining a complete fuzzy measure that models all possible
coalitions of features requires 2" values, which in this case with n = 8 is already pro-
hibitive. As described in Section the best compromise between complexity and
richness of the aggregation model consists to define a 2-additive fuzzy measure, where
the analyst only has to define the overall importance factors for every feature separately
(i.e., the Shapley values, as defined in , and, if needed, define also some interactions
among pairs of features (such as redundancies or synergies) to enrich the model. As
a result, the complexity of the sub-model represented by such a 2-additive measure is
reduced to the definition of at most n(n + 1)/2 weighting factors.

To build our 2-additive fuzzy measure, we have first defined the following importance
factors:

me,mdS me,size Fpe,sections Fpe,link’er Fpe,kernel32 th,optypes th,fullops th,,summm'y
0.15 0.14 0.06 0.12 0.15 0.06 0.20 0.12

To enrich the model, we have then added certain interactions among following pairs
of features:

(me:mdf)v Fpe,kerneliﬂ) (me,md,& th,fullops) (th,fullopsv th,summa,ry) (th,optypesv th,summary)
0.06 0.06 0.048 -0.06

These interaction values were automatically computed by TRIAGE so as to enforce
the additivity and monotonicity conditions (as given by expression ; the analyst
just needs to set a relative amount of synergy or redundancy between pairs of features.
In this case, we have set 20% of synergy for the first three pairs here above, and 50%
of redundancy for the pair (Fyn_optypes, Foh_summary). Then, to compute the Choquet
integral starting from those importance factors and interaction values, we have used the
formula given by expression [2.21
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The last important parameter to set is the decision threshold e, which is used to remove
unwanted edges in the aggregated graph, and then to identify the multidimensional
clusters (MDCs) via the connected components algorithm. A sensitivity analysis is
required for € to determine the best ranges of values according to the number of MDCs,
total percentage of clustered samples and the distribution of cluster sizes obtained with
various values of the decision threshold.

The result of the sensitivity analysis for the 2-additive Choquet aggregation is illus-
trated in Fig. where we can see that values of e starting from 0.44 up to 0.6 seem to
be appropriate, according to the number of MDCs and total amount of samples that are
clustered. We have chosen a decision threshold of 0.46 in order to keep as many malware
samples as possible, without grouping too many of them within the same MDC.

In Fig. we can observe that OWA aggregation gives apparently a stable, but
somehow weird behavior. There are indeed only two large plateaus where all indicators
(nr of MDCs, etc) are very stable. For OWA, threshold values taken for the first plateau
(i.e., between 0.40 and 0.70) seem to be an appropriate range for e. We have thus selected
0.50 for our analysis.
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Figure 4.1: Sensitivity analysis of the decision threshold e for the Choquet aggregation process.
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Figure 4.2: Sensitivity analysis of the decision threshold e for the OWA aggregation process.

In Table we compare the global performance of OWA and Choquet aggregations.
Overall, both methods give fairly similar results in terms of MDCs, average compactness
(Cp) and total number of samples clustered in MDCs. Note, however, that we haven’t
included too many redundant features in this analysis; otherwise, Choquet would defini-
tively offer a more effective and flexible aggregation method than OWA. For the rest
of the analysis, we will now focus on the 21 MDCs (which we will also call malware
variants) found with the Choquet aggregation.

We turn now to the evaluation of the consistency of individual MDCs. In Fig.
we have represented the global graph compactness of the MDCs (and each color in the
bar chart refers to the average compactness index C, of a single feature). We observe
that all MDCs have on average at least 4 features with a high C,, which seems to
be consistent with the constraints we have previously modelled regarding aggregation
parameters. Most MDCs have indeed a global compactness value between 4 and 5 (the
max. value is 8). In the same chart, based on the C, of mw_md5, it is very easy to see
which MDCs are quite likely made of polymorphic malware variants, and which ones are
likely to contain non-polymorphic samples (i.e., all MDCs with a high C), for mw.md5).
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For example, all malware samples of MDCs 1481, 1487, 1488, 1489 and 1493-96 seem
to have the same MD5 (or a very limited number of MD5’s). Not surprisingly, for all
these MDCs a high correlation w.r.t. mw_md5 involves also a high correlation for mw_size,
pe_sections, pe_linker and pe_kernel32 (i.e., non-polymorphic samples).

Regarding the polymorphic MDCs, it is worth noting that the involved samples have
still apparently very similar global behaviors in a sandbox, since most of these MDCs
have high C), values for the features bh_summary and bh_optypes. Finally, we note that
feature bh_fullops seems to be the less correlating feature.

Table 4.3: Comparison of OWA and Choquet aggregation methods for the Allaple data set.

Characteristic OWA Choquet
Threshold ¢ 0.50 0.46
Nr of MDCs 23 21
Total clustered | 9,189 (90%) 9,231 (91%)
Largest MDC 3,491 3,505
Average C), 0.59 0.58

4.4 Analysis of the variants

By analyzing in-depth the 21 variants (or MDC’s) given by TRIAGE, we could easily
identify four different families of malware variants:

1. [Allaple.b / Rahack.W]: this malware family contains only purely polymorphic

samples, grouping 5 MDC’s accounting totally for 4,207 samples (41% of the
dataset). Quite obviously, all mw md5 and pe kernel32 are unique values. The
pe_linker used to compile those samples is mostly version 92 (rarely 140), and
there are many different mw_size values (with still some popular binary sizes shared
by groups of samples). Regarding the behavioral features, this malware family
is characterized by a unique high-level behavior for more than 98% of the sam-
ples, and this variant behavior is apparently the only one involving the operation
win_dir_copy.

To illustrate this malware variant, Table |4.4] gives an overview of the main charac-
teristics of the samples of MDC 1479, along with the set of signatures given by two
well-known anti-virus products (AV brands have been anonymized). As we can see,
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Figure 4.3: Evaluation of the MDCs found by aggregating all malware features using a Choquet integral.
Each color in the bar chart refers to the average compactness index C), of each individual
feature.

AV _2 gave the same signature (Rahack.W) for almost 100% of the samples while
the other one failed to detect approximately one third of them. Finally, Fig.
illustrates the polymorphic patterns of this malware variant by representing on a
graph (with radial layout) all relationships between features mw_md5, pe kernel32
and mw_size.

2. [Allaple.d/e / Rahack.H]: this malware family contains a mix of polymorphic
and non-polymorphic samples, grouping 11 different MDC’s accounting for a total
of 2,869 samples (28% of the dataset). In this case, there are not as many mw_md5
values than the number of code injections, and the pe_kernel32 values have the
same pattern for about 50% of the samples. The pe_linker is not only version 92,
but sometimes also 96 (in 25% of the cases). All samples have again the very same
high-level behavior (but still a different one from the behavior of the first variant
called Allaple.b here above).

To illustrate this variant, Table gives an overview of the main characteristics
of the samples of MDC 1480, along with the set of signatures given by anti-virus
products. As we can see, AV_2 gave the same signature (Rahack.H) to 75% of
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Table 4.4: Characteristics of Allaple variant 1479 [Allaple.b, RaHack.W] (3,505 samples).

