
SEVENTH FRAMEWORK PROGRAMME
Theme ICT-1-1.4 (Secure, dependable and trusted infrastructures)

WORLDWIDE OBSERVATORY OF
MALICIOUS BEHAVIORS AND ATTACK THREATS

D08 (D4.1) Specification language for code
behavior

Contract No. FP7-ICT-216026-WOMBAT

Workpackage WP4 - Data Enrichment and Characterization
Author -
Version 1.0
Date of delivery M12
Actual Date of Delivery 18/12/2008
Dissemination level Public
Responsible TUV
Data included from EURECOM, POLIMI, FT

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°216026.

SEVENTH FRAMEWORK PROGRAMME
Theme ICT-1-1.4 (Secure, dependable and trusted infrastructures)

The WOMBAT Consortium consists of:

France Telecom Project coordinator France
Institut Eurecom France
Technical University Vienna Austria
Politecnico di Milano Italy
Vrije Universiteit Amsterdam The Netherlands
Foundation for Research and Technology Greece
Hispasec Spain
Research and Academic Computer Network Poland
Symantec Ltd. Ireland
Institute for Infocomm Research Singapore

Contact information:
Dr. Hervé Debar
Rue des Coutures, 42
14066 Caen
France

e-mail: herve.debar@orange-ftgroup.com
Web: http://www.wombat-project.eu
Phone: +33 23 175 92 61
Fax: +33 23 137 83 43

herve.debar@orange-ftgroup.com
http://www.wombat-project.eu

Contents

1 Introduction 8

2 General design 11
2.1 Malware Analysis Architecture . 11
2.2 Specification Languages . 13

2.2.1 A Flexible Language Framework 13
2.2.2 Raw Behavior Specification . 14
2.2.3 Abstract Malicious Behavior Language 14
2.2.4 Behavioral Profile . 14
2.2.5 Behavioral Analysis Report . 15

2.3 Usage Scenarios . 15

3 Specification Languages 18
3.1 Raw Behavior Specification . 18

3.1.1 Design goals . 18
3.1.2 Language . 18

3.2 Abstract Malicious Behavioral Language 23
3.2.1 Design goals . 24
3.2.2 Language . 24
3.2.3 Translation into the abstract specification 31

3.3 Behavioral Profile . 35
3.3.1 Design goals . 35
3.3.2 Language . 36

3.4 Behavioral Analysis Report . 40
3.4.1 Design goals . 40
3.4.2 Language . 42

4 Behavioral Malware Analysis 44
4.1 Malware Analysis Service . 44
4.2 Malware Behavior Database . 45
4.3 Malware Clustering . 46

4

4.3.1 Locality Sensitive Hashing (LSH) 48
4.3.2 Hierarchical Clustering . 49
4.3.3 Asymptotic Performance . 50

5 Behavioral Malware Detection 52
5.1 System call anomaly detection using sequence and parameters 52
5.2 Malware Detection by Attributed-Automata 61
5.3 Malware Slicing for Information Flow-based Detection 62

5.3.1 Our approach . 63
5.3.2 Evasion Techniques . 70

5

6

Abstract

This document provides a specification language to describe the behavior of code. Con-
sistently with the requirements for an extensible, layered architecture for the behavioral
analysis of malware, four different languages are defined, ranging from a complete, low-
level description of the code’s behavior to a high-level analysis report that is suitable
for a human analyst. Furthermore, current approaches to behavioral malware analy-
sis and detection within the wombat project are discussed, most of which already take
advantage (or can be extended to take advantage) of the provided specification language.

1 Introduction

Malicious software is one of the dominant problems in the field of computer security.
Many forms of cyber-crime are conducted using computers that have previously been
compromised by malware, such as sending spam e-mails, conducting (distributed) denial
of service attacks, and hosting phishing sites. This is a long-standing problem, that has
been tackled by numerous institutions, such as anti-virus companies, academic organi-
zations, and even law-enforcement. However, no definitive solution has been found so
far. On the contrary, the number of newly found malware samples increases dramati-
cally every year, stressing the resources of malware fighting organizations beyond their
capabilities.

Due to the enormous amount of malware samples that malware fighting organizations
deal with on a daily basis, it has become infeasible to treat each malware sample inde-
pendently. Signature-based anti-virus software heavily relies on finding signatures that
are general enough to match whole families of related malware samples, both to reduce
the work associated with signature generation to a manageable amount, and to allow
the scanner software to run at a reasonable speed. Similar considerations also apply to
network traffic signatures as are used in network-based intrusion detection systems.

With the ever increasing amount and diversity of malicious software, it becomes more
and more important to obtain a global perspective on the problem. Instead of analyz-
ing and fighting malware on a piece-by-piece basis, malware must be inspected for its
prevalent features, categorized, and characterized by means that are abstract enough
to eliminate irrelevant details while still maintaining enough precision to enable any
required further processing.

One of the goals of the wombat project is to provide data on online criminal activ-
ity enabling scientific research into cybercrime. To this end, large amounts of malware
samples are already being collected by wombat partners (as detailed in wombat De-
liverable “D06 (D3.1) Infrastructure Design”). Consider for instance the Virustotal [7]
and Anubis [1] services, that receive large amounts of malware submissions on a daily
basis, or the SGnet [52] distributed honeypot. As the wombat project progresses and
the new sensors, (described in Deliverable “D07 (D3.2) Design and prototypes of new
sensors”), are deployed, further sources of malware samples will be available. As an
example, client side honeypots such as Shelia [6] will provide an additional avenue for
malware collection.

8

In addition to collecting information on malicious software, wombat aims at facili-
tating sharing and enrichment of this information. wombat Deliverable “D06 (D3.1)
Infrastructure Design” describes the two main components of the technical infrastruc-
ture supporting such sharing, namely a centralized database, which is fed by wombat’s
data sources, as well as the wombat API (WAPI), a programming interface designed to
enable direct queries on the data sources in a decentralized fashion. The specification
languages described in this document provide a further tool for data sharing and in-
teroperability between heterogeneous, independently developed research projects, both
within and without the boundaries of the wombat project.

It is important to understand the actions that each collected malware sample can
perform. This is necessary to determine the type and severity of the threat posed by it.
With the fast growing amount of samples comes a growing need for automated techniques
to perform such an analysis. Tools like CWSandbox [10], Norman Sandbox [11], and
Anubis [9, 14] have increased in popularity. They execute the malware sample in a
controlled environment and monitor its actions. Based on the execution traces, they
generate reports aimed to support an analyst in reaching a conclusion about the type
and severity of the threat posed by a malware sample.

In addition to sharing malware samples, it is therefore useful to share a behavioral
characterization of the malware, as it is delivered by such dynamic analysis platforms. In
fact, in some cases, providing the malware binaries directly is not the most suitable way
to share information. There are several reasons why it can be preferable to share previ-
ously gathered analysis results instead. First of all, the malicious programs themselves
cannot be distributed publicly, since unqualified or mischievous individuals could cause
harm by executing (and thus, releasing) them. There are no such restrictions on reports
describing the malware behavior during analysis. Furthermore, even if a researcher is
allowed access to the malware samples, he may lack the computational resources and
infrastructure to perform behavioral analysis. Running dyanamic malware analysis on
a large scale is computationally expensive, since observing malware behavior requires
executing each malware sample over a certain time period. Additionally, since during a
dynamic analysis session the malware is effectively executed, there is always a small risk
involved that damage could be inflicted, even though all possible measures are taken to
avoid this. Finally, since malware often reacts to its environment, the results of several
dynamic analysis executions of the same sample on different analysis platforms might
differ, which complicates later discussion and referencing of the data.

In order to avoid the mentioned problems and inefficiencies, it seems preferable to
share not only malware samples, but also the dynamic analysis results obtained from
them. Clearly, sharing information requires a common language between data producers
and data consumers. In this case, the data producers are the dynamic malware analysis

FP7-ICT-216026-WOMBAT 9

1 Introduction

tools that provide information on a malware sample’s behavior, while the consumers
are further manual or automatic analysis tools that take such information as input.
However, these tools have been developed independently, and they often use specifically
designed data formats. The inhomogeneity of the used set of tools and their associated
data formats necessitates the establishment of clearly defined, common means of storing
and sharing that information.

This document defines a set of specification languages with the purpose of efficiently
sharing dynamic analysis results within wombat. It suggests three layers of abstraction
for languages meant to describe malware behavior. Each of these layers is suitable for
a different set of applications. For each layer, concrete implementations are explained
in detail. The Raw Behavior Specification language is proposed first. It describes the
execution of a malicious program without abstraction, including the complete informa-
tion obtained from the dynamic analysis. We also describe two intermediate behavior
languages, namely the Abstract Malicious Behavior Language and the Behavioral Profile
language. They abstract from many of the less noticeable details, while maintaining a
level of precision that is appropriate for further analysis tasks, such as malware cluster-
ing or behavioral malware detection. Third, the Behavioral Analysis Report language
is presented, that is meant to provide the results in a highly abstracted, human read-
able form. The discussed language definitions have been implemented and integrated
into several wombat components, enabling the circulation of valuable data on malware
behavior within the wombat project.

This document is organized as follows. We begin by giving an overview of a general
malware analysis architecture and briefly introduce our specification languages in Chap-
ter 2. The specification languages are then defined in detail in Chapter 3. Finally, we
outline current applications within the wombat project of behavioral malware analysis
(in Chapter 4) and detection (in Chapter 5). Many of the tools described in these last
two chapters have already been adapted to leverage the provided specification languages.

10 SEVENTH FRAMEWORK PROGRAMME

2 General design

2.1 Malware Analysis Architecture

In this section, we give a high-level overview of a generic architecture for the dynamic
analysis of malware. The four specification languages defined in this document each play
a role in this architecture. We do not focus on any specific analysis tool. In fact, one of
the goals of defining specification languages for malware behavior is to provide a common
ground between different, independently developed analysis tools. Our architecture is
shown in Figure 2.1.

Dynamic malware analysis relies on observing the execution of a malware sample
within a controlled environment. This is usually a virtual machine or an emulator
that is instrumented to allow a certain amount of information to be logged, such as
system calls, API calls, and network traffic generated by the sample under analysis.
A malware sample can then be characterized by the sequence of actions it performs.
This behavior is then stored in raw, unabridged form in a Raw Behavior Specification.
This specification (which may be quite large) records all of the information about the
malware’s execution that the monitoring environment is capable of extracting. The Raw
Behavior Specification is introduced in Section 2.2.2 and discussed in detail in Section 3.1.

Further analysis builds on top of the Raw Behavior Specification. This allows analysis
tools to run on recorded executions, without the need to actually execute the malware.
Setting up an environment for malware execution is a complex and potentially danger-
ous task, since malware may require a specific environment to execute. For instance, to
operate correctly, a malware may require a specific version of the operating system, or
a network connection to a specific server. Furthermore, executing malware is a compu-
tationally expensive task, since each malware sample needs to be assigned to a (virtual)
host and to run for several minutes. Finally, recorded malware executions can be dis-
tributed more freely than malware samples.

The Behavioral Profile and the Abstract Malicious Behavior Language are intermedi-
ate, machine readable formats, suitable as input for a number of analysis tasks such as
malware clustering, classification, data mining and behavior-based malware detection.
Each of these formats contains a subset of the information available in the correspond-
ing Raw Behavior Specification. Such intermediate formats are needed because they

11

2 General design

MALWARE

Malware Analysis
Environment

Raw behavior
specification

Behavioral
analysis report

Behavioral Profile

abstraction,
data reduction

Statistical analysis,
malware detection,

classification, clustering,
data mining (...)

Human
analyst

Abstract behavior
specification

Figure 2.1: Malware analysis architecture

12 SEVENTH FRAMEWORK PROGRAMME

2.2 Specification Languages

abstract from the fine details of the malware execution that are specific to the execution
environment. They also serve the purpose of reducing the size of the recorded malware
execution, facilitating both storage and sharing of these traces. Two different languages
are needed because they perform different types of abstractions and choose different
trade-offs between abstraction and completeness, and are therefore better suited to dif-
ferent applications. These languages are introduced in Sections 2.2.3 and 2.2.4, and they
are described in detail in Sections 3.2 and 3.3.

Finally, the Behavioral Analysis Report is an XML format that provides a summary
of the malware’s behavior which is suitable for a human malware analyst, listing high
level behavior such as sending an email, modifying a registry key or downloading and
executing a file. This language is introduced in Section 2.2.5 and it is described in detail
in 3.4.

2.2 Specification Languages

2.2.1 A Flexible Language Framework

To be widely useful, a specification language for code behavior must be flexible enough
to allow malware analysis tools with widely different feature sets to speak a common
language. The malware analysis environment shown in Figure 2.1 may be implemented
in several different ways, depending on the tool’s specific goals and requirements. For
instance, a malware detection system designed for production use on end users’ com-
puters will need to have a very low impact on a normal usage of the system in terms
of reliability and performance. On the other hand, a malware analysis system designed
to be run on dedicated hosts by security researchers and organizations has much weaker
design constraints. Different constraints lead to different design decisions, which in turn
lead to a wide variation in the amount of information on malware execution that can
be provided by the analysis environment. As an example, fast logging of system calls
through a dedicated kernel driver may be possible on production systems, but using dy-
namic data tainting [25, 60] to observe data flow inside the malware has an unacceptable
overhead in that environment.

Our language design reflects this flexibility, without choosing a ”lowest common de-
nominator” approach. None of the information in our recorded malware executions is
mandatory. Each malware analysis environment will therefore provide all of the infor-
mation it is capable of extracting. Clearly, when comparing malware execution traces
obtained by different malware analysis environments it will be necessary to take these
differences into account.

FP7-ICT-216026-WOMBAT 13

2 General design

2.2.2 Raw Behavior Specification

The first language required for a complete architecture for the analysis of malware is a
language that is directly suitable as output format for the malware analysis environment.
The Raw Behavior Specification fills this role. The Raw Behavior Specification is a
simple yet complete log of all of the analyzed binary’s activity that the monitoring
environment is able to capture. This includes information on the binary’s interactions
with the execution environment, such as the system calls and library calls executed by the
binary, the parameters with which they are invoked, as well as full network traffic logs.
As discussed in Section 3.1, a Raw Behavior Specification may also include information
on data flows within the monitored binary.

2.2.3 Abstract Malicious Behavior Language

Direct analysis of the raw collected data is unfortunately too cumbersome to understand
malware behavior clearly. There is a trade-off between the completeness of information
provided by raw data, and the more meaningful but potentially less complete abstracted
data. The appropriate level of abstraction depends on the specific goals and use cases.