(Note: *** means a polymorphic feature)

Feature C, | Distinct Patterns
ex_date - 527 2007-09-15 — 2009-08-11
mw_md5 0.0 3,505 HAE
mw_size 0.079 175 ook
pe_sections | 0.656 12 .text\x00\x00\x00|rdata\x00\x00\x00|.data\x00\x00\x00: 80%, others: 20%
pe-linker 0.915 2 92: 96%, 140: 4%
pe_kernel32 0.0 3,505 K
bh_optypes 1.0 1 network|service|process|section|random|sync|thread|registry|file|time: 100%
bh_fullops | 0.247 123 [REMOVED)]
bh_summary | 0.958 2 addressscan|file modification destruction|all reg activities|win dir_copy: 98%
addressscan|file modification_destruction|all_reg activities|win_ dir_copy|auto_start: 2%

Av_1 - 6 Net-Worm.Win32.Allaple.e: 11%, Net-Worm.Win32.Allaple.b: 78%, others: 11%
AV_2 - 2 W32.Rahack.W: 100.0%, W95.Drill.18624: 0.0%

the samples, with 25% of the samples attributed to various other signatures. For
AV_1, 66% of the samples had the signature Allaple.e, a few of them had also the
signature Allaple.d, and the rest of the samples received quite diverse signatures,
with many of them referring to Rbot or Virut signatures. An in-depth analysis
of all those samples revealed that it was indeed sometimes difficult to distinguish
samples of this malware family (Allaple.d/e) from samples belonging to a bot or
backdoor family (i.e., the fourth variant described here under).

Finally, Fig. gives a graphical representation of all samples attributed to vari-
ant 1480 according to features mw_md5, pe_kernel32 and mw_size. On this graph,
we can clearly distinguish the non-polymorphic samples (in the middle of the
graph) from polymorphic ones characterized by many different values of mw_md5,
pe kernel32 (large circles on the sides), but still grouped apparently through some
popular mw_size.

[Allaple.a / Rahack.H]: this malware family is another polymorphic variant
(w.r.t mw_md5 and pe_kernel32), which is almost identical to Allaple.e from a
behavioral viewpoint. However, there are some subtile differences regarding the
static features pe_linker, and pe_sections. Table gives an overview of the
characteristics of this Allaple variant: observe that the linker version is 96 for all
samples, and note the different bytes \x1a present in the section data. This variant
contains only 76 samples.

[Backdoor.Trojan | Backdoor.Win32.Rbot.bni]: this malware family is very
different from previous ones, since all samples seem to refer here either to a back-

92
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Table 4.5: Characteristics of Allaple variant 1480 [Allaple.d/e, RaHack.H] (1,455 samples).
(Note: *** means a polymorphic feature)

Feature C, | Distinct Patterns
ex_date - 482 2007-09-26 — 2009-12-30
mw_md5 0.012 836 ook
mw_size 0.119 55 59904: 12%, 67584: 1%, 90112: 1%, 89600: 2%, 85504: 5%, 61440: 2%, 78336: 21%
60928: 1%, 88064: 3%, 57344: 17%, others: 11%, 57856: 5%, 50176: 15%, 86016: 2%

pe-sections | 0.446 4 .text\x00\x00\x00|rdata\x00\x00\x00|.data\x00\x00\x00: 62%, others: 38%
pe_linker 0.632 2 92: 76%, 96: 24%
pe kernel32 | 0.324 630 (GetProcAddress, LoadLibraryA): 57%, others: 43%
bh_optypes 1.0 1 network|thread|process|section|random|sync|registry|file|time: 100%
bh_fullops | 0.101 189 [REMOVED)]
bh_summary | 0.999 2 addressscan|file modification destruction|all reg activities: 99.9%,
addressscan|fileJnodification,destruction\all,reg,activities\auto,start: 0.1%

AV 1 - 11 Net-Worm.Win32.Allaple.e: 66%, Virus.Win32.Virut.n: 10%
Backdoor.Win32.Rbot.bni: 8%, others: 16%

AV_2 - 4 W32.Rahack.H: 75%, others: 25%

Table 4.6: Characteristics of Allaple variant 1490 [Allaple.a, RaHack.H] (76 samples).
(Note: *** means a polymorphic feature)

Feature C, | Distinct Patterns
ex_date - 59 2007-10-04 — 2009-11-29
mw_md5 0.0 76 otk
mw_size 0.241 16 82432: 8%, 57856: 47%, 90112: 8%, 61440: 7%, others: 30%
pe_sections | 0.679 2 .text\x00\x00\x00|rdata\x00\x1a|.data\x00\x00\x00: 80%,
.text\x00\x00\x00|rdata\x00\x1a|.data\x00\x00\x00|.rrdata\x00: 20%

pe_linker 0.632 2 96: 100%
pe_kernel32 0.0 76 ok
bh_optypes 1.0 1 network|thread|process|section|random|sync|registry|file|time: 100%
bh_fullops | 0.078 38 [REMOVED]
bh_summary | 1.0 1 addressscan|file modification destruction|all reg activities: 100%
AV_1 - 4 Net-Worm.Win32.Allaple.a: 74%, others: 26%
AV 2 - 1 W32.Rahack.H: 100%

door or a bot family according to AV labels. We could identify four similar MDC’s
that apparently contain only these backdoor or bot-related samples, instead of pure
Allaple worms. Most of those samples are clearly non-polymorphic ones and share
the same pe_kernel32 pattern (GetProcAddress, LoadLibraryA). They also had
the very same high-level behavior regarding bh_summary and bh_optypes, which
are also different from the behavioral patterns of all previous variants since they
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usually involve high-level operations such as ircbot or internet_settings (which
are not present in the behavioral profiles of Allaple variants).

Table shows the main characteristics of MDC 1481, a large MDC containing
1,284 samples having the very same mw_md5 and mw_size values, and attributed to
this family of backdoor /trojan samples. Interestingly, for this specific malware, we
couldn’t get any behavioral information from the Anubis sandbox. To illustrate
the different kind of patterns of this non-polymorphic malware family, we have
represented in Fig. the MDC 1483, also attributed to this Backdoor.Trojan
family and containing 519 malware samples.

Table 4.7: Characteristics of Allaple variant 1481 [Backdoor.Trojan] (1,284 samples).

Feature C, | Distinct Patterns
ex_date - 457 2007-09-13 — 2009-12-30
mw_md5 1.0 1 3875b6257d4d21d51ec13247eedcicdb: 100%
mw_size 1.0 1 57344: 100%
pe_sections | 1.0 1 .text\x00\x00\x00|rdata\x00\x00\x00|.data\x00\x00\x00: 100%
pe_linker 1.0 1 92: 100%
pe_kernel32 | 1.0 1 (GetProcAddress, LoadLibraryA): 100%

bh_optypes | 0.0 -
bh_fullops | 0.0 -
bh_summary | 0.0 -
AV 1 - Backdoor.Win32.Rbot.bni: 100%

AV 2 - Backdoor.Trojan: 100%

Final note on contextual features

In Section we have presented all available features at our disposal in this SGNET
dataset. Besides static and dynamic features, we have also introduced certain contextual
features, such as source or destination IP addresses, ASN, etc. (see Table. However,
we have also explained that we were not so confident on the discriminant value of these
contextual features for this specific analysis.

To verify this assumption, we have analyzed the 21 variants (MDC’s) obtained from
the aggregation of the eight code-related features according to those contextual features.
After analysis, we were unable to find any meaningful patterns regarding the origins,
the destinations or the timing of all these Allaple-related code injections observed by
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SGNET sensors. To illustrate this point, Fig. [£.4] represents the evolution of source IP
addresses (grouped by /8 subnets) as a function of time (by day), for different malware
variants identified by TRIAGE. From this figure, it is clear that code injections related
to the Allaple propagation are apparently always coming from the very same group
of networks, with no significant differences between the different variants. The same
conclusions hold for source ASN and targeted sensors. In other words, for this specific
malware analysis, contextual features were not helpful to discriminate code variants or
malware families. This is justified in most cases by the random propagation pattern
associated to the Allaple worm, that we have seen to constitute the vast majority of
this specific dataset. Still, we have seen in the analysis that a minority of other types of
malware shares the same propagation vector, but exposes very different behavior (e.g.
connecting to C&C channels). Contextual information has been instrumental in [40]
to understand the long-term behavior of coordinated hosts, but due to the very small
number of instances in this specific dataset, this information did not turn out to be
useful here.
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Figure 4.4: Evolution of Source IP addresses (grouped by /8 subnets) for different Allaple variants.
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4.5 Summary

In this Chapter, we have demonstrated the use of TRIAGE to perform a multi-criteria
analysis of a malware data set comprising 10,162 samples related to the Allaple propa-
gation scheme and collected by SGNET for a period of 2 years. The purpose of such an
analysis was to understand the root causes behind the propagation of all those samples
by identifying the various malware variants found by TRIAGE.

By aggregating eight different features related to the structure of the code (i.e., static
features) and the behavior of the malware samples (i.e., dynamic features) when executed
in ANUBIS, we were able to infer that this large malware data set could in fact be
summarized by only three or four different malware families. In particular, TRIAGE was
able to separate polymorphic versus non-polymorphic samples, as well as pure Allaple
worm samples from the Backdoor/Trojan samples that share the very same propagation
vector, but exhibit very different behavior from Allaple.
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Figure 4.5: Allaple variant 1479 [Allaple.b|Rahack.W]. Purely polymorphic variant w.r.t. mw.md5
(nodes in blue) and pe_kernel32 (nodes in green). Interestingly, there are still some very
popular binary sizes (i.e., mw_size, the nodes in yellow) shared by large groups of polymor-
phic samples.
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Figure 4.6: Allaple variant 1483 [Backdoor.Trojan|Virus.Win32.Virut.av|Backdoor.Win32.Rbot.adqd].
A non-polymorphic Backdoor variant, characterized by a constant pe_kernel32 value
(GetProcAddress,LoadLibraryA — green node), and a few different binary sizes (nodes in
yellow) with a popular size of 57,344 bytes. Interestingly, this Allaple variant comprises
519 code injections, but only 328 distinct MD5 hashes (nodes in blue). Note the very
different patterns of this graph compared to pure polymorphic variants (Fig. and .
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Figure 4.7: Allaple variant 1480 [Allaple.d/e|Rahack.H]. A mix of two other variants, which contains
both non-polymorphic samples (in the center of the graph) and polymorphic ones (large
circles on the sides). Legend: blue nodes: mw.md5, green nodes: pe_kernel32, yellow
nodes: mw_size. Interestingly, there are still some very popular binary sizes (nodes in
yellow) shared by large groups of polymorphic samples. Between 25 and 35% of these
samples have AV signatures linked to Backdoor.Trojan, Virut.n or Win32.Rbot, which
shows the difficulty to distinguish backdoors/bots variants from Allaple.d/e samples (the
non-polymorphic samples of this group are most probably linked to backdoors). Note also
that the behavioral profiles of all these samples were quite different from variant 1479
(Allaple.b).
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5.1 Introduction

Many illegal and profitable malicious activities in the Internet are enabled by gaining
control over botnets [5], (18, [60} [4] comprising thousands or sometimes even millions of
infected machines, of which many belong to innocent home users that are even not
aware of it. Today it is well-known that the worldwide spam problem is largely due
to a few large groups of compromised computers, called spam botnets, which are under
the control of cyber criminal organizations. According to the 2010 Annual Security
Report of MessageLabs [50], the annual average spam rate was 89.1% of all intercepted
messages (an increase of 1.4% compared with 2009), with approximately 88.2% of this
spam volume originating only from spam botnets. As analyzed by SecureWorks [68], in
2008 the top botnets were collectively able of sending over 100 billion spams per day.
In 2010, this spam sending capability was estimated to 71 billion spams per day [50], a
slight decrease compared to 2009 [49]. However, the spam volume sent by those botnets
is still significant today and continues to pose a major threat to our digital economy.

In this Chapter, we show how TRIAGE was used to analyze the spam campaigns that
are performed through spam botnets. In particular, we are interested in knowing more
about the behaviors of those spamming bots, e.g.: what are the modus operandi of
spammers who control those botnets and how do they run their campaigns? Can we
highlight some inter-relationships among different spam botnets, like shared origins or
spam campaigns run in parallel by several botnets? Are there “specialized” botnets that
tend to be used to launch specific kinds of spam campaign? And finally, can we observe
other hidden specificities or patterns that might not appear directly from the raw spam
messages sent by those botnets?

Quite obviously, answers to such questions are very important, as they may not only
improve our understanding of spam botnets and their “ecosystem”, but they may also
emphasize the strategic or economic decisions made by organizations controlling them.
Such intelligence can help us improve our defence mechanisms, and could also ultimately
help us to design countermeasures for defeating the operations and activities of spam
botnets.

In the following Sections, we start by giving a brief overview of the spam botnets
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Figure 5.1: Global spam rate observed by Message Labs [50] over the latest years (until end of 2010).

ecosystem as it is known today. Then, we describe the Message Labs data set that was
at our disposal for this TRIAGE analysis. In Sections and we provide details
on how we have applied our multi-criteria analysis tool to extract intelligence from this
spam dataset and identify various spam campaigns run by different botnets. Finally, to
illustrate the results, we further analyze some of the spam campaigns in Section 5.4 We
conclude and summarize our findings in Section

5.1.1 Spam Botnets Ecosystem

Spam is a very important business, and thus in the latest years, cyber criminals have
found new and innovative ways to attack computers and businesses via sophisticated
forms of malware that have continued to infect millions of machines, forming today the
well-known (spam) botnets. A botnet is a collection of zombie machines controlled by
cyber criminals using a particular strain of malware for each botnet. Many botnets are
used to send spam, some others (like the Zeus Trojan) are developed and maintained to
conduct financial fraud — these are also referred to as banking trojans, see the BANOMAD
early warning system developed within WOMBAT and described in deliverable D23 (D5.3)
for more information about this kind of trojans.

Since a few years, we observe that botnets generally account for between 80-90% of all
spam sent globally, as pointed out in the annual intelligence report published by Mes-
sageLabs [50]. Fig. shows that the global spam rate observed by this company at the
end of 2010 was still 89.1%, despite an important drop in 2008 due to the disconnection
of McColo, a rogue ISP based in California who was hosting many botnets C&C servers.
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Figure 5.2: Volume of spam sent by the largest spam botnets, as observed by Message Labs [50].

Since the McColo takedown, spam botnets have unfortunately recovered very quickly:
in Fig. we can see that in 2010 the proportion of spam sent from botnets was still
accounting for approximately 88% of the global spam volume. On the same figure, we
can also observe which botnets are mainly responsible for this huge volume of spam.
Rustock seems to be one of the most active botnets since a couple of years, with a spam
volume of 47% attributed only to this botnet at the end of 2010. Fig. provides some
global characteristics of the most important botnets, together with a breakdown of spam
by categories for 2009 compared to 2010. As one can see, the top spam categories in 2010
continued to be related to pharmaceutical products, casino/gambling and selling coun-
terfeit products (such as replica watches, etc). Interestingly, two new categories have
also appeared in 2010 in the top 5, namely unsolicited newsletters and scam related to
fake job offers or mules.
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Figure 5.3: (Left) Some global characteristics of the largest spam botnets (October 2010).
(Right) Breakdown of spam by categories (source: Message Labs Intelligence [50]).