For detection purposes, the abstracted data must be described by a sufficiently generic
language; this is important because it is the only way to prevent malware from evading
detection using simple modifications. The explosion of the number of variants from
known strains can be seen as a consequence of exceedingly specific detection methods
such as binary scanning. Even basic behavioral methods can still be bypassed by basic
mutations at the functional level [42]. A high level of abstraction is thus required to cover
whole classes of behavior instead of single instances. This level of abstraction can be
achieved by getting detached from the specifics of the platform configuration (hardware,
operating system, applications) and the language in which the piece of malware has been
coded (native, interpreted, macros, . . .) [41]. An abstract language satisfying these
criteria has been provided in the context of the WOMBAT project and it is described
in the dedicated section 3.2. This section also addresses the process of translation into
this abstract language with examples from two translation tools developed as proofs of
concept: one for PE executables relying on Windows Native APIs and one for Visual
Basic Scripts.

2.2.4 Behavioral Profile

A Behavioral Profile is also a more concise and abstract representation of code behavior,
but it has different goals compared to the Abstract Malicious Behavior Language and
therefore different trade-offs between generality and completeness. Behavioral Profiles

14 SEVENTH FRAMEWORK PROGRAMME

2.3 Usage Scenarios

do not attempt to achieve OS or language independence. Rather than malware detection,
current applications of this language are related to malware clustering and classification,
as well as data mining. A Behavioral Profile represents code behavior as a set of OS
objects (such as files, or network sockets) and operations on these objects (such as writing
to a file), as well as relations between these objects (such as data flow between a file and
a socket). We discuss this language in detail in Section 3.3.

2.2.5 Behavioral Analysis Report

A Behavioral Analysis Report presents the results of the binary analysis in a human-
readable form to the user. The main goal is to provide a compact and yet detailed view
on the behavior of a binary. Therefore, the data gathered in previous analysis steps has
to be filtered and processed to produce a report that contains information useful to a
human reader without omitting relevant information. The resulting Behavioral Analysis
Report can be used by security analysts to quickly get a complete understanding of the
behavior of the binary.

Although the Behavioral Analysis Report is created for human users, it is still useful to
ensure that it is machine readable, because this provides the means to generate reports
that have a different focus without the need to process the analysis data again. Also,
the report can be processed and expanded by other applications. The content of this
report is explained in detail in Section 3.4

2.3 Usage Scenarios

In the context of the wombat project, a number of tools are being developed with the
aim of analyzing or detecting malicious code. In this section, we briefly discuss how
these tools can take advantage of our specification languages for code behavior. The
tools themselves are further discussed in Chapters 4 and 5.

Raw Behavior Specification. The Raw Behavior Specification is now the native output
format of the Anubis system [1]. Anubis is a tool for automating the analysis of malicious
software that was developed at the Secure Systems Lab of the Technical University
Vienna. The main component of Anubis is a full system emulator that is used to run
malicious software and produce a log of its behavior. This component can be seen as
an implementation of the malware analysis environment shown in Figure 2.1. For more
information on Anubis itself, please refer to the dedicated Section 3.2.4 of wombat
deliverable D06 (D3.1) Infrastructure Design.

FP7-ICT-216026-WOMBAT 15

2 General design

The Raw Behavior Specification allows sharing of detailed, low level information on
malware behavior without sharing the malware sample itself. This information can be
used as input for a variety of tools for malware analysis and detection. One example is the
S2A2DE tool[55, 72] developed at Politecnico di Milano. S2A2DE is an anomaly-based
intrusion detection system based on system calls. Recent enhancements to S2A2DE,
developed in the context of the wombat project, are discussed in Section 5.1. S2A2DE
could be easily modified to perform offline detection on Raw Behavior Specifications,
using it effectively as an alternate input format. This has not been implemented yet,
mainly because of the different target platforms (Anubis analyzes Windows binaries,
while S2A2DE detects intrusions on UNIX systems). This implies a much broader set
of changes in S2A2DE, besides implementation of a new input format, before it can be
usefully employed on Raw Behavior Specification files.

A Raw Behavior Specification can also be automatically converted to any of the other
three, higher-level specification languages described in this document.

Abstract Malicious Behavior Language. The main goal of the Abstract Malicious Be-
havior Language (AMBL), is to provide a platform- and language-agnostic framework
for the detection of malicious software. Therefore the primary application of this lan-
guage is malware detection. A system for malware detection that takes AMBL as input
has been developed in the context of the wombat project. It is briefly described in
Section 5.2.

Behavioral Profile. Behavioral Profiles provide a more synthetic but still rich summary
of the behavior of analyzed code. These profiles are suitable for being stored in a database
in a structured way, so that information on the behavior of all samples in a large collection
of malware can be efficiently accessible to the human analyst. We briefly discuss our
database of malware behaviors in Section 4.2.

Behavioral Profiles are also the input format for the tool for the behavioral clustering
of malware developed by the Secure System Lab of the Technical University Vienna [15].
This tool was developed in the context of the wombat project, and it is described in
Section 4.3. Finally, a Behavioral Profile can be automatically converted to a human-
readable Malware Analysis Report.

Malware Analysis Report. Malware Analysis Reports provide a simplified, high-level
view of the behavior of analyzed code that is suitable for a human analyst. Anubis [1]
offers a web service allowing users to submit a code sample for analysis. A Malware

16 SEVENTH FRAMEWORK PROGRAMME

2.3 Usage Scenarios

Analysis Report is then displayed to the user. The Anubis web service is briefly discussed
in Section 4.1.

FP7-ICT-216026-WOMBAT 17

3 Specification Languages

In this chapter, we describe the different specification languages for malware behavior
in detail.

3.1 Raw Behavior Specification

3.1.1 Design goals

Completeness. The Raw Behavior Specification is meant to store the complete observed
behavior of a malware sample for later analysis. Therefore, the language needs to
be able to represent all information made available by malware analysis environ-
ments. This includes:

� system calls (including parameters)
� library calls (including parameters)
� network traffic (full logs including payloads)
� information flow (as provided by dynamic data tainting instrumentations)

Efficiency. Performance of the malware analysis environments, in terms of the overhead
they impose on analyzed software as well as memory footprint, is an important
issue. Raw Behavior Specifications are meant to be written by the malware analysis
environment while analyzing the malware. In some cases, logging of the observed
malware behavior can be the performance bottleneck. This means that any increase
in the amount of information that is logged would lead to a further slowdown of
the binary under analysis. Therefore, the Raw Behavior Specification should be
as concise as possible, and producing it should not require the malware analysis
environment to perform any additional complex computation.

3.1.2 Language

This chapter explains and defines the format of the Raw Behavior Specification. The
Raw Behavior Specification consists of two files:

18

3.1 Raw Behavior Specification

Network Traffic Dump This file stores the network traffic of the analyzed binary in
PCAP format [5]. The PCAP format is is the most accepted format for storing
networking traffic today. This way, we have a wide range of standard network
analysis tools at our disposal to aid us in our analysis efforts.

Execution Trace This file stores the system calls and library calls performed by the
analyzed binary. In addition to the name and argument values of a called func-
tion the file also includes information as provided by the analysis environment’s
dynamic data tainting facility. The format of this file is specified in the following
paragraphs.

Execution Trace

One of the first design decisions that we made was to store the behavior of malicious
code as a sequence of system and library calls. Naturally, an instruction-trace (a trace
of all executed machine instructions) might be more desirable in terms of reaching the
completeness design goal. But the storage requirements of an instruction trace are huge
while the information gained by having an instruction-trace compared to a function call
trace is limited. For this reason, we decided for the function call trace. However, the
execution trace’s format was designed with extensibility in mind and so it’s theoretically
possible to include a binary’s executed instructions as well.

The execution trace is stored as an ASCII text-file where each line represents an event
related to execution of the analyzed binary. Lines are sorted by time so that the last
line of an execution trace refers to the last execution event. Each line of the execution
trace has the following structure:

Line ::= Timestamp Ws+ Component Ws+ ComponentSpecific
Ws ::= " "
Timestamp ::= [:asciiCharacter]{15}
Component ::= String
String ::= [:asciiCharacter]+

As one can see each line in the execution-trace starts with a timestamp. The Times-
tamp is a fixed-length string giving the time since the start of the analysis. The potential
granularity of the timestamp depends on the analysis environment and its underlying
operating system. For this reason, the timestamp precision is not defined here. However,
to enable easy parsing of the execution trace the length of the timestamp is defined to be
exactly 15 characters. For being of practical use, an analysis environment should make
an effort to provide at least timestamps with a granularity of 1/100 second.

FP7-ICT-216026-WOMBAT 19

3 Specification Languages

The Component is a variable-length string consisting of alphanumeric characters and
the underscore that describes to which analysis component the event relates. In par-
ticular, the component string determines the format of the rest of a line. This feature
makes the format of an execution trace extensible. Applications parsing the file simply
ignore lines that originate from analysis components that are added at a later time and
are thus unknown to the application. Currently, two analysis components are defined:
“function” and “compare”. Details are provided in the following paragraphs.

The terminal ComponentSpecific depends entirely on the specified component. At the
moment, only two components (“function”, “compare”) are specified.

Logging of Functions The execution trace contains one line when a function is called
and another line when the function returns. Having two entries per function allows us
to correctly display arguments that have a different value at invocation time than at
return-time.

More formally, if the component-string either equals ”C” or ”R” the line is to be
interpreted as follows:

FunctionCall ::= TimeStamp Ws+ "C" Ws+ Thread Ws+ FunctionName Ws+
"("

(ArgName ":" TaintUseSeq? ArgValue)?
("," ArgName ":" TaintUseSeq? ArgValue)*

")"
FunctionReturn ::= TimeStamp Ws+ "R" Ws+ Thread Ws+ FunctionName Ws+

"("
(ArgName ":" TaintCreateSeq? ArgValue)*
("," ArgName ":" TaintCreateSeq? ArgValue)*

")"
(":" TaintCreateSeq? ReturnValue)?

Thread ::= ProcessName Ws+ Pid Ws+ Tid
ProcessName ::= QuotedString
Pid ::= Integer
Tid ::= Integer
QuotedString ::= "\"" [:asciiCharacter]+ "\""
Integer ::= [0-9]+
FunctionName ::= String
ArgName ::= String
ArgValue ::= QuotedString | Integer | FpNumber
ReturnValue ::= QuotedString | Integer | FpNumber

20 SEVENTH FRAMEWORK PROGRAMME

3.1 Raw Behavior Specification

TaintUseSeq ::= "**" TaintUse+ "**"
TaintUse ::= "<" TaintLabelId ";" FunctionName ";" ArgName ">"

NumTainted?
NumTainted ::= ":" Integer
TaintLabelId ::= Integer
TaintCreateSeq ::= "**" TaintCreate+ "**"
TaintCreate ::= "{" TaintLabelId "}"

Note that for each logged function activity we specify which process and thread per-
forms the corresponding action. This makes it possible to record the behavior of several
processes in the execution trace. This ability is essential because current malware sam-
ples are complex programs whose full behavior can only be observed by watching several
processes.

The non-terminal ProcessName describes the human-readable name of the process
that performs the function call or function return. Under process name we understand
the name of the executable file whose start resulted in creation of the particular process.
Since the process-name might contain spaces and special characters we represent it as a
quoted string. A quoted string is enclosed by the character " and allows characters and
escape sequences as in the programming language C inside.

The Pid is an integer value that represents a unique process-identifier. It is necessary
because the same executable file might be started several times resulting in several pro-
cesses with the same process name. Note that this integer value does not necessarily
reflect a specific process-identifier from the analysis environment’s guest operating sys-
tem but can be a counter that is incremented for each different process captured in the
execution trace.

The production QuotedString describes a string as known from common programming
languages. It is enclosed by double quotes and supports the same escape sequences as a
string in the programming language C. In particular, one can escape the character ” by
preceding it with a backslash in order to build strings that contain the ” character.

FunctionName gives the name of the function that is called or is returning.
ArgName gives the name of a function’s parameter.
ArgValue refers to a parameter’s value in an actual function invocation. ReturnValue

refers to the return value of a function. The representation of an argument or return
value is different depending on its type. Since the API of the Windows operating system
(but also other systems such as Linux) is defined in header-files of the programming
language C we can automatically infer an argument’s type by parsing the declarations
in the appropriate header files.

Following is a description how each basic type of the C programming language is

FP7-ICT-216026-WOMBAT 21

3 Specification Languages

represented in the execution trace:

1. char, short, integer, long , enum arguments (whether signed or unsigned) are
printed as numbers.

2. float, double arguments are printed as floating-point numbers.

3. char * arguments are printed as QuotedStrings.

4. wchar t * arguments are converted to ASCII before being printed as Quoted-
Strings.

5. By default UserDefinedType * arguments (i.e. pointers to user-defined types) are
represented by printing the pointer-value (i.e. the address) as integer values. It
is however possible to add output rules for specific user defined types. It makes
sense, for example, to add special code for handling pointers to NT’s ubiquitous
ObjectAttributes structure OBJECT ATTRIBUTES * or for handling pointers to the
various HANDLE-types.

In addition to analyzing function calls we expect our analysis-system to leverage a
dynamic data tainting system that makes it possible to track information flows. At
least, the execution trace is designed in such a way that allows inclusion of information-
flow related data. We assume that the taint-system taints all values returned by a
function (i.e. all out arguments and the return value is tainted) with a specific label.
Furthermore, we assume that the taint system checks all arguments of a function at
invocation time for taint-labels.

Specifically, for each function call line and for each argument the execution-trace can
optionally include a TaintUseSeq. This piece of information indicates the origin of an
argument’s value. Of course, the analysis system will not always be able to give this
information. However, when present it contains the taint label ID, a value uniquely de-
scribing each taint label, the name of the function that returned the value, the name of
the argument of that (creator-) function and an optional value (NumTainted) specifying
how many bytes were tainted with the preceding taint label. Since taint labels might
be assigned and propagated with byte granularity an argument/return value consisting
of multiple bytes might contain several different taint labels. We accounted for this fact
by allowing each argument to list several taint labels. Note that a TaintUse label incor-
porates more information than strictly necessary. Having the taint label ID would be
sufficient because the function name and argument name can be found out by searching
the execution trace for the TaintCreate label with the same taint label ID. Nevertheless,

22 SEVENTH FRAMEWORK PROGRAMME

3.2 Abstract Malicious Behavioral Language

directly including the function name and argument greatly contribute to the readability
of the execution trace.

For each function return line and for each argument or return value the execution-
trace can optionally contain a TaintCreateSeq. The TaintCreateSeq gives the taint label
ID or the list of taint label IDs that the analysis environment’s taint-system assigned to
this argument’s value.

Let us conclude the formal description by simply giving an example how the call and
return of the NtClose function would look like in the execution trace:

00:00:07.926724 C "exec.exe" 0 1 NtClose(Handle:
<808;NtOpenFile;FileHandle>: 4 1936)
00:00:07.929612 R "exec.exe" 0 1 NtClose(Handle:
1936): **{844}** 0

Logging of Comparisons The execution trace is also able to store comparisons with
tainted data that take place during the execution of the analyzed binary. If the analysis-
system supports such a functionality the execution-trace expects them in the following
format:

Comparison ::= TimeStamp Ws+ "T" Ws+ Thread Ws+ CompareName Ws+
"("

"T0:" TaintUseSeq? ArgValue
", T1:" TaintUseSeq? ArgValue

")"
(":" ReturnValue)?