5.1.2 MessagelLabs Dataset

As interesting as the figures and statistics here above may be, we are still lacking more
strategic information on the activities of those spam botnets, in order to try answering
the aforementioned questions on spam campaigns operations and botnet activities.

For this reason, we have considered a TRIAGE analysis of a very large spam data set
provided by Message Labs. As part of their continued business, the MLI team (Message
Labs Intelligence) sets up and maintains spamtraps all around the world. All email
traffic sent to these spamtrap domains is analyzed by honeypots that extract different
features from the emails (including the message content, sender’s IP address, name of
the sending bot if available from CBL [16] rules, embedded URIs, “From” domain being
used, etc). The spamtrap traffic is used by Message Labs for two different purposes: (i)
it serves as training data for a learning module that attempts to tune and update spam
detection rules, so as to reach very high detection rates for the filtering modules used to
protect MessageLabs client’s email traffic, and (ii) the spamtrap traffic is sampled on a
daily basis, with about 10,000 random samples stored every day in a separate database,
which serves as a baseline for the statistical analysis of spam and botnet traffic.
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Bot-related features

Bot signature Name of the spam bot, as obtained from CBL signatures [16]. 76
From domain The email domain used as “From” field in the spam email header. 84,246
OS details Name and type of OS of the sending machine, obtained from POf (passive 92

OS fingerprinting).

Origin-related features

Country (code)  Geographical origins of the spam sender (city, lat./long., region, conti- 220
nent are also available).

Host name Name of the machine having sent the spam message (obtained by reverse 11,768
DNS query).
Source IP The IP address of the spamming machine. 648,638
Source Class A The source IP aggregated by its /8, 16, /24 subnet 169
Class B 16,314
Class C 331,208
Campaign-related features
Subject line The “subject” field of the spam message. 596,932
Day The day on which the spam message has been received. 92
URI domains The set of domains of the URIs embedded in the body of the message 107,469
(if any).
Charset The character set used by the sender to encode the message (e.g., us- 48
ascii).
Language The language used for the spam content, as detected by various language 17
detection modules.
Message size The size of the message (in bytes). 27,777
Attachment The set of names of any files attached to the spam message. 18,886

Table 5.1: SPAM features available in the MessageLabs spam dataset (right column is the cardinality)

The spam data provided by MLI was collected by worldwide distributed spamtraps
in a 3-months period spanning from October, 1st 2010 until January 1st, 2011. From
this traffic, about 1 million spam messages were randomly and uniformly chosen on the
whole period. All spam features available in the dataset are described in Table

5.1.3 Preprocessing messages into spam events

The 3-months dataset provided by MLI contains 923,293 spam messages and about 20
different features. As pointed out in Chapter 2] the current TRIAGE approach relies on
a graph-based representation, which requires the computation of pairwise distances (or
similarities) between all objects. Although this operation could be easily parallelized in
the future, the current implementation does not allow to process graphs or matrices of
size 1 million-by-1 million. However, most security data sets are made of events that
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can easily be grouped according to certain common features, such as the “type” of event
(e.g., type of exploit or a given TCP/UDP port for network attacks, a given type or
family of malware for malicious binaries, etc).

Consequently, to circumvent the scalability issue due to this O(N?) complexity, we
have preprocessed the spam data set to reduce the number of messages, taking care also
of not loosing too much semantics or mixing messages that are quite likely caused by
different phenomena. Instead of processing each spam message individually in TRIAGE,
we have created spam events by grouping all messages sent by the different bots on a
given day, and with a given set of keywords in their subjects (which should somehow
reflect the various campaigns run at different points in time). More precisely, regarding
the subject lines of all messages, we have applied the following steps:

- we have first extracted the most common words or tokens used in all spam subjects,
by simply counting word occurrences;

- for each message, we have then identified those keywords and sorted them by
length, assuming that the longest words have usually a more important meaning;

- finally, we have created groups of subjects and assigned messages to those groups
by simply looking at messages having at least & words/tokens in common (with
xe{l,...,4}).

As a result, we could summarize the ML spam data set into 3,801 spam events com-
prising at least 30 messages on a given day. These 3,801 spam events account totally for
629,460 messages (70%) of the initial data set. An example of such spam event is given
here under:

Event Id | Bot Id Bot name Subject group Subject keywords Date Nr of msg
13-3990-84 13 Rustock 3990 pfizer, now, % 2010-12-24 1,559

5.2 Selection of Spam Features

From Table we have selected the most relevant features for performing a multi-
criteria analysis, and we have created feature vectors for all 3,801 spam events. These
feature vectors are described here after.

5.2.1 Bot-related features

Bot-related features give interesting information on the type of bot that have sent spam
messages. The bot signature is obtained by applying CBL [16] rules to the raw network
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traffic, since many bots have specific particularities (mostly at the SMTP layer) that
can be used to recognize a given bot implementation. However, we haven’t used this
feature in our analysis for two reasons: i) we have already used them to group spam
messages into spam events according to the bot signature; and ii) we wanted to verify
how accurate those signatures are (or at least if TRIAGE could confirm them), and if
it can eventually help to classify messages with an unknown signature, by aggregating
several other features. Note that about 216,456 messages (23%) didn’t match any CBL
rule and had thus an unclassified bot name.

The next two features characterizing a bot were instead included in the MCDA anal-
ysis:

- Frrom: is a set containing the most frequent “From domains”, i.e., domains used
as From field in the email header. For example, for the spam event given here
under (13-3990-84), the set of from domains is:

{telesp.net.br, iam.net.ma, gaoland.net, embarqghsd.net, ...}

- Fpoy: represents the distribution of OS names obtained from the passive OS fin-
gerprinting. For example:

OS name Count Percent.
2000 SP2+, XP SP1+ (seldom 98) 639 41.0
2000 SP4, XP SP1+ 669 43.0
XP/2000 (RFC1323+, w+, tstamp-) 106 7.0
XP SP1+, 2000 SP3 (2) 31 2.0
others 114 7.0

5.2.2 Origin-related features

Assuming that each botnet could be characterized by its own army of infected machines,
some features related to the origins of spam sending machines may definitively bring
some relevant information on the campaigns and activities of each botnet. As a result,
we have selected the following features for our analysis:

- Fyeo: represents the distribution of countries of origin of the spam sending ma-
chines, obtained by mapping IP addresses to corresponding countries. For exam-
ple:
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Country code | Count Percent.
UsS 390 25.0
GB 117 8.0
IN 105 7.0
VN 109 7.0
RU 75 5.0
KR 66 4.0
BR 65 4.0
CA 42 3.0
others 590 38.0

- Fpost: represents the set of most frequent host names of sending machines, ob-

tained by reverse DNS lookups. Only the TLD and first sub-domain are being
considered here, for example:

{fpt.vn, airtelbroadband.in, telesp.net.br, hinet.net, shawcable.net ...}

Note, however, that this type of feature alone would certainly not be sufficient to dis-
tinguish the various botnets, e.g., due to popular countries or networks that are more
infested than others, or simply the fact that certain machines could be infected by multi-
ple bots. Other features related to the origins (IP addresses, Class A-subnets, etc) were
not used in this MCDA analysis.

5.2.3 Campaign-related features

To analyze the activities of botnets and the dynamics of spam campaigns run through
them, we have also included the following features:

Faypject: represents the set of keywords extracted from the subject lines of messages
contained in a spam event. For example:

{reorders, discount, viagra50/100mg, qualitymedications}

Fpay: is the observation day for all messages of a spam event (e.g., 2010-11-27).