CompareName ::= "CMP_B" | "CMP_W" | "CMP_L"

As one can see comparisons are logged in a format similar to function calls. The
difference is that for each comparison only one line exists in the execution trace.

Following is an example of a comparison.

00:00:12.295773 T "W3NTSKAA.VXE" 1 1 CMP_B(T0:
<13824;GetCommandLineA;_functionResult>, T1: "\t"): 0

3.2 Abstract Malicious Behavioral Language

Results from this section have been submitted to the IEEE Symposium on Security and
Privacy (SSP’09).

FP7-ICT-216026-WOMBAT 23

3 Specification Languages

3.2.1 Design goals

Language goals:

� The first goal is the translation of the collected data into a compact, human-
understandable representation. This representation must be suitable to feed fur-
ther analysis processes.

� The second goal is the abstraction from the platform configuration and the pro-
gramming language. Ultimately, the abstract representation must be interoperable
with various collection mechanism such as trace collectors for executables or script
analyzers.

� The third goal is a direct consequence of the second goal. Considering any pro-
gramming language or platform, the development of an automated translation tool
must be conceivable. Current developments have already provided two tools for
Windows platforms supporting interpretation of PE traces using Windows Native
APIs and Visual Basic Scripts. JavaScript is considered for future perspectives.

Language usage:

� The abstract language has been specifically designed for detection as it is described
later in Section 5.2. The abstraction brought by translation into the language
reduces the risk of evasion by simple modifications of known malware.

� On the other hand, the abstract language is not suitable for analyses which are
very sensitive to the data completeness, such as automated learning: during the
learning process, the significant information is not identified yet, and it could be
lost during translation. It is not suitable, either, for studying malware phylogeny,
since technical resemblances are blurred by the abstraction.

3.2.2 Language

Abstract specification of malicious behaviors relies on attribute grammars. Formal gram-
mars are interesting to consider because they are easy to understand and manipulate, but
at the same time they provide for sound proofs and automatic analysis. In the context
of malicious behaviors, syntactic rules describe the possible combinations of basic opera-
tions making up the behavior. The additional semantic rules control both the data flow
between the elements involved in these operations, and associate these elements with a
potential purpose in the malware lifecycle (installation, communication, execution, . . .).

24 SEVENTH FRAMEWORK PROGRAMME

3.2 Abstract Malicious Behavioral Language

Theoretical framework

From a theoretical perspective, an attribute grammar (Definition 1) is a Context-Free
Grammar (CFG) enriched with semantic attributes and rules [46]. In the formalism,
each start symbols begins the description of a new malicious behavior. The terminal
symbols of the grammar then correspond to the basic operations making up the be-
havior whereas the production rules describe their different combinations to achieve the
behavior. Basic operations eventually refer to the abstract interpretations of the data
collected (interpretations of instructions, API calls, arguments) [43, 42].

Definition 1 An attribute-grammar GA is a triplet <G,D,E> where:
- G is originally a context-free grammar <V,Σ, S, P>,
- let att : X ∈ {V ∪Σ} → att(X) ∈ Att∗ be an assignment function for attributes and
D=∪α∈AttDα, their set of values,
- E is a set of semantic rules such as for any production rule π ∈ P , there is for each
variable, at most, one rule Yi.α = f(Y1.α1...Yn.αn) where f : Dα1 × ...×Dαn → Dα.

Overview of the Abstract Malicious Behavior Language (AMBL)

A generic programming language is required to describe any malicious behavior: the
Abstract Malicious Behavior Language (AMBL) has been developed to this purpose. By
design, the AMBL language focuses on describing the final purpose of a behavior rather
than the technical solutions used to achieve it. The high level language can then be
declined into more concrete models or instantiations by refinement. Its inner principles
are object-oriented as described by the encapsulation of Figure 3.1. The AMBL relies
on internal basic operations: arithmetic and control operations guaranteeing Turing
completeness, as well as interactions to interface with external objects: commands (open,
create, close, delete) or inputs/outputs (send, receive, signal, wait). Malware being
resilient and adaptable by nature, interactions are key features.

The atomic operations and interactions constitute the terms of the behavioral lan-
guage. The syntax of the language constrains the building of these terms and their
parameters as given in the production rules (1) to (7) in the Figure 3.2. Using addi-
tional production rules, these terms are then sequentially combined into blocks. These
blocks can then be combined into parallel, conditional or loop structures making up the
behavior. The complete syntax of the language, as well as its operational semantic for
execution, are given in [43].

FP7-ICT-216026-WOMBAT 25

3 Specification Languages

Figure 3.1: Malware object-oriented encapsulation.

(1) <Op1> ::= ¬|&
(2) <Op2> ::= ∨| ∧ | ⊕ | < | ≤ | = | ≥ | > |+ | − | × | ÷ | ≡ | << | >>
(3) <Term> ::= object | [<Term>] | <Operation> | <Interaction>
(4) <Operation> ::= object := (<Term>) | [<Term>] := (<Term>)

| <Op1> (<Term>) | <Op2> (<Term>, <Term>)
| goto <Term> | stop

(5) <Interaction> ::= <Control> object | <I/O>
(6) <Control> ::= open | create | close | delete
(7) <I/O> ::= receive object← object | receive [<Term>]← object

| send <Term>→ object | wait object | signal object

Figure 3.2: Syntax of the atomic operations and interactions.

26 SEVENTH FRAMEWORK PROGRAMME

3.2 Abstract Malicious Behavioral Language

On top of the syntax, semantic attribute and rules enriching attribute-grammars have
been provided. These semantic enhancements have two main purposes which are iden-
tifying internal and external objects and enforcing a type system for these objects:

Object binding: Object binding identifies the different instances of objects and vari-
ables, and guarantees they are coherently used. It is achieved by affecting specific
attributes called identifiers to the terminal symbols representing these objects (de-
noted objId in the semantic rules). In the context of interactions, object binding
constrains the data-flow between objects. The data flow is critical in behaviors
such as duplication where the malicious code is transferred from the self-reference
to a target object.

Object typing: A type attribute can also be affected to a given object (denoted objTp).
Types are attached to objects according to their potential use. They are critical
to distinguish certain malicious purposes such as booting objects in the case of
residency or communicating objects in the case of propagation. A description of
the different considered types is given in the next paragraph. Additional character-
ization of the objects can be achieved through additional attributes. For example,
an attribute can store the object nature (denoted objNat): variable, file, registry
key, network socket, mail, etc. Typing may then be refined according to these
additional attributes.

With regards to the provided type system, objects are typed according to their po-
tential use in the malware lifecycle. Basically, objects are separated into three classes.
The first class of objects gathers the internal variables and constants (var) used by the
malware for its internal operations. The second class gathers the permanent objects
(obj perm) which remain persistent after a complete reboot of the system (e.g. files, di-
rectories, registry keys) whereas the third class, on the opposite, gathers the temporary
objects (obj temp) existing only for a finite time, as long as the system remains active
(e.g. processes, synchronization objects). Particular objects inheriting of these two last
classes are defined more specifically:

� The first permanent subclass is made up of the communicating objects (obj com).
These objects constitute communication channels to remote locations or systems.
The definition of a communicating object is very wide. Network connections are
the most obvious example but transit locations must also be considered: network
drives, intranet or peer-to-peer shared directories, removable devices.

� A second permanent subclass gathers the boot objects (obj boot). These objects
provide the malware facilities to automatically execute. Configuration files for the

FP7-ICT-216026-WOMBAT 27

3 Specification Languages

Figure 3.3: Hasse Diagram of the object type poset.

operating system like win.ini or autoexec.bat for windows, run registry keys, or
the Master Boot Record (MBR) are typical means for a malware to be registered in
the boot sequence. Automatic execution is also possible at runtime by overwriting
the global system service descriptor table, the import tables or entry points in
executables. Such locations are also considered as members of the boot class.

� The definition of a self-reference (this) shall prove itself useful as in object pro-
gramming. This element inherits from both permanent and temporary objects
since it can be either the drive image of the malware or its associated process in
memory.

� In addition to these main classes, additional refinements can still be brought to
enrich the typing system. Executable objects (obj exe) can constitute a fourth
subclass inheriting from the temporary object. Process and threads are appealing
targets for corruption by the malware, in order to gain new privileges for example.
An independent class refining permanent objects can also be considered for envi-
ronment variables (env var). They may be useful in attempts to detect dynamic
analysis: redpill techniques for example. Security related objects (obj sec) can fi-
nally be built either on environment variables or executables making this subclass
hybrid. They play an important role in the protection of the system like antiviral
processes or registry keys storing the security configuration for certain web or P2P
clients. They may be used by malware for proactive defense.

When enforcing the typing the system, the more specific class always prevails on the
generic one. Consequently, a partial order has been defined on these types according to
their subset inclusion, as shown in Figure 3.3. In fact, the set inclusions correspond to
object specializations.

28 SEVENTH FRAMEWORK PROGRAMME

3.2 Abstract Malicious Behavioral Language

Descriptions of malicious behaviors

Use of this grammar is best illustrated by examples of behavioral descriptions. In fact,
most malicious behaviors can be described by sub-grammars of the AMBL generative
grammar. This section only covers two extracts of the most prevalent behaviors: duplica-
tion and propagation. Their original descriptions was generated by manually analyzing
a pool of malware. Since behavioral descriptions convey only the most generic features
of the malicious behaviors, notice that manual generation of these behavioral signatures
can be considered easier than generation of binary signatures for virus scanners. In
the original paper additional preliminary descriptions can be found for file infection,
residency, mutation, overinfection and activity tests [43].

1) Duplication: Duplication is achieved by copying code from the self-reference to a
permanent object. The behavior is described below by syntactic production rules (grey)
and their related semantic rules (white). The syntactic derivations correspond to the dif-
ferent duplication techniques supported: single-block read/write, interleaved read/write
and direct copy with possible permutations. The semantic rules are more interesting.
They guarantee the data-flow between the read and write interactions by constraining
them to refer to the same variable (Binding: <Write>.varId =<Read>.varId). They also
guarantee the maliciousness of the behavior: the open and read interactions must refer
to the self-reference to be a real duplication (Typing: <Duplicate>.srcTp = this).

(i) <Duplicate> ::= <Create><Open><Read><Write>
| <Open><Create><Read><Write>
| <Open><Read><Create><Write>
| <Open><Create><InterleavedRW>
| <Create><Open><InterleavedRW>

{ <Duplicate>.srcId = <Open>.objId
<Read>.objId = <Duplicate>.srcId
<InterleavedRW>.obj1Id = <Duplicate>.srcId
<Duplicate>.srcTp = this
<Open>.objTp = <Duplicate>.srcTp
<Read>.objTp = <Duplicate>.srcTp
<InterleavedRW>.obj1Tp = <Duplicate>.srcTp
<Duplicate>.targId = <Create>.objId
<Write>.objId = <Duplicate>.targId
<InterleavedRW>.obj2Id = <Duplicate>.targId
<Duplicate>.targTp = obj perm
<Create>.objTp = <Duplicate>.targTp
<Write>.objTp = <Duplicate>.targTp
<InterleavedRW>.obj2Tp = <Duplicate>.targTp
<Write>.varId = <Read>.varId }

FP7-ICT-216026-WOMBAT 29

3 Specification Languages

| <DirectCopy>
{ <Duplication>.srcId = <DirectCopy>.obj1Id
<Duplication>.srcTp = this
<DirectCopy>.obj1Tp = <Duplicate>.srcTp
<Duplicate>.targId = <DirectCopy>.obj2Id
<Duplicate>.targTp = obj perm
<DirectCopy>.obj2Tp = <Duplicate>.targTp }
(ii) <Create> ::= create object;
{ <Create>.objId = object.objId
object.objTp = <Create>.objTp }
(iii) <Open> ::= open object;
{ <Open>.objId = object.objId
object.objTp = <Open>.objTp }
(iv) <Read> ::= receive object1← object2;
{ <Read>.varId = object1.objId
object1.objTp = var
object2.objId = <Read>.objId
object2.objTp = <Read>.objTp }
(v) <Write> ::= send object1→ object2;
{ <Write>.varId = object1.objId
object1.objTp = var
object2.objId = <Write>.objId
object2.objTp = <Write>.objTp }
(vi) <InterleavedRW> ::= while(receive object1← object2;){

send object3→ object4;
}

{ object3.objId = object1.objId
object1.objTp = var
object3.objTp = var
object2.objId = <InterleavedRW>.obj1Id
object2.objTp = <InterleavedRW>.obj1Tp
object4.objId = <InterleavedRW>.obj2Id
object4.objTp = <InterleavedRW>.obj2Tp }
(vii) <DirectCopy> ::= send object1→ object2;
{ <DirectCopy>.obj1Id = object1.objId
object1.objTp = <DirectCopy>.obj1Tp
<DirectCopy>.obj2Id = object2.objId
object2.objTp = <DirectCopy>.obj2Tp }

2) Propagation: Propagation differs from duplication by a different target object: the
data is copied from the self-reference to a communicating object. Consequently, propa-
gation shows some syntactic similarities with duplication except readjustments to insert
a potential format process: their main differences thus lie in the semantic rules. Two
major modifications are brought to the semantic rules of the propagate production. Illus-
trating the importance of typing, the permanent type of the target object is first replaced
by the communicating type (<Propagate>.targTp = obj com). A communicating object
can either be a network connection, a mail or a file shared over P2P folders and network
drives. The second modification specifies, by a disjunction of semantic equations, that
the source of propagation can be either the self-reference or the intermediate result of
the duplication (<Propagate>.srcTp = this or <Propagate>.srcId =<Duplicate>.targId).

30 SEVENTH FRAMEWORK PROGRAMME

3.2 Abstract Malicious Behavioral Language

(i) <Propagate> ::= <Open><Read><Transmit>
| <Read><Open><Transmit>

{ ...
(<Propagate>.srcTp = this
∨ <Propagate>.srcId = <Duplication>.targId)
<Propagate>.targTp = obj com

... }
(ii) <Transmit> ::= <Format><Write>|<Write>

3.2.3 Translation into the abstract specification

Considering raw specification, a trace conveying the actions of a potentially malicious
sample is statically or dynamically collected. Depending on the collection mechanism,
completeness of the trace data and its nature vary greatly, from simple instructions to
system calls along with their parameters. The trace remains specific to a given platform
and to the language in which the sample has been coded (native, interpreted, macros).
A translation mechanism is thus required to translate the raw data into the abstract
behavioral language. Translation of basic instructions, either arithmetic (move, addition,
subtraction...) or control related (conditional, jump...), into operations of the language
is an obvious mapping which does not require further explanation. However, translation
of API calls and their parameters into interactions and objects from the language is
more complex and detailed hereafter.

API calls translation

For a program to access any service or resource from its environment, the Application
Programming Interfaces (APIs) constitute a mandatory point enforcing security and
consistency [62]. API calls may also be denoted system calls when native code is access-
ing kernel services from the operating system. For consistency reasons, the first notation
will prevail. For each programming language, the set of available APIs can be classi-
fied into distinct interaction classes. The translation of the API calls is thus mainly
language-sensitive. This set of APIs being finite and supposedly stable, the transla-
tion can be defined as a mapping over the interaction classes, the completeness of the
process being guaranteed. Table 3.1 provides a mapping for subsets of the Windows
Native APIs [4] and VB Script APIs. The table is refined according to the nature of the
manipulated objects. The API name, on its own, is not always sufficient to determine
its interaction class. For example, network devices and simple files use common APIs:
for a clear distinction, their path must also be interpreted (\device\Afd\Endpoint under
Windows). Sending or receiving packets then depends on control codes transmitted with
NtDeviceIoControlFile (IOCTL AFD RECV,IOCTL AFD SEND). If required, specific call param-

FP7-ICT-216026-WOMBAT 31

3 Specification Languages

Table 3.1: Mapping Windows Native and VBScript APIs to interaction classes.

eters constitute additional mapping inputs:
{API name} × ({Parameters} ∪ {ε})→ {Interaction class}.

Parameters interpretation

Parameters are important factors in interactions, not only to distinguish between am-
biguous classes of interactions like previously said but also to identify the different objects
involved in interactions and to assess their criticality through typing. Interpretation of
the parameters thus complements the initial abstraction from the language obtained
through API translation: parameter translation is no longer specific to the language
but, rather provides the second step of abstraction from the platform.

Due to their varying nature, parameters can not be translated using a simple mapping.
Decision trees are more adaptive tools capable of interpreting parameters according to
their representation:

32 SEVENTH FRAMEWORK PROGRAMME

3.2 Abstract Malicious Behavioral Language

Simple integers: Integer attributes are mainly constants specific to an associated API.
They may condition the interpretation of its interaction class. For NtDeviceIoControlFile,
the different IO control codes are typical examples. A simple hard-coded compar-
ison can detect the main constants.

Address and Handles: Addresses and handles mainly identify the different objects ap-
pearing in the collected traces. These parameters are particularly useful to study
the data flow between objects. A variable, for example, is represented by an ad-
dress av and a potential size sv. Every address a such as av ≤ a ≤ av + sv will
refer to the same variable. Certain addresses with important properties may be re-
fined by typing: import tables, services descriptor table, entry points. To interpret
these specific addresses, a decision tree partitioning the address space is proposed
in Figure 3.4.

Character strings: String parameters contain a wide array of information to extract.
Most of these parameters are paths satisfying a hierarchical structure where ev-
ery element is important: from the root identifying drives, drivers and registry,
passing by the intermediate directories providing object localization, until the real
name of the object. This hierarchical structure is well adapted for a progressive
analysis which can be modeled as a decision tree. Figure 3.5 shows a progressive
interpretation of the path elements in a Windows configuration.

Figure 3.4: Addresses interpretation.

FP7-ICT-216026-WOMBAT 33

3 Specification Languages

Figure 3.5: Character strings interpretation.

Decision trees generation

Building decision trees requires a precise identification of the critical resources of a
system. Our methodology proceeds by successive layers: hardware, operating system and
applications. For each layer, we define a scope encompassing the significant components;
the resources involved either in the installation, the configuration or the use of these
components must then be monitored for potential misuse:

Hardware layer: For the hardware layer, the scope can be restricted to the interfaces
open to external locations (Network, CD, USB). The key resources to monitor are
the drivers used to communicate with the interfaces. Additional configuration files
must also be considered because they may impact the connection parameters (Host
file) or the booting of the external element (Autorun.inf).

Operating system layer: The configuration of the OS is critical but is unfortunately
dispersed in various locations (files, registry, tables and structures in memory).
The scope is proportionally broadened. However, most of the critical resources
are already well identified, such as the boot sequence or the intermediate struc-
tures used to access the provided services and resources (file system, process table,
system call table...).

Applicative layer: It is obviously impossible to consider all existing applications. To
restrict the scope, we limit our analysis to connected and widely deployed appli-
cations (web browsers, mail clients, peer-to-peer clients, messaging, IRC clients).

34 SEVENTH FRAMEWORK PROGRAMME

3.3 Behavioral Profile

This restriction makes sense since malware have propagation and interoperability
requirements to reach large-scale infection. We again consider resources involved
in communication (connections, transit locations) as well as in configuration (ap-
plication launch).

Identification of the critical resources potentially used by malware, is a manual, com-
plex but necessary configuration step. We believe however that this identification is less
cumbersome than analyzing the thousands of malware samples discovered every day,
for the following reasons. First, critical resources of a given platform are restricted and
often known; they can thus be enumerated. Their precise name and location can then be
retrieved in a partially automated way. For example, the list of connected drives (local,
network, removable media) or the different installed peer-to-peer clients as well as their
shared directories can be recovered automatically.

Even though a full automation of the parameter interpretation may be very hard
to achieve, anomaly-based intrusion detection already attempted to fully automate the
analysis of the system call parameters [49, 55]. Their parameter interpretation relies
on deviation measurements from a legitimate model based on string length, character
distribution and structural inference. These factors are significant for remote intrusions
because these attacks mostly use misformatted parameters to infiltrate systems through
vulnerabilities. This approach should prove less efficient with malware, since they mainly
use seemingly legitimate parameters. Moreover, these anomaly-based approaches do not
explain the use of the object for the malware; this would require an additional manual
analysis. Thus, parameter interpretation by decision trees with automated configuration
seems a good trade-off between complete automation and manual analysis.

3.3 Behavioral Profile

3.3.1 Design goals

data reduction. Behavioral Profiles should be a much more concise representation of a
malware’s behavior than Raw Behavioral Profiles, making them more efficient to
store, share and analyze.

abstraction. A Behavioral Profile should generalize a Raw Behavioral Profile, and rep-
resent a malware’s execution at a higher level of abstraction.

completeness. A Behavioral Profile should still be a complete representation of a mal-
ware’s execution. All potentially relevant malware behavior should be preserved.
This makes this format suitable for a number of applications such as clustering,

FP7-ICT-216026-WOMBAT 35

3 Specification Languages

machine learning, and data mining. Clearly, there is a trade-off between this re-
quirement and the previous two requirements.

3.3.2 Language

A Behavioral Profile is an abstraction of the Raw Behavior Specification that contains
information about the OS objects that the program operates on, as well as the operations
it performs on these objects.

System call traces can vary significantly, even between programs that exhibit the same
behavior. For example, consider the different ways to read from a file: Program A might
read 256 bytes at once, while program B calls read 256 times, reading 1 byte with each
call. Moreover, it is easily possible to interleave the read calls with other, independent
system calls so that the system call trace changes. For this reason, we abstract the
raw behavior specification into a set of operating system objects, together with a set of
operations (such as read, write, create) that were performed on these objects.

An OS object represents a resource, such as a file or registry key, that can be manip-
ulated and queried via system calls. For example, a behavioral profile might include the
file object C:\Windows and its accompanying operation query directory. An OS oper-
ation is a generalization of a system call that unifies different system calls with similar
semantics but different function signatures (e.g., the Windows system calls NtCreate-
ProcessEx and NtCreateProcess both map to the same operation).

If the raw behavioral specification includes tainting information, it can be used to
infer dependences between OS objects. Copying a file, for example, is represented as a
dependence between the source file OS object and the destination file object. Depen-
dency information implicitly captures the order of certain operations. This is important,
because a behavioral profile does not explicitly consider the order of OS operations that
are performed on a specific OS object. The reason is that it should not rely on the order
in which unrelated operations are executed. Moreover, dependences can help to deter-
mine resource names that are derived from data sources whose values change between
execution traces (such as random values or the current time). This information allows
the corresponding OS object names to be generalized.

Similarly, if the raw behavioral specification includes information on comparisons in-
volving tainted values (as discussed in Section 3.1.2), these can be translated to com-
parisons between OS objects.

36 SEVENTH FRAMEWORK PROGRAMME

3.3 Behavioral Profile

Specification

As mentioned previously, a behavioral profile captures the operations of a program at a
higher level of abstraction. To this end, a sample’s behavior is modeled in the form of
OS objects, operations that are carried out on these objects, dependences between OS
objects and comparisons between OS objects . More formally, a behavioral profile P is
defined as an 8-tuple

P = (O,OP,Γ,∆, CV,CL,ΘCmpV alue,ΘCmpLabel)

where O is the set of all OS objects, OP is the set of all OS operations, Γ ⊆ (O ×OP)
is a relation assigning one or several operations to each object, and ∆ ⊆ ((O × OP) ×
(O × OP)) represents the set of dependences. CV is the set of all compare operations
of type label-value, while CL is the set of all compare operation of type label-label.
ΘCmpV alue ⊆ (CV ×O) is a relation assigning label-value compare operations to an OS
object. ΘCmpLabel ⊆ (CL×O×O) is a relation assigning label-label compare operations
to the two appropriate OS objects.
OS Objects. An OS object represents a resource, such as a file or registry key, that
can be manipulated and queried via system calls. Formally, an OS object is a tuple of
the following form:

OS Object ::= (type, object-name)

type ::= file|registry|process|job|network|thread|section|driver|sync|service|random|time|info

That is, an OS object has a name and a type that together uniquely identify the
object in the operating system. The ‘file‘ type covers file, named pipe, and mailslot
resources, ‘registry‘ consists of registry keys, ‘process‘ includes processes, and ‘job‘ de-
notes Windows NT jobs, which allow for combining individual processes into a group.
The ‘network‘ category describes network objects, ‘thread‘ represents thread activity,
‘section‘ refers to memory-mapped files, and ‘driver‘ captures the loading and unloading
of Windows device drivers. The type ‘sync‘ abstracts all synchronization activities, such
as operations on semaphores and mutexes, and ‘service‘ contains objects that represent
Windows services. The type ‘random‘ includes several sources of randomness, each of
which can be used by a program to generate a random number. The type ‘time‘ consists
of time sources, and ‘info‘ contains only two objects. One is the object info-executable,
which represents the loaded executable. The other one is info-general, which represents
information such as pathnames of the windows system directory and the temporary
directory.

To create OS objects, the raw behavioral specification can be scanned for all system
calls that produce new OS resources. For example, the function NtCreateFile creates

FP7-ICT-216026-WOMBAT 37

3 Specification Languages

OS Object OS Operation
Type Name Name Attributes
net http server contact ‘www.gasolution.com‘, ‘80‘
net http request get ‘/downloader/start2.htm‘
net dns resolver query ‘Type A‘, ‘mx0.gmx.net‘
net port listener listen on ‘TCP‘, ‘6777‘
net smtp attmts send ‘fpw.exe‘

Table 3.2: Example network OS objects.

new files. For each such system call, the object name can be extracted from the argument
list, while the object type can be deduced from the type of the system call. Typically,
native API calls have a parameter, named ObjectAttributes, that can be directly
translated to an object name. In a few cases, it is more difficult to determine the
object name. For example, NtCreateProcess expects a handle argument that points
to a section object (a memory-mapped file), instead of an argument that specifies the
filename of the executable. To address this problem, we have extended our system call
logger to resolve handles to NT kernel objects and provide this information.

As discussed in Section 3.1.2, the malware analysis environment may also monitor
network activity at the network level, by using a sniffer to capture and network traffic
generated by the malware. Raw network traces can be analyzed, extracting network OS
objects. Depending on the type of network traffic observed, different kinds of network
objects are created. Table 3.2 lists some example network objects, together with their
corresponding operations.

OS Operations. An OS operation is a generalization of a system call. Formally, an
operation is defined as:

OS operation ::= (operation-name, operation-attributes?, successful?)

An operation must have a name, it may have one or more attributes that provide addi-
tional information about the operation, and it may have a value describing whether the
operation was successful.

We map system calls to OS operations with the intent of abstracting from API-specific
details. For example, we ignore whether a process is created by means of NtCreate-
Process or NtCreateProcessEx and unify these two system calls into the single OS
operation create. Our mapping function only considers the most essential system calls,
such as functions for reading, writing, and creating operating system objects. This allows

38 SEVENTH FRAMEWORK PROGRAMME

3.3 Behavioral Profile

us to abstract from many unimportant details. For example, we ignore all functions
relating to NT’s Local Procedure Call functionality, because this is an undocumented
feature that is not available via the Windows API. Currently, we map 130 native API
and Windows API functions to 55 OS operations.

System calls that operate on a resource typically have a (handle) parameter that
references the target resource. This is necessary for the OS to know the resource to
which an operation should be applied. We make use of these handles to map operations
to the appropriate OS objects. After assigning operations to OS objects, all of an object’s
operations are stored in a set. As a consequence, the order of OS operations is irrelevant.
This is important, because it is very easy to reorder system calls on a resource without
changing the semantics of a program. Thus, we are able to generalize our behavioral
profile by neglecting the order of operations. System call dependences may be used to
capture the order between those OS operations where the actual order is implied by a
data dependence. Moreover, the number of operations on a certain resource does not
matter in our system. This sacrifices some precision, but makes the behavioral profile
more general, and thus, harder to evade by introducing superfluous operations.

Object Dependences. We abstract dependences between system calls to dependences
between OS objects. While a system call dependence is a dependence relation between
two system call instances, an OS object dependence is a dependence between two OS
objects and their operations. For each existing system call dependence, we first check
whether the two involved system calls map to OS operations. If this is the case, we
introduce an object dependence between the corresponding OS objects. Note that this
information is only available if the raw behavior specification provide taint tracing in-
formation.

Based on this representation of objects and their dependences, it is straightforward
to find execution-specific artifacts. For example, we recognize random or temporary
filenames by checking whether there is a dependence between a file object and a random
source. If this is the case, we do not want to keep the actual object in the profile, since
it is different for each execution. Thus, we replace the concrete object name with a
placeholder token that indicates the source of the object name (such as TEMPORARY
for a temporary filename). Moreover, we append the value of a counter that is increased
by one until the object name becomes unique in this profile. When comparing two
behavioral profiles that both contain objects with temporary filenames, it is possible
to match these two objects. However, we have to avoid that an object a1 of profile
A matches with object b1 of profile B, when the operations associated with the object
make it actually more similar to object b2 of profile B. We address this problem by
calculating a checksum over all OS operations, using the resulting value as part of the

FP7-ICT-216026-WOMBAT 39

3 Specification Languages

new object name. That is, execution-specific names are replaced with a new name of
the form <token><checksum><counter>. The checksum guarantees that only objects
with the same OS operations will receive the same name in two different profiles, and
consequently match.
Control Flow Dependences. Control flow dependences are translated into compar-
isons between OS objects. Depending on the type of the comparison, a control flow
dependency is associated with either one or two OS objects. A label-label comparison
involves two OS objects (one for each operand), while a label-value comparison involves
only a single one. To find the appropriate OS resource, the labels are use. That is, we
search for the OS operation that created a particular label. Then, we search for the
object that the operation is associated with.
Example behavioral profile. Figure 3.6 shows an example of a behavioral profile.
Note that although this example is shown in C code, our profile extraction algorithm
works on execution traces. This example shows code that copies the file C:\sample.exe
to C:\Windows\sample.exe by memory-mapping the source file. As one can see, inde-
pendent of the number of times the write operation in Line 14 is executed, the write
operation appears only once in the corresponding behavioral profile. It is also note-
worthy that the NtQueryAttributesFile operation in Line 6 is assigned to the object
C:\Windows\sample.exe, although it does not use a handle argument to reference its
OS object. The behavioral profile also contains a dependence between the section OS
object of the source file and the file object of the destination file. This dependency
reflects the fact that data from the source was copied to the destination file.