Fyrrs: represents the set of most frequent URIs embedded in the messages of a

spam event. For example:

{dmediczh.ru, diemedic.ru, hadmedic.ru, didmedic.ru, ...}

Fonarset: represents the distribution of character sets used to encode message

content. For example:
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Character set | Count Percent.
us-ascii 982 100.0

- Frour: represents the distribution of spam messages by hour of the day for a given
spam event, which might be useful to find temporal patterns in spam campaigns
operations (e.g., the same preferred time frames in the day or in the night for
sending messages). For example:

Hour | Count Percent.
0 297 19.0
2 220 14.0
3 255 16.0
5 142 9.0
7 206 13.0
8 128 8.0
others 311 20.0

The distribution of message sizes and languages were not used in the MCDA analysis.
As showed by the cluster analysis in the next Section, those features were not considered
as sufficiently discriminant to be helpful in this case for the analysis of spam campaigns.

5.3 Multi-Criteria Analysis

5.3.1 Graph-based clustering

Based on the feature analysis here above, we have performed a graph-based clustering of
the 9 spam features described in previous Section. Regarding distance metrics, we have
used three different distances, according to the type of feature vector:

1. the Jaccard coefficient (equation [3.1]) for all feature vectors representing sets of
values, i.e., Frrom, FHost; FSubject7 FuRrs;

2. the Jensen-Shannon divergence (equation [2.6]), mapped to a similarity in [0, 1] us-
ing the transformation of Shepard given in for all feature vectors representing

distributions, i.e., FP0f7 Fgeo: Foharsets Frours

3. a linear function that maps date differences (expressed in days) to the interval
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[0, 1], according to various segments defined by parameters a, b, c:

1 ifdij <a
dij—a :
1 — 5=, ifa<d;<b
F(dija a, b, C) = 1 252-—17) ify < dj < (51)
27 Aepp MO G=C
0 ifdij; >c

where d;; is the date difference in days between two spam events 7,j. For this
analysis, the parameters of the function a, b, ¢ have been set to 0, 2, 3, respectively.

Before aggregating all features, we have performed a preliminary cluster analysis to
have a better idea of the underlying structure of spam events with respect to each feature
individually, which might help also to determine their ultimate ability to discriminate
different phenomena related to spam campaigns.

An overview of clustering results for bot features is given in Fig. The figure
shows for each feature the number of clusters (found by the dominant sets algorithm),
the total number of events being clustered, the maximum and average cluster size, and
the average graph compactness C),, which gives a hint on how compact the clusters are.
The rightmost column of the Table indicates which features have been selected for the
MCDA aggregation (in the next step). Not surprisingly, clusters for Fjy,; are perfectly
compact, but recall that we did not use that feature for the MCDA analysis (only for
labelling purposes). The largest cluster contains 1,537 spam events which are attributed
to the Lethic botnet.

Regarding Fprom, only 26% of the spam events could be clustered, and clusters are
on average rather small, whereas clusters for Flpgy are much larger and not so numer-
ous (only 5 different patterns of OS distributions were found). Not surprisingly, the
largest cluster of operating systems has following pattern: 2000 SP4, XP SP1+: 62%,
2000 SP2+, XP SP1+ (seldom 98): 22%, and the remaining 16% refer to variants of
XP/2000. Most other clusters have very similar OS patterns, except the shapes of the
distributions that are different.

The clustering results for the origin-related features are given in Fig. (note that
the distributions of Class A-subnets - F,s54 - have not been considered in the MCDA
aggregation). In that figure, observe that the average compactness values are not very
high for features Fyeo, Frost, and the total amount of clustered spam events is rather low,
which seems to indicate that spam events have in general very diverse origins, leading
to distributions of countries/hosts that are difficult to group, at least from a statistical
viewpoint (i.e., according to Jensen-Shannon divergence). However, the cluster patterns
for Fye, are still quite different from each other, with distributions of countries mapped
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Feature | Type cI':;thrs el\\:;r?:s “:;Z' Avg Size | Avg Cp | Aggreg.
Foot val 22 3,783 (99%) 1,537 199 1.0
From | SEt 37 |1,0011(26% | 330 27 0.69 v
Foor | distri 5 3,154 (83%) | 2,267 630 0.77 v

Figure 5.4: Cluster analysis of spam bot-related features.

to quite different regions of the globe. For example, the global distributions of the two
largest geographical clusters are respectively:

(i) US: 15%, BR: 7%, IN: 6%, VN: 6%, GB: 5%;

(ii) RU: 14%, VN: 15%, IN: 11%, BR: 5%, UA: 8%, ID: 8%, PK: 5%, KZ: 3%.

Feature | Type clﬂ;tz.frs e'\\:(re:tfs “:;: Avg Size | Avg Cp | Aggreg.
Feeo distri 90 1,368 (36%) 92 15 0.37 v
Friost distri 22 1,969 (52%) 381 89 0.25 (4

Foassa | distri 38 869 (22%) 105 23 0.39

Figure 5.5: Cluster analysis of features related to spam origins.

Next, Fig.[5.6 gives an overview of clustering results for the campaign-related features.
Foupject is quite likely a very interesting characteristic, since spam campaigns are usually
targeting specific businesses or categories. From Fig. [5.6] it appears that clusters of
subject keywords are on average not so large but still very compact (with an average C),
close to 1), and about 59% of the data set could be grouped into subject clusters. Not
surprisingly, most of these subject clusters have keyword patterns referring to the phar-
maceutical business (with keywords like qualitymedications, pills, pfizer, viagra,
hydrocodone, vicodin, noprescription, ... and all possible spelling variations of those
terms) and more generally, to advertisements for product discounts (with keywords like
rolex, shipping, discount, better prices, ...% off, etc). Some of those clusters also
reflect the different other categories mentioned previously in Fig. [5.3

Clustering with respect to Fy,, was apparently quite straightforward. This feature
can be useful to link spam events that might be part of the same large-scale campaign
when they occurred roughly in the same time period. Similarly, the distribution of spam
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sent by hour — i.e., Fgoy — can help to link spam events that are possibly related to a
same campaign when they exhibit similar-looking hour patterns, either on a same date
or maybe on consecutive days. This makes the assumption that the bot owner could
decide to run his campaign during preferred hours of the day (or in the night), which
can also be influenced by also the region of the world that is being targeted.

Even though there are only 5 different patterns with respect to Fipgrser (i-€., the
distributions of character sets used for encoding spam content), these clusters are still
very compact and might indicate some bias either in certain bot implementations, or in
spam campaigns operations. For example, campaigns targeting russian-speaking people
will most likely have their content encoded using the koi-8r character set. Whereas
campaigns or bots that are mostly used to target European people will probably use
character sets like utf-8 or iso-8859-1. Finally, to target people living in North-
America, the character set us-ascii is the most likely to be used. So it looks appropriate
to include this feature in the MCDA aggregation, even though this characteristic is
probably not very useful if considered separately from all other spam features.

In conclusion, as interesting as these clustering results may be, we have at this point
no real information on which botnet(s) are used for which kind of campaigns, and how,
i.e., what are the different economic models used by the various botnets. In the next
Section, we will thus aggregate all features using the MCDA approach.