3.4 Behavioral Analysis Report

3.4.1 Design goals

human-readable. The Behavioral Analysis Report is intended for human users and pro-
vides a high-level view on the data that is gathered in the malware analysis. There-
fore, the analysis data has to be processed so that information that is relevant to
users can be extracted and presented in a form that allows a user to easily obtain
an extensive picture of the behavior of a binary.

machine-readable. Although the main goal is to create an human-readable output, the
report should still be suitable for automatic processing. This provides the flexibility
to generate different kinds of reports and it permits the processing of a report by
different programs. In this way, a report can be extended with analysis data from
other sources than the one who initially created the report.

40 SEVENTH FRAMEWORK PROGRAMME

3.4 Behavioral Analysis Report

0: // open the source-file as a memory-mapped file

1: HANDLE src = NtOpenFile("C:\sample.exe");

2: HANDLE sectionHandle = NtCreateSection(src);

3: void *base = NtMapViewOfSection(sectionHandle);

4:

5: // don't overwrite the target

6: if (NtQueryAttributesFile("C:\Windows\sample.exe") !=

7: STATUS_OBJECT_NAME_NOT_FOUND)

8: exit(1);

9: // open the target

10: target = NtCreateFile("C:\Windows\sample.exe");

11:

12: void *p = base;

13: while(p < base + fileLen) {

14: NtWriteFile(target, p++);

15: }

File|C:\sample.exe

open:1

Section|C:\sample.exe

open:1, map:1, mem_read: 1

File|C:\Windows\sample.exe

query_file:0, create:1, write:1

Section|C:\sample.exe -> File|C:\Windows\sample.exe

mem_read – write: (fileLen)

Pseudo Code Fragment

Behavioral Profile

Figure 3.6: Example Behavioral Profile

FP7-ICT-216026-WOMBAT 41

3 Specification Languages

3.4.2 Language

XML was chosen as storage format to represent the Behavioral Analysis Report. XML
allows both design goals to be met, because files in this format are machine readable
and they can easily be transformed into a human readable representation. Another
advantage is that there are a lot of implementations for XML parsers in many different
programming languages, which allows for a wide variety of tools to create and extend
the analysis report. Furthermore, the Behavioral Analysis Report language is formally
defined by an XML Schema [2]. A major benefit of an XML schema is the fact that the
report file can be checked for compliance against it, therefore it can be assured that the
generated report is always semantically correct. Once the XML report file is created, it
can be transformed into a format that is human readable, e.g. HTML, PDF or plain
text.

The content of the XML file that contains the report can be grouped into two major
categories: every report contains general information about itself and detailed informa-
tion about the executable. The general information section includes data such as the
creation date of the report, or the total execution time of the binary. The information
about the executable is more comprehensive and contains the following sections:

General executable information. This category describes the command line to start the
executable, the exit status, the dll’s that are loaded, the virus scanner output and
the pop-ups that are opened by the binary.

Registry activities. Describes the registry keys that are accessed or modified.

File activities. Shows information about files that are created, deleted or modified by
the binary.

Service activities. Reports all interaction with services on the analysis system such as
starting, stopping, controlling or deleting a service.

Process activities. Shows information about processes and threads that are created or
deleted by the binary.

Network activities. The entire network behavior of a process is recorded in this section.
This includes data that is sent across communication channels as well as creation
and manipulation of communication endpoints on the system.

Miscellaneous activities. This section records if a driver is loaded or unloaded by the
binary, if a mutex is created or if an exception occurred.

42 SEVENTH FRAMEWORK PROGRAMME

3.4 Behavioral Analysis Report

Evasion. Reports if the binary tries to evade analysis. Malware can evade automatic
behavioral analysis by not performing it’s intended malicious function when it
detects it is being run inside a malware analysis environment.

A complete formal definition of the Behavioral Analysis Report specification language
is provided as an XML Schema, and is available from [2].

The main part of the report itself is crafted out of the corresponding Behavioral Profile.
This Behavioral Profile is scanned by a script that extracts information from relevant
OS interactions. For example, every action that creates a new file is processed, leading
to an entry in the report that displays what file is created. Also, some interactions can
be combined into a single action, e.g. when a file is read, the previous calls that are
required to open a file do not need to be mentioned in the report.

Optionally, the Behavioral Analysis Report may be enhanced by including a full net-
work traffic dump. The reason is that a malware analysis system may not be able to
extract all relevant information out of raw network traffic. On the other hand, a variety
of existing tools are available that can assist the human analyst in examining a raw
network traffic dump. This includes packet dissectors such as Wireshark [71], intrusion
detection systems such as snort [68], as well as specialized tools aimed at the analysis
of specific network protocols. Therefore, the full dump is provided for later analysis,
encoded as a pcap file [5]. Since full network dumps are not available as part of a Be-
havioral Profile, they must be extracted from the Raw Behavioral Specification, if it is
available.

FP7-ICT-216026-WOMBAT 43

4 Behavioral Malware Analysis

4.1 Malware Analysis Service

The Anubis service is a Malware Analysis Service that analyzes unknown windows bi-
naries and websites. A binary that is submitted to Anubis is executed in an emulated
environment where all its actions are monitored. The Anubis web site [1] provides the
means to upload binaries and to view reports. Users can submit samples by uploading
binaries in a web form, or they can enter a URL that points to a potentially malicious
web site. The data provided by the user is processed and analyzed by Anubis, and a
Behavioral Analysis Report that describes the results of this analysis is then presented
to the user. The Anubis tool itself is discussed in wombat Deliverable “D06 (D3.1)
Infrastructure Design”. Here, we briefly introduce the web interface that makes Anubis
behavioral malware analysis available to wombat partners as well as to the public.

There are a lot of submissions to Anubis each day (about 800 thousand in total in
2008, up from 330 thousand in 2007), so the uploaded binary is queued and processed
when the required resources are available. A user can prioritize her binary by entering a
CAPTCHA code on the submission page so that it gets processed immediately. Anubis
also supports the automatic submission of binaries. A special POST request can be used
to send the analysis subject to the Anubis service. Afterwards, the URL of the analysis
report is mailed to the provider of the binary. The automatic submission can also be
performed with the help of a Python script that is available for download on the Anubis
web site.

While the Anubis service itself is not a product of the wombat project (the service
has in fact been online since March 2007), Anubis is undergoing constant enhancements.
This includes hardware upgrades that allow us to analyze more malware samples and
usability features that make the service more attractive to end users, and therefore in-
crease the amount of malware samples that are submitted. Other improvements include
integration with the wombat framework. The Anubis tool now presents the user with
Behavioral Analysis Reports that comply to the specification described in this document.
Additionally, Anubis now makes use of the Raw Behavior Specification and Behavioral
Profile formats, although reports in these formats are not currently accessible to users
of the web interface.

44

4.2 Malware Behavior Database

Finally, and perhaps more importantly, the Anubis web service provides a great oppor-
tunity for real-world testing and deployment of research developed within the wombat
project. As a first example of how this opportunity is being leveraged, work is currently
under way to integrate the scalable behavioral clustering described in Section 4.3 into
the Anubis web interface. This will provide a real world test of the scalability and effec-
tiveness of this novel tool for malware classification. At the same time, it will provide
users of the Anubis service with extremely useful information. In addition to the report
on the submitted malware’s behavior, the user will be presented with the cluster this
sample has been assigned to, and he will be able to browse the reports on other samples
in the cluster. An initial version of this functionality is planned to be put online in the
first months of 2009.

From the point of view of usability, several enhancements have been made. Behavioral
Analysis Reports are now made available in a number of formats, in addition to the native
XML. Namely, PDF, plain text, and MIME encoded HTML (MHT). There is also a
new advanced submission web page that permits the submission of zipped binaries and
additional files that are needed by the analysis subject. It also offers the choice between
getting the report displayed in the browser once the analysis is finished or receiving
an URL pointing to the report by email. Furthermore, Anubis gives a preliminary
estimation of how dangerous a binary is. This is illustrated by a traffic light sign,
the three different colors indicating how dangerous a binary is. Green means that the
binary is most likely not malicious, yellow stands for potentially dangerous and red
means that this binary is malicious. Finally, Anubis can now analyze malicious web
sites, by automatically visiting sites at submitted URLs with internet explorer.

4.2 Malware Behavior Database

The Malware Behavior Database is a database supporting large-scale storage of Behav-
ioral Profiles and Behavioral Analysis Reports generated by Anubis analysis in such a
way that they can be easily and efficiently searched. This database is currently under
development at the Technical University Vienna and Institut Eurecom. For example,
this database makes it possible to search for all malware samples that, during analysis,
created a file with a particular filename, or communicated with the IP address or domain
name of a known botnet C&C server. Moreover, the database will help in providing a
global view on the malware landscape. In particular, it will provide the basis for mining
of meaningful information out of the wealth of data gathered by Anubis analysis.

We will describe the Malware Behavior Database, toghether with the insight it will
provide us on the behavior of malicious software, in wombat Deliverable D16 (D4.2)

FP7-ICT-216026-WOMBAT 45

4 Behavioral Malware Analysis

“Analysis report of behavioral features”.

4.3 Malware Clustering

Results from this section have been accepted for publication in the Symposium on Net-
work and Distributed System Security (NDSS) [15]

Automating the analysis of the behavior of a single malware sample is a first step,
but it is not sufficient. The reason is that the analyst is now facing thousands of reports
every day that need to be examined. Thus, there is a need to prioritize these reports
and guide an analyst in the selection of those samples that require most attention. One
approach to process reports is to cluster them into sets of malware that exhibit similar
behavior. The ability to automatically and effectively cluster analyzed malware samples
into families with similar characteristics is beneficial for the following reasons: First,
every time a new malware sample is found in the wild, an analyst can quickly determine
whether it is a new malware instance or a variant of a well-known family. Moreover,
given sets of malware samples that belong to different malware families, it becomes
significantly easier to derive generalized signatures, implement removal procedures, and
create new mitigation strategies that work for a whole class of programs.

Grouping individual malware samples into malware families is not a new idea, and
clustering and classification methods have already been proposed previously [13, 31,
47, 51, 39]. These approaches, however, generally do not scale well and are too slow for
the size of malware sets that anti-malware companies are confronted with. Moreover,
these techniques are imprecise, either because their notion of similarity is not tied to
a program’s actual behavior or because it does not capture a program’s behavior well
enough. Imprecise in this context either means putting samples of different types into
the same group or failing to recognize similar malware programs.

In this section, we present a novel clustering technique that scales well and produces
more precise results than previous approaches. This technique is based on analyzing
malware behavior. Unlike many previous systems that operate directly on low-level
data such as system call traces, our clustering technique takes as input the behavioral
profiles described in Section 3.3. This allows our system to recognize similar behaviors
among samples whose low-level traces appear very different. Furthermore, our system
is designed to be scalable, to be able to cluster large, real-world malware datasets such
as those gathered by the Anubis service, by SGNET, and by other malware collection
efforts within the wombat project.

Clustering a set of n points in a high-dimensional space is a computationally expensive

46 SEVENTH FRAMEWORK PROGRAMME

4.3 Malware Clustering

task. Most clustering algorithms require to compute the distances between all pairs of
points in the set. In this case, computational complexity is at least O(n2) evaluations
of the distance function, which is unacceptable for large data sets.

There exist algorithms, such as the k-means algorithm (Lloyd’s algorithm) [54], that
only compute the distance from the n points to k cluster centers, and repeat this compu-
tation for each of i iterations required to converge to a local optimum. The computational
complexity is, therefore, O(nki) evaluations of the distance functions. Unfortunately,
there are no guarantees that the value of i is small (in fact, the number of iterations
is super-polynomial in n in the worst-case [12]). Furthermore, the accuracy of k-means
is limited (the solution is only locally optimal), and the number of clusters k has to be
specified a priori.

In this work, we employ locality sensitive hashing (LSH), introduced by Indyk and
Motwani [40], to compute an approximate clustering of our data set that requires sig-
nificantly less than n2 distance computations. Our clustering algorithm takes as input
the set of malware samples A = a1, .., an, where ai ⊆ F , and F is the set of all features.
LSH algorithms have been proposed for metric spaces where the similarity between two
points is defined by one of a few simple functions, such as Jaccard index [18], or co-
sine similarity [22] In this work we employ the Jaccard index as a measure of similarity
between two samples a and b, defined as J(a, b) = |a ∩ b|/|a ∪ b|. A similarity value
of J(a, b) = 1 indicates that two samples have identical behavior. While other, more
complex similarity functions, such as normalized compression distance [13], may be more
accurate measures of the similarity between behavioral profiles, choosing this simple set
similarity measure allows our clustering approach to leverage LSH and to scale up to the
size of real-world malware collections.

We now describe how we map a behavioral profile into a set of features that are
suitable for LSH. Section 4.3.1 briefly explains the LSH algorithm. In Section 4.3.2, we
discuss how we can use the output of the LSH algorithm to compute an approximate,
hierarchical clustering of a set of malware samples. Finally, in Section 4.3.3 we discuss
the asymptotic performace of our approach.

Transforming Profiles into Features Sets Before we can run the clustering algorithm,
we have to transform each behavioral profile into a feature set. Informally, a feature is a
behavioral characteristic of a sample, such as “file xy was created.” We use the following
algorithm to transform a behavioral profile P = (O,OP,Γ,∆, CV,CL,ΘCmpV alue,ΘCmpLabel)
into a set of features: For each object oi ∈ O, and for each assigned opj ∈ OP |(oi, a) ∈ Γ,
create a feature:

fij = ”op|” + name(oi) + ”|” + name(opj)

FP7-ICT-216026-WOMBAT 47

4 Behavioral Malware Analysis

where name() is a function that returns the name of an OS object, operation, or com-
parison as string, quotes (”) denote a literal string, and + concatenates two strings.
Moreover, for each dependence δi ∈ ∆ = ((oi1, opi1), (oi2, opi2)), we create a feature:

fi = ”dep|” + name(oi1) + ”|” + name(opi1)+

+”→ ” + name(oi2) + ”|” + name(oi2)

For each label-value comparison θi ∈ ΘCmpV alue = (cmp, o), we create a feature:

fi = ”cmp value|” + name(o) + ”|” + name(cmp)

For each label-label comparison θi ∈ ΘCmpLabel = (cmp, o1, o2), we create a feature:

fi = ”cmp label|” + name(o1)+

+”→ ” + name(o2) + ”|” + name(cmp)

The output of this transformation step is a set of features that captures the behavioral
characteristics of a sample in a form that is suitable for the clustering algorithm. We
then discard all features of a sample that are unique with regards to all other samples
in the data set. That is, we do not consider a feature for clustering when it does not
occur in at least one other sample’s feature set. This is because a unique feature of a
sample does not help us to find other samples that behave similarly (i.e., the information
gain of this feature is very low). Moreover, our experiments show that the robustness of
our clustering to the selection of the threshold t improves when we discard such unique
outliers.