Feature | Type clﬁgt(:'s el:ll:-:::s I:';:' Avg Size | Avg Cp | Aggr.
Fapet | Set | 129 | 2,248 (s9%) 84 18 092 | v
Fday date 50 3,084 (81%) 156 62 0.96 4
Fumis set 90 850 (22%) 51 10 0.82 %4
Fenarser | distri 5 2,798 (74%) | 1,764 560 0.84 v
Flang | distri 1 3,321 (s7%) | 3,321 3,321 | 0.99
Frsgsize | distri 12 65 (1%) 11 5 0.48
Fuour | distri 58 2,005 (53%) 293 34 0.41 v
Fattach set 5 35 (<1%) 11 7 0.60

Figure 5.6: Cluster analysis of campaign-related spam features.
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5.3.2 MCDA aggregation

Similarly to the two previous applications of TRIAGE in Chapters [3] and [4, we may want
now to “connect all dots” by aggregating all viewpoints given by the 9 spam features
selected here above. Remind that the objective is to get better insights into the spam
botnets ecosystem and spam campaigns dynamics.

As a first exploratory approach, we have applied the OWA operator, which is the most
straightforward and easy-to-use method to compute the agregation. We have defined
following weighting vector to reflect our expectations on the minimum amount of features
required to link groups of spam events to a same spam campaign run by a given type of
bots:

w = [0,0,0.10,0.20, 0.40,0.20, 0.10, 0, O]

By aggregating all similarity scores with this OWA vector, we completely ignore the
influence of the two highest scores, no matter which features they are related to. We
start then to give some importance to the third highest score, with the highest weights
given to the fourth and fifth highest positions. In other words, at least four strong
correlations will be needed in order to have a global score above a decision threshold of
0.5. Recall that we do not need to specify in advance which combination(s) of four spam
features (out of nine) are required to link two spam events together.

Quite similarly to what we did in previous analysis (chapter [4)), we also tried to model
our domain knowledge on spam botnets and their campaigns using a fuzzy integral based
on Choquet (as defined in Section to aggregate all spam features. Here again,
it would be too tedious and error-prone to define a fuzzy measure involving 9 criteria
manually, as 2° combinations must be defined in that case. Fortunately, it is much easier
to define a 2-additive fuzzy measure, without compromising the richness and flexibility of
our aggregation model. Recall that the analyst only has to define the overall importance
factors for each feature separately (i.e., the Shapley values defined in [2.7)), and then to
add some interactions among pairs of features (such as redundancies or synergies) if he
wants to enrich the model. As a result, the complexity of the sub-model represented by
such a 2-additive measure is reduced to the definition of at most n(n + 1)/2 weighting
factors. In most cases, an analyst does not need to define all interactions among pairs
of features; the ones that are not defined will simply be considered as independent (i.e,
no interaction).

To define our 2-additive fuzzy measure, we have first defined the following importance
factors:

FPOf FGeo FSubject FDay FCharset FHour FFrom FHost FURIs
0.056 0.05 0.20 0.15 0.10 0.10 0.15 0.10 0.10
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To enrich the model, we have then added certain interactions among following pairs
of features:

(FGem FHost) (FSubjectv FDay) (FSubjectv FHou'r) (FSubject7 FF’rom) (FDay: FURIS)
- 0.05 0.06 0.04 0.15 0.10

Once again, these interaction values were automatically computed by TRIAGE to en-
force the additivity and monotonicity conditions given in expression The analyst
simply needs to set a relative amount of synergy or redundancy between pairs of fea-
tures. In this case, we have set between 20 and 50% of synergy for the last four pairs here
above (with positive indices), and 50% of redundancy for the pair (Fgeo, Frost). Then,
to compute the Choquet integral starting from those importance factors and interaction
values, we have used the formula given by expression [2.21]

As usual, we need to set a value for the decision threshold ¢, which is used to remove
unwanted edges in the aggregated graph, and finally to identify the multidimensional
clusters (MDCs) via the connected components algorithm. A sensitivity analysis is
required for € to determine the best ranges of values according to the number of MDCs,
total percentage of clustered samples and the distribution of cluster sizes obtained with
various values of the decision threshold.

The result of the sensitivity analysis for the OWA aggregation is illustrated in Fig.
where we can see that values of € starting from 0.30 up to 0.40 seem to be appropriate,
according to the number of MDCs and total amount of samples that are clustered. We
have chosen here a decision threshold of 0.32 in order to have as many spam events as
possible, without grouping too many of them within the same MDC.

In Fig. we can observe that the 2-additive Choquet aggregation gives fairly similar
results, although the number of MDCs is higher than with OWA. In this analysis, we
have also selected 0.32 as decision threshold for the Choquet aggregation, so that we
don’t loose too many spam events by removing edges.

In Table we compare the global performance of OWA and Choquet aggregations.
Overall, both methods give fairly similar results in terms of MDCs, average compactness
(Cp) and total number of samples clustered in MDCs. Since we have chosen for a lower
decision threshold €, we can observe that the average compactness (computed over of all
MDCs) also reflects this choice. Considering the aggregation parameters that we have
set, such a value for € also means that we have lowered the number of strongly correlated
features required to link spam events together in the same MDC (which, in this case,
will be closer to 3 instead of 4). In the rest of the analysis, we will now focus on the
MDCs given by the OWA aggregation only.

To evaluate the consistency of individual MDCs, Fig. represents the global graph
compactness of MDCs (where each color in the bar chart refers to the average compact-
ness index C), of a single feature). Besides the two first MDCs, we observe that they all
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Figure 5.7: Sensitivity analysis of the decision threshold e for the OWA aggregation.

Table 5.2: Comparison of OWA and Choquet aggregation methods for the ML spam data set.

have on average at least 3 features with a high C),, and have globally a total compact-
ness value above 3. This seems to be consistent with the constraints we have previously

Characteristic OWA Choquet
Threshold ¢ 0.32 0.32
Nr of MDCs 23 39
Total clustered | 2,699 (71%) 2,798 (74%)
Largest MDC 1,207 1,207
Average C), 0.36 0.35

modelled regarding aggregation parameters.

In the same chart, it is easy to see that Fpos, Fonarser (and to a lesser extent, Fpay)
have always very high C), values, and are thus strongly correlating features for all MDCs.
Note, however, that the precise patterns of MDCs w.r.t those features are still likely to
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Figure 5.8: Sensitivity analysis of the decision threshold e for the Choquet aggregation.

be different from one MDC to another. On the other hand, the origin-related features
(FGeo, Friost) and Fprom have usually much lower compactness values. We can also
observe the light interdependence we were somehow expecting between Fr,s: and Feo,
i.e., the presence of F,st as correlating feature involves usually Fge, to have also high
C) scores.

It is quite striking to see that many MDCs have highly similar patterns regarding the
combination of C), values, like MDCs identified by ID’s 4 to 9 and 11 to 23, whereas
MDCs 1, 2, 3 and 10 have a very different composition of features. Regarding Fygys,
it seems that embedded URIs are a strong characteristic starting from MDC 4 (i.e., for
smaller campaigns), except for MDC 10.

Finally, the two first MDCs may not appear a priori as meaningful as the other ones,
because of their rather low value of compactness for most features. However, since
these are also the two largest MDCs, this low global C),, value may be skewed by the
connected component algorithms that might have identified, for each feature, loosely
coupled subgraphs within the aggregated graph (due to a “chaining effect”), which form
sorts of weakly interconnected “bubbles” of spam events within each single-feature graph.
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Figure 5.9: Evaluation of the MDCs found by aggregating all spam and bot features using the OWA
operator. Each color in the bar chart refers to the average compactness index C, of each
individual feature.

5.4 Analysis of Spam Bot Campaigns

To illustrate the kind of insights we can automatically obtain from such an MCDA anal-
ysis, we provide in this Section a more in-depth analysis of multi-dimensional clusters
(MDCs) representing various spam campaigns performed by different botnets. Fig. [5.10
gives an overview of the characteristics of the 10 largest MDCs found by TRIAGE. In-
terestingly, besides the two first MDCs, each campaign is attributed to a single botnet,
which already shows that the classification performed by TRIAGE seems to be consistent
with the classification obtained from CBL rules. However, recall that those rules were
not used in the MCDA analysis, and thus we already show that it is perfectly possible
to classify spam using our multi-criteria approach, by combining different spam features
such as those used for this analysis.
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MD Botnet(s) Nr Nr Nr | Duration | Tot.
Cluster Events| Msg | dates| (days) Cp
Rustock (42%), Cutwail (6%),
1 g:‘::‘:s(sl';'i‘)’ (;‘12’[) ) 1,207 | 451,729 | 89 92 1.25
DonBot (<1%)
2 | Lehielor Z;’j)'(;"'%a)a‘be" (26%) | 1050 | 56135 | 86 92 2.13
3 Xarvester 89 45,146 | 82 92 3.41
4 Lethic 35 1,535 17 17 3.76
5 Bagle 33 1,665 7 22 2.93
6 Lethic 29 1,150 7 7 2.84
7 Grum 24 1,348 6 7 3.31
8 Lethic 23 824 8 8 3.19
9 Lethic 21 923 5 6 3.06
10 | Cutwail 20 1,316 17 17 4.59

Figure 5.10: Overview of the 10 largest Multi-Dimensional Clusters (MDCs) representing various spam
campaigns run by different botnets.

Finding 1: Botnets inter-relationships

The first MDC contains a mix of spam events that are largely attributed to Rustock
(42%), but also to Grum (12%), Cutwail (6 %) and Mega-D (4 %), whereas MDC 2
seems to indicate some interconnection between Lethic and Maazben. As explained in
previous Section, the two largest MDCs result from a chaining effect among different
compact subgroups of spam events that are weakly interconnected by a number of com-
mon features (which also explains their low overall compactness value). However, it also
indicates that certain spam botnets are tightly interconnected, and they may run very
similar spam campaigns in the same period of time. For example, by looking at the
bot distribution of MDC 1, although Rustock has the largest share of spam events, it
seems difficult to distinguish campaigns run by this botnet from the ones run by other
botnets like Cutwail, Grum or Mega-D, simply because these other botnets may some-
times launch campaigns with the very same subject keywords, using the same character
sets, etc. These different botnets are also sharing a large number of hosts that may be
infected by several bots and are thus running campaigns launched by different botnets
in parallel. Another likely explanation is that people controlling those botnets are ei-
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ther collaborating (e.g., “load balancing” the various spam campaigns on the different
botnets they are controlling) or they are working for the same client groups.

To illustrate this point, Fig. represents all relationships among spam events of
MDC 1 (light blue nodes in the graph) with respect to Fpy, (red nodes) and F; Subject
(purple nodes). This figure clearly illustrates the “bubble effect” underlined here above,
where spam events attributed to different botnets are still interconnected by common
sets of subject keywords (like rolex.com, % off, for you in the middle of the graph that
connect Rustock to Cutwail and unknown bots). Similarly, in Fig. representing
MDC 2, we can observe the interconnections between Lethic and Maazben (the two red
nodes inside the large circle), and some interconnections with unclassified bots as well
(the small sector outside the circle), with respect to the subject keywords used in the
campaigns run by those botnets.

However, it is important to note that, because of the multi-criteria aggregation, sub-
jects keywords are not the only feature that “glues” those spam events together. When
looking at other dimensions (like bot origins, URIs, From domains and charsets), we can
observe very similar patterns. In other words, most of the “gluing events” that tend to
interconnect botnets have at least a number of other features in common. For example,
Fig[5.15]illustrates all relationships between spam events of MDC 1 with respect to Frost
(i.e., the host names of the machines from which the bots are sending spam). In this
graph with a radial layout, we can also observe that a significant number of host names
(represented by green nodes) are shared by unclassified bots and Rustock, whereas a few
number of spam events (in light blue) attributed to Cutwail, Grum and Mega-D are also
pointing to host names used by Rustock. We have also observed the same phenomenon
for feature Fige, (countries of origin).

Finding 2: Attribution of Unclassified Spambots

Another interesting finding of this analysis is that TRIAGE can help to attribute spam
events having an unclassified bot signature to a known botnet. This can be visualized
from previous graphs, in which many unclassified bots are sharing a number of features
with spam events of Rustock (like subject keywords in Fig. or Maazben (Fig. [5.14)).
Note that, in those graphs, we have represented only one or two different features;
however, we could easily identify, within an MDC comprising unclassified bots , which
spam events with an “unclassified” bot signature share at least three or four features
with Rustock, Maazben, or any other bot having a specific CBL signature.
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Finding 3: Dynamics of Spam Campaigns

By looking at other MDCs of the Table in Fig. we could easily infer some interesting
information regarding the dynamics of spam campaigns run by different botnets.

Campaigns performed by Rustock are apparently long-lived and somehow stable,
whereas campaigns run by Lethic and Maazben are instead rather short-lived (they
last on average 7 days), and have a sort of polymorphic behavior with respect to var-
ious features (e.g., a different set of disposable URIs is used every day, and the set of
From domains is also constantly changing). This polymorphic behavior of Lethic can
be inferred from the large number of small and short-lived campaigns found by TRIAGE
and represented in Fig. This is further illustrated in Fig. and Fig. for
the MDC 6, where we can clearly see in the first figure the use of different sets of URIs
(nodes in cyan), and in the second figure, the use of different sets of From domains
(nodes in orange) on each day of this 7 days-campaign (represented by pink nodes). All
other MDCs attributed to Lethic and Maazben in Fig. have very similar patterns.
It is also interesting to note that most URIs used by these botnets have a .ru top-level
domain.

Finding 4: “Specialized” Botnets and Other Specificities
Specialized botnets

By looking at the specific subject patterns found in the MDCs representing various bot
campaigns, we have also observed that most botnets seem to be specialized in a specific
type of activity, i.e., each botnet is mostly distributing a certain spam category. For
example:

- Lethic and Maazben are mostly concerned with spam campaigns relating to phar-
maceutical products. Some examples of frequently observed keywords are related to
topics like viagrab0/100mg, qualitymedications, hydrocodone, lorazepam,
codeine, herbal, px*enlargement, pills, pharmacy, .... However, Maazben
is sometimes involved also in other campaigns for selling replica watches (see
Fig. for more details on interconnections between those two botnets).

- the Rustock/Cutwail botnet family seems to be more frequently involved in cam-
paigns for the advertisement of any kind of sales or discounts on various products
(with keywords like rOlex, % off, discount, chaper today, sales, suberb,
.... Note also the intentional typos in the words, probably as an attempt to fool
anti-spam filters). Rustock can also advertise some very targeted pharmaceutical
products, such as viagra and pfizer.
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Figure 5.11: Graph with radial layout representing MDC 6 (Lethic campaign) with respect to embedded
URIs (nodes in cyan) and the observation dates (nodes in pink). In this 7-days spam
campaign, we see that different sets of disposable URIs are being used every day during
the campaign, which illustrates the typical “polymorphic” behavior of this botnet.

- MegaD and DonBot are often involved in campaigns relating to job offers (the
Jobs/Mules spam category mentioned in Fig. |5.3). Examples of keywords are
administrator, manager, international, company, vacancy, ...