4.3.1 Locality Sensitive Hashing (LSH)

The idea behind locality sensitive hashing is to hash a set A of points in such a way that
near (or similar) points have a much higher collision probability than points that are
distant. We achieve this by employing a family H of hash functions such that Pr[h(a) =
h(b)] = similarity(a, b), for a, b points in our feature space, and h chosen uniformly at
random from H. By defining the locality sensitive hash of a as lsh(a) = h1(a), .., hk(a),
with k hash functions chosen independently and uniformly at random from H, we then
have Pr[lsh(a) = lsh(b)] = similarity(a, b)k.

In the case of sets for which the Jaccard index is used as similarity measure, a family
of hash functions H with the desired property has been introduced in [18]. A hash in
H imposes a random order on the set of all features. The hash value for a feature set
a is then determined by the index of the smallest element of a according to this order.

48 SEVENTH FRAMEWORK PROGRAMME

4.3 Malware Clustering

Since it is inefficient to generate truly random permutations, random linear functions in
the form h(x) = c1x + c2 mod P are used instead [36], with P a prime number larger
than the total number of features in F .

Given a similarity threshold t, we employ the LSH algorithm to compute a set S
which approximates the set T of all near pairs in A × A, defined as T = {(a, b)|a, b ∈
A, J(a, b) > t}. Given the threshold t, we first choose the number k of hash functions in
each LSH hash, and the number of iterations l. Furthermore, we initialize the set S of
candidate near pairs to the empty set. Then, for each iteration, the following steps are
performed:

� choose k hash functions h1, .., hk at random from H

� compute lsh(a) = h1(a), .., hk(a) for each a ∈ A

� sort the samples based on their LSH hashes

� add all pairs of samples with identical LSH hashes to S

LSH Parameters. For a given similarity threshold t, we must choose appropriate
values of k and l. For a pair p = (a, b) such that similarity(a, b) = v, we have Pr[p ∈
S] = 1 − (1 − vk)l = g(v). Thus, given t, we can choose k and l such that g(t) is close
to 1 and g(t/(1 + ε)) is small, for any ε > 0. That is, t is the only parameter that needs
to be chosen. For a threshold value of t = 0.7 we selected k = 10 and l = 90.

4.3.2 Hierarchical Clustering

The result of the locality sensitive hashing step is a set S, which is an approximation
of the true set of all near pairs T = {(a, b)|a, b ∈ A, J(a, b) > t}. Because LSH only
computes an approximation, S might contain pairs of samples that are not similar. To
remove those, for each pair a, b in S, we compute the similarity J(a, b) and discard
the pair if J(a, b) < t. Then, we sort the remaining pairs by similarity. This allows
to produce an approximate, single-linkage hierarchical clustering [53] of A, up to the
threshold value t. Single-linkage clustering allows us to simply iterate over the sorted
list of pairs to produce an agglomerative clustering. We stop the clustering when there
are no more near pairs left.

In some cases, one would like to continue the hierarchical clustering process until
all elements are merged into a single cluster. However, all subsequent clustering steps
would require to merge two clusters that have a similarity value below t. Of course, this
information is not readily available. The reason is that the LSH algorithm avoids the

FP7-ICT-216026-WOMBAT 49

4 Behavioral Malware Analysis

calculation of distances between elements that have a similarity value below t. To solve
this problem and to obtain an exhaustive, hierarchical clustering, we use the following
technique: We choose a representative element for each cluster, calculate the distances
between all representatives, and then perform exact, hierarchical clustering between
these elements. We create the representative element r of a cluster C by adding all
features to rC that exist in at least half of all the feature sets in C. Of course, exact
hierarchical clustering has a complexity of O(n2). This is acceptable because the number
of representatives is very low.

4.3.3 Asymptotic Performance

The LSH scheme described previously requires the computation of nkl hashes. The
computational complexity of each hash of a sample a is O(|a|). Therefore, the overall
complexity of the hashing step is O(ndkl), where d = avg(|a|), a ∈ A, is the aver-
age number of features in a sample. After hashing, |S| similarity functions must be
computed.

The set S is an approximation of the true set of all near pairs T . We may, therefore,
have false negatives (T − S), and false positives (S − T). We have |S| ≤ |T |+ |S − T |.
Clearly, |T | < nc, where c is the maximum cluster size for the given threshold. Unfortu-
nately, we cannot provide a theoretical bound for the fraction of false positives |S−T |/|S|
without making some assumptions on the distribution of the distances between pairs in
A. However, in practice, the value is small (below 0.19 in our experiments). Therefore,
the number of similarity computations is limited by the size of |T | and the complexity
of O(nc). Since a single similarity computation is O(d), computational complexity of
this step is O(ncd). Finally, the pairs in S need to be sorted to perform hierarchical
clustering. This step is O(nc log(nc)).

For large data sets, the cost of the similarity computations, which is O(ncd), domi-
nates. Note that while in practice nc is significantly smaller than n2, the asymptotic
performance has not improved. The reason is that c can still be O(n) in the worst case.
Consider for instance a trivial dataset where all n samples are identical. Clearly, for
such a dataset we would have a single cluster of size n (and therefore c = n) for any t.
More generally, if the threshold value t is too high it may lead to most samples being
concentrated in a few large clusters. However, for reasonable values of t, the performance
gained by using LSH is sufficient to allow us to cluster large, real-world malware data
sets.

For extremely large datasets, on the other hand, more aggressive approximate clus-
tering techniques may need to be employed (at the cost of some accuracy), such as the
ones described in [36]. In [36], LSH is used to generate the set of approximate near pairs

50 SEVENTH FRAMEWORK PROGRAMME

4.3 Malware Clustering

|S|, but there are no similarity computations. A pair (a, b) ∈ S is not verified to be near
by computing similarity(a, b), but by using a faster approximate method based on the
already computed hashes.

FP7-ICT-216026-WOMBAT 51

5 Behavioral Malware Detection

5.1 System call anomaly detection using sequence and
parameters

Results from this section have been partially published in ACM Operating Systems Re-
view ad F. Maggi, S. Zanero, V. Iozzo: “Seeing the Invisible - Forensic Uses of Anomaly
Detection and Machine Learning”

Most of the anomalous actions that an aggressor would try to perform on a system
through uploaded malware (e.g., accessing the host file system, sending or receiving
packets over the network, executing other programs on the host, etc.) require the use of
one or more system calls. Thus, it is reasonable to monitor such calls in order to analyze
the behavior of a process. In particular, we propose to use anomaly detection techniques
to flag anomalous or suspicious executions and record them for review in order to create
a trail (i.e., the alert logs) that would otherwise be lost. We use S2A2DE, a tool which
we developed in [55, 72], which makes use of both the sequence and the content of system
calls to detect anomalies. This has been shown to be more efficient than using sequences
of syscalls only, something which has been studied for a long time since the seminal work
[26].

S2A2DE is a next-generation evolution of the seminal works in the field by Vigna et
al. [50, 57], and uses a Markovian model of the sequence (as in, e.g., [48]) complemented
with an analysis of the arguments of the system calls to detect intrusions - and malware
activity.

The architecture of S2A2DE is shown in Figure 5.1. Each execution of an application
is modeled as a sequence of system calls, S = [s1, s2, s3, . . .], logged by the operating
system auditing facilities. Each system call si is characterized by a type (e.g. read,
write, exec, etc.), a list of arguments (e.g., the path of the file to be opened by open),
a return value, and a timestamp. The return value is not taken into account, neither the
absolute timestamp (the sequence of the system calls is considered instead).

S2A2DE must be trained in order to “learn” a model of the normal behavior of the
monitored applications. During this phase, the system builds a distinct profile for each
application (e.g. sendmail, telnetd, etc.). A two-phase process of machine learning is

52

5.1 System call anomaly detection using sequence and parameters

. . .exit

<args> (arg1, arg2, ..., argN)execve

ArgModelNArgModel2ArgModel1

C
o
m
p
re
s
s
o
r
(c
lu
st
er
in
g
)

<args> (arg1, arg2, ..., argN)<syscall>
ArgModel1 ArgModel2 ArgModelN

.

C
lu
s
te
rM
a
n
a
g
e
r

O
p
en
B
S
M
 a
u
d
it
 t
ra
il
s ...

...

In
p
u
tM
a
n
a
g
e
r

BehaviorModeler

MarkovManager

clu
sters =

 m
o
d
el sta

tes

Alert

Manager
Detection

syslog/IDMEF

Figure 5.1: The architecture of our HIDS prototype

FP7-ICT-216026-WOMBAT 53

5 Behavioral Malware Detection

Table 5.1: Association of models to Syscall arguments in our prototype

Syscall Model used for the arguments

open pathname → Path Name
flags, mode → Discrete Numeric

execve filename → Path Name
argv → Execution Argument

setuid, setgid uid, gid → User/Group
setreuid, setregid ruid, euid → User/Group
setresuid, setresgid ruid, euid, suid → User/Group
symlink, link,rename oldpath,newpath → Path Name
mount source, target → Path Name

flags → Discrete Numeric
umount target,flags → Path Name
exit status → Discrete Numeric
chown path → Path Name
lchown group, owner → User/Group
chmod, mkdir path → Path Name
creat mode → Discrete Numeric
mknode pathname → Path Name

mode, dev → Discrete Numeric
unlink, rmdir pathname → Path Name

then applied to each type of system call separately. Firstly, a single-linkage, bottom-
up agglomerative hierarchical clustering algorithm [33] is used to find, for each type of
system call, sub-clusters of invocations with similar arguments. We are interested in
creating models on these clusters, and not on the general system call, in order to better
capture normality and deviations on a more compact input space. This is important
because some system calls, most notably open, are used in very different ways. Indeed,
open is probably the most used system call on UNIX-like systems, since it opens files
or devices in the file system creating a descriptor for further use. Only by careful
aggregation over its parameters (i.e., the file path, a set of flags indicating the type
of operation, and an opening mode) we can de-multiplex the general system call into
“sub-groups” that are specific to a single function. In order to do this, we must define
a way to measure “distance” among arguments, as we will show.

54 SEVENTH FRAMEWORK PROGRAMME

5.1 System call anomaly detection using sequence and parameters

Afterwards, the system builds models of the parameters inside each cluster. The
type of models, as well as the type of distances used for agglomeration, depend on
the type of parameter, as shown in Table 5.1. In our framework, the distance among
two system calls, si and sj , is the sum of distances between corresponding arguments
D(si, sj) =

∑
a∈As

dmodel(a)(sai , s
a
j) (being As the shared set of system call arguments).

For each couple of corresponding arguments a we compute the distance as:

da =
{
K(·) + α(·)δ(·) if the elements are different
0 otherwise

(5.1)

where K(·) is a fixed quantity which creates a “step” between different elements, while the
second term is the real distance between the arguments δ(·), normalized by a parameter
α(·). We use “(·)” to denote that such variables are parametric w.r.t. the type of
argument.

Since hierarchical clustering does not offer a concept analogous to the “centroid” of
partitioning algorithms that can be used for classifying new inputs, we also created,
for each cluster, a stochastic model that can be used to classify further inputs. These
models generate a probability density function that can be used to state the probability
with which the input belongs to the model. It is not strictly necessary for such model,
or its distance or probability functions, to be the same as the distance functions that
are used for clustering purposes.

As can be seen in Table 5.1, at least 4 different types of arguments are passed to
system calls: path names and file names, discrete numeric values, arguments passed to
programs for execution, users and group identifiers (UIDs and GIDs).

Path names and file names are very frequently used in system calls. They are complex
structures, rich of useful information, and therefore difficult to model properly. For the
clustering phase, we chose to use a very simple model, the directory tree depth. This
is easy to compute, and experimentally leads to fairly good results. Thus, in Equation
5.1 we set δa to be the difference in depth. The stochastic model for path names is a
probabilistic tree which contains all the directories involved with a probability weight
for each. Filenames are often too variable to be considered, so if the leaves of the tree
are too different we simply ignore them for that specific model.

Discrete numeric values such as flags, opening modes, etc. are usually chosen from a
limited set. Therefore we can store all of them along with a discrete probability. Since
in this case two values can only be “equal” or “different”, we set up a binary distance
model for clustering, where the distance between x and y is:

da =
{
Kdisc if x 6= y
0 if x = y

FP7-ICT-216026-WOMBAT 55

5 Behavioral Malware Detection

and Kdisc, as usual, is a configuration parameter. In this case, the generation of the
probability density function is straightforward.

We also noticed that execution arguments (i.e. the arguments passed to the execve
syscall) are difficult to model, but we found the length to be an extremely effective
indicator of similarity of use. Therefore we set up a binary distance model, where the
distance between x and y is:

da =
{
Karg if |x| 6= |y|
0 if |x| = |y|

denoting with |x| the length of x and with Karg a configuration parameter. In this way,
arguments with the same length are clustered together. For each cluster, we compute
the minimum and maximum value of the length of arguments. Fusion of models and
incorporation of new elements are straightforward. The probability for a new input to
belong to the model is 1 if its length belongs to the interval, and 0 otherwise.

We developed an ad-hoc model for user and group identifiers. These discrete values
have three different meanings: UID 0 is reserved to the super-user, low values usually are
for system special users, while real users have UIDs and GIDs above a threshold (usually
1000). So, we divided the input space in these three groups, and computed the distance
for clustering using the following formula:

da =
{
Kuid if belonging to different groups
0 if belonging to the same group

and Kuid, as usual, is a user-defined parameter. Since UIDs are limited in number, they
are preserved for testing, without associating a discrete probability to them. Fusion
of models and incorporation of new elements are straightforward. The probability for
a new input to belong to the model is 1 if the UID belongs to the learned set, and 0
otherwise.

In order to take into account the execution context of each system call, we use a
Markov chain (i.e. a first order Markov model) to represent the program flow. The
model states represent the system calls, or better they represent the various clusters of
each system call, as detected during the clustering process. For instance, if we detected
three clusters in the open syscall, and two in the execve syscall, then the model will
have five states: open1, open2, open3, execve1, execve2. Each transition will reflect
the probability of passing from one of these groups to another through the program.
A sample of such a model is shown in Figure 5.2. This approach was investigated in
former literature [20, 21, 37, 63, 44, 48], but never in conjunction with the handling of
parameters and with a clustering approach.