Xarvester

The MCDA results have also highlighted interesting specificities for a botnet called
Xarvester. All spam events attributed to this botnet (based on CBL rules) have also
been grouped by TRIAGE in a single cluster (MDC3). The reasons for this may be found
in the specificities of the MDC, which are also visible from the compactness values of
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Figure 5.12: Graph with radial layout representing MDC 6 (Lethic campaign) with respect to the
“From domains” used to send spam (nodes in orange) and the observation dates (nodes
in pink). Different sets of domains are being used every day to send spam, which illustrates
once again the “polymorphic” behavior of Lethic.

individual features in Fig. 5.9, First, we observe that the spam sent by this botnet is
encoded with a very particular character set, namely windows-1251, which was not seen
as being used by any other botnet. Regarding the origins of the bots, Xarvester has also
some specific patterns of countries and host names, with a significant number of bots
located in Bulgaria (11%), Great Britain (13%), Italy (13%), Greece (5%) and Poland
(5%). Regarding the subject keywords, 92% of spam sent by Xarvester had junk content
or non printable characters in the subject lines (probably because of a weird character
encoding). Perhaps even more conclusively, most Xarvester bots (92%) have the same
unique POf OS signature, referring to a 2.5-7 (2) Solaris or Linux OS kernel (opposed
to the various Windows OS signatures usually seen for most other botnets). Finally,
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76% of spam sent by Xarvester bots had apparently no URI embedded in the message
content, and the other 24% had URI’s pointing to a limited number of domains located
in the .ru TLD.

Use of shortened URLs

Some other insights that we could easily obtain from the MCDA results are related to
the Bagle botnet, which is represented by MDC 5 in Fig. The specific patterns of
this MDC that explain its creation by the MCDA algorithm are the following ones:

- a specific distribution of OS names for the bots, i.e.: 2000 SP4, XP SP1+ (71%)
and 2000 SP2+, XP SP1+ (seldom 98) (14%);

a specific distribution of countries of origins of the bots, i.e.: Russia (30%), Ukraine
(8%), India (6%), Colombia (6%), Romania (5%) and Venezuela (5%);

a specific character set used to encode spam messages, i.e.: 1s0-8859-1 (100%);

some specific keywords in the subjects, with the two most frequent ones being
prescript and medications.

Another extremely interesting characteristic of this botnet campaign appears when
looking at the distribution of URIs embedded in the messages. Most of those URIs
make use of shortened URL’s services, the most frequently used ones being bit.ly,
tinyurl.com, miniurl.com, vl.am and j.mp. This phenomenon was also reported by
MessageLabs in their intelligence report [50] starting from late August. However, the
botnets responsible for this rise in the proportion of spam that uses short URLs were
in that time Cutwail and Grum, whereas we have only observed this characteristic for
Bagle starting from December 10, 2010 until December 31, 2010. Among the shortened
URL’s embedded in this Bagle spam campaign, we also found a significant portion or
URISs pointing to retwt .me, which refers to TweetMeme, a service that aggregates all the
popular links on Twitter to determine and publish the most popular ones. This specific
behavior was not observed for any other botnet within our analysis period.

5.5 Summary

In this Chapter, we have showed how TRIAGE was used to analyze the spam campaigns
performed through various spam botnets.

Thanks to the MCDA approach implemented in TRIAGE, we have demonstrated how
we could gain insights into the spam botnet ecosystem, and how we could have a better
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understanding of the dynamics of spam campaigns performed through them. In partic-
ular, we have highlighted some interesting relationships among families of bots (such as
the Rustock/Grum/Cutwail family, or the Lethic/Maazben family), as well as several
other specificities of certain botnets compared to others. We have also pointed out that
there were some significant differences in the strategic behavior and the economic models
adopted by people controlling those different botnets.

Finally, we have also showed that TRIAGE could be used to help classify spam messages
sent by bots with unknown signature thanks to the unique combination of multiple spam
features as modelled by the multi-criteria aggregation process, and without relying on
third-party signatures or external rules.
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Figure 5.13: Graph with force-directed layout representing all relationships between spam events
(nodes in light blue) belonging to MDC 1 (Rustock/Grum/Cutwail/MegaD) regarding the
subject keywords (purple nodes).
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MDC 2 (Lethic/Maazben) regarding the subject keywords (purple nodes).

Figure 5.14: Graph with radial layout representing all relationships between spam events (nodes in light blue) belonging to
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6 Conclusion

In this final deliverable for Workpackage 5 (Threats Intelligence), we have offered an
extensive description of all experiments carried out with respect to root cause analysis
techniques.

The R&D efforts carried out in WP5 have produced TRIAGE, a generic, multi-criteria
software analysis framework for intelligence and root cause analysis in cyber security.
As extensively described in Chapter 2 TRIAGE relies on a novel combination of graph-
based analysis with a data fusion process inspired by Multi-Criteria Decision Analysis
(MCDA).

We have then described how this framework was successfully applied to various woM-
BAT datasets to perform intelligence analyses, by taking advantage of several structural
and contextual features of various data sets developed by the different partners. These
experiments have enabled us to get insights into the underlying root phenomena that
have likely caused many security events observed by sensors deployed by WOMBAT part-
ners. In particular, we have described in Chapter [3| how TRIAGE was used to analyze
Rogue AV campaigns and the modus operandi of people organizing them. In Chapter [
we have then described how we have applied the framework to a completely different data
set, made of SGNET code injections, with the purpose of analyzing different malware
variants attributed to the Allaple worm propagation scheme.

Finally, in Chapter[5] we have described another experiment performed on a large spam
data set obtained from Message Labs (now Symantec.Cloud), for which we have used
TRIAGE to analyze spam botnets and their ecosystem to get a better under understanding
of how those botnets are used by spammers, and how they organize and coordinate spam
campaigns. It is worth mentioning that we are considering a possible technology transfer
of TRIAGE to Symantec.Cloud, who is interested in carrying out regular intelligence
analyses of their spam data sets, and may also consider the integration of TRIAGE to
their Skeptic® spam filtering technology, as a way to improve the various heuristics used
in their spam analysis system.

Perspectives

As demonstrated throughout this deliverable, TRIAGE has enabled us to get new in-
sights into the underlying root phenomena that have likely caused many security events

127



6 Conclusion

observed by various sensors (e.g., honeypots, crawlers, spamtraps, sandboxes, etc). How-
ever, the development of the TRIAGE framework has also opened a number of interesting
new challenges that could be investigated in future research.

As a first new research axis, we could envision and develop new clustering techniques
to improve the scalability of the framework. To further address this scalability issue due
to the O(N?) complexity of graph-based representations, we could also rely on parallel
algorithms, such as the MapReduce paradigm.

To further improve the data fusion process done by TRIAGE, we could also consider
other fusion methods, such as methods based on probabilistic theories (e.g., Dempster-
Shafer theory of evidence or belief networks), or new classes of aggregation functions
and fuzzy logic approaches.

Next, we could also add an anomaly detection capability to the TRIAGE framework to
be warned as soon as possible when TRIAGE observes new kinds of attack phenomena
that are significantly different from previous ones. This would also enable us to be
quickly alerted of significant changes in the behaviors of attackers.

Finally, we have showed throughout this document how different visualization tech-
niques, such as graph-based visualizations or dimensionality reduction, could help us to
achieve a better situational awareness in network and information security. However,
because of the large number of dimensions, it is not always obvious to the analyst to see
directly why security events have been attributed to the same phenomenon. In a system
where interactive visual analytics is combined with data fusion and attack attribution
algorithms, the analyst would be better equipped to gain insight into attack phenomena.
This means that we need to tightly couple network security algorithms with directly in-
tegrated visual analysis methods in the future. Further improvements of the scalability
of both the data analysis algorithms and visualizations are also necessary to eventually
reach this goal.

We hope that all those different aspects of improvement will be largely addressed in
the new EU-FPT project called VIS-SENSE (http://www.vis-sense.eu).
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