56 SEVENTH FRAMEWORK PROGRAMME

5.1 System call anomaly detection using sequence and parameters

open24execve0

0.50

0.33

0.33

0.33

0.50

setuid0rename0

open3 exit0

open45open12

Figure 5.2: A sample of the resulting Markov model with the clusters of system calls as
states

During training, each execution of the program in the training set is considered as
a sequence of observations. Using the output of the clustering process, each syscall is
classified into the correct cluster, by computing the probability value for each model
and choosing the cluster whose models give out the maximum composite probability
along all known models: max(

∏
i∈M Pi). The probabilities of the Markov model are

then straightforward to compute.

Since training should happen, ideally, on the machine which will be monitored, it is
important to notice that the prototype is resistant to the presence of a limited number
of outliers (e.g. abruptly terminated executions or attacks) in the training set, because
the resulting transition probabilities will drop near zero. For the same reason, it is
also resistant to the presence of any cluster of anomalous invocations created by the
clustering phase. Therefore, the presence of a minority of attacks in the training set will
not adversely affect the learning phase, which in turn does not require an attack-free
training set, and thus it can be performed on the deployment machine.

During the detection phase, each system call is considered in the context of the process.
The cluster models are once again used to classify each syscall into the correct cluster:
the probability value for each model is computed and the stored cluster whose models
give out the maximum composite probability (Pc = max(

∏
i∈M Pi)) is chosen as the

“system call class”. Three distinct probabilities can be taken into account in order to
build anomaly thresholds:

FP7-ICT-216026-WOMBAT 57

5 Behavioral Malware Detection

� Ps, the probability of the execution sequence to fit the Markov model up to now;

� Pc, the probability of the system call to belong to the best-matching cluster;

� Pm, the latest transition probability in the Markov model.

We fuse the last two into a probability value of the single syscall, Pp = Pc · Pm.
A second, separate value for the sequence probability Ps is kept. Using the training
data, appropriate threshold values are calculated by considering the lowest probability
over all the dataset for that single program (for both Ps and Pp). We then choose
a sensitivity parameter for scaling such value, giving the final anomaly threshold. A
process is flagged as malicious if either Ps or Pp are lower than the anomaly threshold.
For avoiding a Ps which quickly decreases to zero for long sequences, we introduced a
“scaling” of the probability calculation based on the geometric mean, by introducing a

sort of “forgetting factor”: Ps(l) = 2l

√∏l
i=1 Pp(i)i (where l is the sequence length). In

this case, we demonstrated [55] that P [liml→+∞ Ps(l) = 0] = 1, but it converges more
slowly. Experimentally, this latter scaling function leads to much better results in terms
of false positive rate.

One of the reasons why this type of detection is deemed useful in the context of
WOMBAT is that, nowadays, skilled attackers are wary of writing anything on the hard
drive of an attacked machine. Thus, if we wish to preserve malware samples, we need
to take into account in-memory execution, which is a widely known and used “definitive
anti-forensic” [28, 17, 34] technique.

There are two wide classes of anti-forensics techniques: transient techniques make the
acquired evidence difficult to analyze with a specific tool or procedure, but not impossible
to analyze in general. Definitive anti-forensics techniques instead effectively deny once
and forever any access to the evidence. In this case, the evidence may be destroyed by
the attacker, or may simply not exist on the media. The final objective of anti-forensics
is to reduce the quantity and spoil the quality [32] of the evidence that can be retrieved.

Examples of transient anti-forensics techniques are the fuzzing and abuse of filesystems
in order to create malfunctions or to exploit vulnerabilities of the tools used by the ana-
lyst, or the use of log analysis tools vulnerabilities to hide or modify certain information
[27, 32]. In other cases, entire filesystems have been hidden inside the metadata of other
filesystems [32], but techniques have been developed to cope with such attempts [64].
Other examples are the use of steganography [45], or the modification of file metadata
in order to make filetype not discoverable. In these cases the evidence is not completely
unrecoverable, but it may escape any quick or superficial examination of the media: a
common problem today, where investigators are overwhelmed with cases and usually
undertrained, and therefore overly reliant on tools.

58 SEVENTH FRAMEWORK PROGRAMME

5.1 System call anomaly detection using sequence and parameters

Definitive anti-forensics, on the other hand, effectively denies access to the evidence.
The attackers may encrypt it, or securely delete it from filesystems (this process is some-
times called “counter-forensics”) with varying degrees of success [30, 29]. Access times
may be rearranged to alter the activity timeline that is usually exploited by analysts to
correlate events. The final anti-forensics methodology is not to leave a trail: for instance,
modern attack tools (commercial or open source) such as Metasploit [3], Mosdef or Core
IMPACT [24] focus on pivoting and in-memory injection of code: in this case, nothing or
almost nothing is written on disk, and therefore information on the attack will be lost as
soon as the system is powered down, which is usually standard operating procedure on
compromised machines. These techniques are also known as “disk-avoiding” procedures.

Memory dump and analysis operations have been advocated in response to this, and
tools are being built to cope with the complex tasks of reliable acquisition [19, 69] and
analysis [19, 67, 61] of a modern system’s memory. However, even if the memory can be
acquired and examined, if the injected process has already terminated, no trace of the
attack will be found: these techniques are much more useful against in-memory resident
backdoors and rootkits, which by definition are persistent. In order to detect in-memory
malicious code, we propose the use of S2A2DE.

As a proof of concept, we generated used two attacks on two console applications:
bsdtar and eject, on an Intel x86 machine running FreeBSD 6.2. These two applications
have been recently found to be vulnerable to two different buffer overflow vulnerabilities
that allow to execute arbitrary code. In the case of mcweject 0.9, the vulnerability [58]
is a very simple stack overflow, caused by improper bounds checking. By passing a long
argument on the command line, an aggressor can execute arbitrary code on the system
with root privileges. There is a public exploit for the vulnerability [35] which we modified
slightly to suit our purposes and execute our own payload. The attack against bsdtar is
based on a publicly disclosed vulnerability in the PAX handling functions of libarchive
2.2.3 and earlier [59], where a function in file archive read support format tar.c
does not properly compute the length of a buffer when processing a malformed PAX
archive extension header (i.e., it does not check the length of the header as stored
in a header field), resulting in a heap overflow which allows code injection through the
creation of a malformed PAX archive which is subsequently extracted by an unsuspecting
user on the target machine. In this case, we developed our own exploit, as none was
available online, probably due to the fact that this is a heap overflow and requires a
slightly more sophisticated exploitation vector. In particular, the heap overflow allows
to overwrite a pointer to a structure which contains a pointer to a function which is
called soon after the overflow. So, our exploit overwrites this pointer, redirecting it to
the injected buffer. In the buffer we craft a clone of the structure, which contains a
pointer to the shellcode in place of the correct function pointer.

FP7-ICT-216026-WOMBAT 59

5 Behavioral Malware Detection

Attacker Victim

(1) Exploit code + SELF payload
(2) SELF auto-loader + arbitrary ELF

SELF loader
ready

alignm.
envp str
argv str
Envp[]
Argv[]

alignm.
Argc

(3) arbitrary ELF response/output ELF's SP

V
uln. code's stack

Figure 5.3: An illustration of the in-memory execution technique we developed and used
for this work

We also developed a modified version of SELF [8], which we improved in order to
reliably run under FreeBSD 6.2 and ported to a form which could be executed through
code injection (i.e., to shellcode format). This tool implements a technique known as
“Userland Exec”: by overwriting the program headers of any statically linked ELF
binary, and by building a specially-crafted stack it allows an attacker to load and run
that ELF in the memory space of a target process without calling the kernel and, more
importantly, without leaving any trace on the hard disk of the attacked machine. This is
accomplished through a two-stage attack where a shellcode is injected in the vulnerable
program, and then retrieves a modified ELF from a remote machine, and subsequently
injects it into the memory space of the running target process, as shown schematically
in Figure 5.3. In our proof of concept installation, we obtained excellent results in terms
of detection, and further testing is ongoing.

S2A2DE is currently implemented in C. Both the clustering phase and the behavioral
analysis are multithreaded, and the results of both procedures are stored in a binary
format but can be dumped in XML for manual inspection, if needed. At runtime, the
prototype dinamically loads the program profiles it needs, and stores them in memory.
The prototype can send output to standard output, syslog facilities, and/or to log files
in IDMEF format.

We profiled the code with gprof and valgrind for CPU and memory requirements.
The throughput for the training phase varies between 6120 and 10228 syscalls per second.
The training phase is also memory consuming, with a worst-case peak during our tests
of about 700 MB. The performance observed in the detection phase varies between
12395 and 22266 syscalls/sec. Considering that the kernel of a typical machine running
services such as HTTP/FTP on average executes system calls in the order of thousands
per second (e.g., around 2000 system calls per second for wu-ftpd [57]), the overhead
introduced by S2A2DE is noticeable but does not severely impact system operations.

60 SEVENTH FRAMEWORK PROGRAMME

5.2 Malware Detection by Attributed-Automata

5.2 Malware Detection by Attributed-Automata

Results from this section have been submitted to the IEEE Symposium on Security and
Privacy (SSP’09).

This deliverable focuses on the possible specification languages for malware behav-
iors. Therefore, the detection process is not completely described in this document but
will be in the dedicated Deliverable “D16 (D4.2) Analysis report of behavioral features
(D4.2)”. However, since the abstract specification called the Abstract Malicious Be-
havioral Language (AMBL) from Section 3.2.2 is specifically designed for detection, the
global detection architecture is briefly introduce to show how the language is integrated
in the overall process.

Figure 5.4: Configuration and detection processes.

The main usage of the language is the description of the malicious behavioral sig-
natures which are defined by sub-grammars of this language. The original signature
generation is based on a tight analysis of innovative malware i.e. malware introducing
new malicious techniques unseen in the numerous variations from known strains. De-
termining whether the thousand of collected malware every day are new instances or
variants of well-known families can be addressed by clustering techniques as described in
Section 4.3. Once the new malware identified and their innovative behaviors described,
the resulting grammatical behavioral signatures are stored in a dedicated database used
to fed parallel parsing automata. When a given automaton reaches an accepting state,
the grammatical description has been successfully parsed and the corresponding behav-
ior has been detected. The ongoing process from signature generation to detection is
described in the Figure 5.4.

Parsing automata can only process data written in the same representation that the
grammars they parse. Translation from the raw collected traces into the abstract lan-
guage is thus required to feed detection as described once again in the Figure 5.4. The
translation process, as well as its initial configuration based the considered platforms

FP7-ICT-216026-WOMBAT 61

5 Behavioral Malware Detection

and languages, is wholly described in the Section 3.2.3. The resulting translation mech-
anism has been integrated in the detection architecture as pictured in Figure 5.5. In this
same Figure, it can be observed that the scheduled architecture will support translation
from executable trace collectors for PE Executables and script analyzers for Visual Basic
Scripts.

Figure 5.5: Multi-layered detector architecture.

5.3 Malware Slicing for Information Flow-based Detection

Recently, the malware writers’ focus has changed from the problem of distribution to
that of concealment. Currently, the predominant number of threats circling on com-
puter networks employ some means of binary concealment. Considering this trend, it
is surprizing to see that the vast number of intrusion detection system available on the
market are still mainly based on matching binary patterns inside a program image. Al-
though a rather intuitive and fast approach, its various shortcomings have been discussed
throughout this document.

62 SEVENTH FRAMEWORK PROGRAMME

5.3 Malware Slicing for Information Flow-based Detection

To battle this deficiency in signature matching, the research community has come up
with various attempts to detecting generic malicious behavior or finding known patterns
of malware actions inside unkonwn running executables [65, 23, 38]. Instead of focusing
on an executable’s image, this behaviour based detection mechanism is grounded on
monitoring a program’s actions (i.e. its system call invocations to create/modify files,
interact with remote hosts, modify the system environment, etc.) and blacklisting certain
(sets of) action sequences.

Unfortunately, previous approaches on this field have suffered from a number of short-
comings. Analogous to binary obfuscation, malware can generate code to invoke addi-
tional system calls generating noise or reorder the execution of certain actions to evade
detection through call signatures. Furthermore, certain malicious activities, such as the
propagation through mass-mailing a malware’s own binary image, are very hard to de-
tect on a system call basis. In the particular case of a mass-mailer, a system call monitor
would only see reading of a file while maintining a network connection to a remote host.
Distinguishing such activities from various benign programs’ like email or chat clients is
therefore particularily challenging.

Another possibility to attack pure system call based detection mechanisms are so-
called mimicry attacks [70]. In such an attack, the malware attempts to immitate a
benign program’s system call signature to evade detection or create a too high false
positive rate that renders the signature unusable.

To address the insufficiency of extracting binary characteristics and monitoring at
system call level to allow malware detection, we consider extending the detection schema
by two steps in this chapter. In a first step, we try to minimize the impact of random
system call noise by generating system call sequence signatures that contain only calls
mandatory for the action under observance (e.g. propagation). Then, we verify alerts
triggered by the system call signature in a second step.

During this verification step, our system tries to predict what data the allegedly de-
tected malware would have generated, provided the same input as processed by the
program under inspection (note that our system has full knowledge of data consumed
by a program as it monitors from a kernel-level). If the anticipated output and that
obtained through monitoring the binary share salient patterns, a clear indication of the
execution of the suspected malware is given and the system can issue appropriate actions.

5.3.1 Our approach

As briefly broached in the introductory text, our detection technique is a two-part pro-
cess. Firstly, we try to detect the immutable execution characteristics of a malware
(family) that our analysis shows to be mandatory for the successful execution of the

FP7-ICT-216026-WOMBAT 63

5 Behavioral Malware Detection

malware’s actions. In a second step, our scanner tries to predict system call arguments
of the candidate binary that are then compared to the actually observed ones to eliminate
false positive alerts.

This poses four basic challenges to our approach that we will discuss individually in
this section. Firstly, we will discuss how we generate system call signatures, followed by
an explanation of how our system monitors running executables to match the previously
generated signatures. Next, we will deal with the problem of extracting specific behavior
from a binary in order to be able to predict future system calls’ arguments. In the last
part, we will describe, how these extracted behavior profiles are used to verify alerts
raised by the system call signature matching.

System Call Signatures Extraction

To learn about a specific malware’s internal actions, we first execute a copy of the
malicious program inside an extended version of Anubis [14, 9], the enhanced version
of the Qemu [16] full system emulator already mentioned in a previous deliverable. We
monitor all accesses to Windows’ system interface, tainting memory areas and registers
containing data provided by the system kernel. Subsequently, we propagate taint labels
using four different heuristics:

� direct propagation: Taint destination registers, processor flags, and memory areas
touched by instructions using tainted sources,

� indirect propagation: Taint values that are read from memory using tainted address
values,

� conditional propagation: Taint register and memory initializations occurring within
a branch that was executed due to a tainted processor flag, and

� program propagation: Include each process in the taint analysis that is either
started by or consumes data from a process that contains tainted information.

Additionally to the propagation, we also log the current instruction pointer of code
that accesses tainted information. At the same time, we extract all instructions executed
by the binary, log the observed path/control flow through the binary’s image, and store
accesses to memory in order to facilitate later enhanced static analysis of the program,
even in the case of packed binaries.

Thus, in a later, offline analysis, we can see exactly, which initial system calls provided
information (from now referred to as taint sources) that has influence on subsequent sys-
tem call arguments (taint sinks). In cases where the binary modifies data before passing

64 SEVENTH FRAMEWORK PROGRAMME

5.3 Malware Slicing for Information Flow-based Detection

it to the kernel (as in the email propagation example above where such a modification
could manifest as a base64 encoding), we can also pinpoint exactly which instructions
account for this transformation.

Based on this taint propagation, we can then construct system call signatures. We
do this by inspecting all system calls sinking tainted data. For each such call, we can
recurse backwards on the associated taint labels to find the corresponding taint sources.
Although the mere fact of finding certain system calls in a chronological order does
not imply any enforced ordering in general, having a taint relation between the calls
does. This reasoning is sane, as the taint relation prescribes that the latter system call
consumes data provided by the former.

Often, we can repeat this recursion multiple times, as the taint source’s system call
typically is also a taint sink for another chain of taint relations. Therefore, we can
generate long chains of chronologic system calls that must occur for the initially inspected
call to happen. In a last step, we simplify the system call sequences by detecting and
eliminating system call cycles.

Again, consider the mass mailing worm example: When monitoring a call to a send
system call1 containing part the worm’s image, we expect to find taint labels associated
with the provided buffers. Typically, these labels will show a connection to one of the
Readfile or NtMapViewOfFile system calls. These calls, in turn, will yield a dependency
on a previous NtOpenFile or similar, creating a very specific chain of events that must
be observable.

Signature Matching

For the purpose of matching the signatures obtained throught the process described
above, we wrote a Windows XP kernel driver. Once installed, this driver hooks the
system service dispatch table, to be able to monitor all system calls invoked by user-
land programs.

The scanner has two primary objectives: Firstly, it keeps a log of all system calls
invoked by a program along with the respective call arguments. Secondly, it continously
matches sequence signatures on the call logs to find suspicious binaries. Whenever it
encouters a matching signature, all available information is passed to a user-land program
that which, in turn, tries to verify the alert as described in below sections.

1Send by itself cannot be monitored as system call in the Windows operating system. Instead, we
search for NtDeviceIoControlFile with a specific set of flags set.

FP7-ICT-216026-WOMBAT 65

5 Behavioral Malware Detection

Malware Slicing

In this chapter, we use the term malware or binary slicing to refer to the process of
extracting only a specific subset of actions from a typically much larger set of activities
performed by a (possibly malicious) binary.

Looking at actions usually performed by a virus, such slices could contain any of the
following:

� copy the program’s binary into a system directory,

� restart execution as different user or as Windows service,

� create (polymorphic / metamorphic) copies of itself,

� send the binary image to remote hosts using email, vulnerable remote services, etc.

For this project, we are particularly interested in actions that modify data provided
by the operating system in some way to then use it as (part of) an argument to another
system call. Considering the examples provided above, all four match this criteria since
either the binary’s current execution path, information about the location of system
directories, and access to the program image itself are all provided through a system
call.

Slice Extraction As a first step of the slicing procedure, we have to select an interesting
taint relation (i.e. a connection from a taint source to its sink). This is necessary, as
some system call sequences propagate kernel identifiers without representing an explicit
encoding algorithm (e.g. the use of a common socket handle between connect and send
calls).

After selecting a specific sinking taint label, our analysis tool automatically includes all
taint labels that sink in the same system call invocation (e.g. tainted length attributes for
a send system call) as well as all other sinking labels that are passed to other invocations
of the system call using the same handle (e.g. including all data sent using a common
socket handle).

In a next step, the algorithm recurses all selected source-sink chains, finding all initial
labels that are required to calculate the sinking labels’ values. Simultaneously, it collects
all intermediary instructions encoding the value transformation, if such a transformation
is observed.

Slice Containment Clearly, only including instructions that touch tainted data is not
sufficient to extract an algorithm from the analyzed binary. For one thing, it is very

66 SEVENTH FRAMEWORK PROGRAMME

5.3 Malware Slicing for Information Flow-based Detection

unlikely that all arguments of a system call have associated taint information. This is
especially true for flag parameters that are usually immediate values pushed onto the
stack just before the system call invocation or string parameters that are only partly
made up from tainted characters.

For another thing, indirect taint propagation often requires memory or register content
that need neither have a close spatio nor temporal relation with instructions accessing
tainted information.

In order to produce self-contained code slices, we implemented a slicing algorithm
similar to one described in [73]. Initial tests showed that due to the complexity of most
malware samples, it was infeasible to create and analyze complete procedure-dependency
graphs. We therefore decided to implement, what Zhang et. Al. describe as no prepro-
cessing without caching algorithm.

Our algorithm starts at the latest system call invocation selected during the initial
step of the slicing process. For each selected system call, we provide the algorithm with
the function signature, so it can insert the adequate number of initial elements into
the set of undefined dependencies. It then uses the previously observed control flow to
step backwards through the binary. Each single instruction is disassembled and in case
it fulfills an undefined dependency, it is added to the slice, along with its respective
new dependencies. All other instructions are replaced by equally sized NOP instruction
sledges to fill the gaps and maintain correctness of relative jumps.

To resolve dependencies that cannot be decided with pure static analysis, we use
the memory access logs produced during the emulation. For each such memory-read
dependency, the access logs are traversed to find the previous write having the same
memory address, tagging the corresponding instruction. As soon as the algorithm tra-
verses previously tagged instructions, it adds them to the slice along with their respective
dependencies. All memory accesses that do not have such previous writes (e.g. because
they are accesses to statically initialized data segments or BSS sections) are treated
specially. We will deal with this situation in more detail in a later section.

Each time, the control flow recurses into a subfunction (regardless, if the call target
is a system call or standard function), the algorithm analyzes the subcall and includes
it, if one of the following criteria is fulfilled:

� the analysis has an unfulfilled dependency for register eax2 before stepping back
into the function,

� the called function (or any subfunction called during its execution) contains tagged
instructions to fulfill a later memory read, or

2All standard compilers currently use register eax to pass the function result to the calling code.

FP7-ICT-216026-WOMBAT 67

5 Behavioral Malware Detection

� a later invocation of the same call was included in the slice previously (e.g. when
analyzing calls inside a loop).

Otherwise, the call instruction and all associated parameter pushes are replaced by NOP
instructions.

As soon as the function detects that it reaches the first instruction of the analyzed
function3, we employ static analysis of the function body to find the number of parame-
ters required by the function. This analysis can be improved throught the information of
currently undefined dependencies, having a positive offset to one of the stack registers.
Using this information, we can recurse into the caller and restart the analysis process at
the position of the subfunction call.

Whenever we detect a function beginning whose caller is not yet part of the slice,
we analyze the set of undefined dependencies and search for tagged instructions that
are not yet included in the slice. If these sets do not contain any elements and all
initially selected calls to taint-sinking system calls have been included, we can stop the
slicing process. This is because, at this point, the slice is self-contained4, embodies all
interesting actions, and we can use the function call as starting point to the slice.

Currently, our prototype binary slicer is able to handle machine code generated from
standard C and C++ code as well as human written/optimized assembler code. Intu-
itively, we expected to get small slices since programmers often encapsulate basic actions
(e.g. propagation through email, manifest inside the operating system, etc.) in small
units or functions. Our experiments quickly proofed this assumption to be correct, allow-
ing our prototype to produce working, self-contained slices in a matter of a few seconds
in most cases.

For malware that use very long execution traces to accomplish certain actions, we are
also able to successfully create slices in matters of minutes. But we leave it as a matter
for future work to implement adequate caching strategies to reduce this overhead (note:
Although it is desirable to have the slicing process as performant as possible, we typically
have to run the algorithm only once per action and malware family to create a signature.
Thus, we consider even larger delays acceptable).

Slice Retention To store a generated slice, the main function (i.e. the function con-
taining the entry point) and all functions called directly or indirectly by it are embedded
inside a Microsoft Windows DLL. All internal function calls are patched to match the
correct location inside the library. The main function’s location is exported and is thus
the only callable entry point from outside the slice.

3We observe this by a sudden change of instruction address, followed by a call instruction.
4Here, self-contained denotes that all registers, flags, and memory values will be set before being read.

68 SEVENTH FRAMEWORK PROGRAMME

5.3 Malware Slicing for Information Flow-based Detection

To facilitate later replaying and sandboxing of the slice code, all calls to system calls
are replaced with calls to a special function block. In this block, the slice instead calls
a function it looks up in a call table, similar to Windows’ system service dispatch table.
Prior to invoking the slice, this table must be set up by the environment to contain a
function pointer for each invokable system call. This facilitates passing the same data
to the slice as previously consumed by the program under inspection. Similarly, all API
functions (e.g. calls to malloc) recognized during the slicing process are also replaced
with a callback to make the generated code smaller and more stable.

The DLL also contains another externally callable function. This second function
can be used to query the slice about required, externally defined memory areas. Such
dependencies are typically generated when accessing BSS sections (as mentioned above)
and need to be set up correctly before calling the slice’s entry point.

In an initial attempt, we considered letting the slice set up all BSS sections using
the values observed during the malware emulation. Although this is a feasible approach,
various observations made on real malware lead us to not do this for the following reason:
Often, viruses and worms use static BSS data as key for various operations like creating
files or accessing Windows registry keys. As these values are located at fixed addresses
inside the binary image, this provides malware authors with a trivial means to morph
the actions of the program, by simply overwriting these values before propagation.

Thus, we decided to compel the environment calling our sliced algorithm to first query
the current values of these memory addresses from the binary the slice is supposed to be
compared to. The queried values are then set up accordingly before invoking the slice’s
main routine.

As a positive side effect, this even allows us to use fewer, generic signatures to detect
a broad range of polymorphically modified variants of one malicious program.

Slice Replaying and Matching

Whenever the kernel-level system call monitor recognizes a signature inside the call
sequence of a running process, a user-land scanner is invoked to verify the alert. For
this purpose, the kernel informs the scanner, which running process triggered the alarm,
what signature was matched, along with the log of recently monitored system calls and
their respective arguments. The scanner can then load the slice associated with the
given signature and start the replaying process.

In a first step, the scanner loads the DLL into its address space and queries the slice
about required, preinitialized data sections. It then connects to the suspicious binary
to read out the required data sections and replicate the gathered data inside its own
address space. Next, the addresses of the internal callback functions, representing all

FP7-ICT-216026-WOMBAT 69

5 Behavioral Malware Detection

invokable system calls, are copied to the call table. Finally, the slice’s entry point is
invoked inside a separate thread. This allows the scanner to trap crashes and prevent
unexpected interactions with the scanner’s internal state.

The sliced algorithm will then start querying the scanner for available input using
the callback functions. During each such invocation, the scanner uses the system call
arguments provided by the kernel-land monitor to provide the slice with the same data
as the suspicious program. Whenever the slice invokes a system callback that passes
data to the scanner (e.g. in calls like send, WriteFile, or CreateProcess), the provided
arguments can be matched with data actually observed in the monitored program.

As soon as the generated and observed call arguments share sufficiently common parts,
the scanner can confirm the alert and inform the kernel to take adequate actions. If no
matches are observed over a certain number of system callbacks or the passed arguments
are sufficiently diverging, however, the replaying is terminated. Again, the scanner
informs the kernel who in turn continues to monitor the process for further possible
signature matches.

A third, rather common situation, causes the sliced algorithm to crash during execu-
tion. Typically, this happens when the scanner was unable to set up all preinitialized
data sections correctly, because the monitored program did not provide values at the
specified addresses or the inspected data did not have the expected type (e.g. the slice
expected a null-terminated string, but an integer was provided). This case is caught by
a set of signal handling functions inside the scanner, allowing it to terminate the replay
procedure securely. As this is also a clear indication for a mismatch between slice and
monitored program, the kernel is informed like in the case of mismatching system call
arguments.

5.3.2 Evasion Techniques

Malware detection and concealment is an ongoing arms race. Obviously, once our detec-
tion mechanism has established itself on major platforms, virus programmers will come
up with various techniques to circumvent detection. To get a feeling for the different
approaches of concealment, this section gives an overview of this, together with possible
solutions to stay one step ahead.

Hindering signature generation

A basic requirement of our system is that we can observe a sample’s malicious activities
inside our system emulator. Furthermore, we require to find tainted chains between data
sources and the corresponding sinks. If a malware accomplishes to circumvent any of

70 SEVENTH FRAMEWORK PROGRAMME

5.3 Malware Slicing for Information Flow-based Detection

these two required steps, our system can neither generate system call signatures, nor
find a starting point for the slicing process.

To tackle the first obstacle, we leverage the fact that our system is based on an
unaccelerated version of Qemu. Since this is a system emulator (i.e. not a virtual
machine), it implies that certain trivial means of detecting the virtual environment (as
described in [66]) are not applicable. Furthermore, the emulation allows us to mimic
specific behaviors of a real computer, including CPU features, hardware identification,
and so on.

Finally, we have parallel ongoing projects working specifically on improving the stealth
of our system emulator. By introspecting system call invocations and data passed from
kernel- to user-land programs, we try to elude system fingerprinting usable for Qemu
detection.

For dealing with the second challenge, maintaining taint label propagation, we have
put a lot of effort into the taint propagation algorithm. As described in Section 5.3.1, we
implemented data and control dependent taint propagation and pursue a conservative
approach to circumvent the loss of taint information as much as possible. Surely, this
will require further work as soon as we observe threats in the wild targeting this area.

Hindering slice generation

Researchers have proposed various means to evade static analysis of machine or assem-
bly code [56]. As our slicing algorithm clearly relies on its aptitude to analyzing the
emulated code, this poses another possibility to circumvent our system from generating
the required slices.

As described in Section 5.3.1, we do not rely on pure static analysis, however. To
guarantee our algorithm being able to correctly analyze a program’s control flow, we store
the observed execution path during emulation. Furthermore, we can employ memory
access logs to resolve arbitrary access structures and have thus ensured def-use chains,
required for slicing.

Since control flow and def-use chains constitute the two main problems in static anal-
ysis, we are therefore confident to correctly handle almost any type of code.

Attacking the scanner

Our approach relies on running a piece of the malware inside our user-land scanner.
To fulfill its tasks (e.g. program inspection as described in Section 5.3.1), this scanner
program must run with the highest privileges available on the system.

FP7-ICT-216026-WOMBAT 71

5 Behavioral Malware Detection

Clearly, this gives malware writers the possibility to attack the scanner from inside
the generated code (e.g. by crashing its analysis and therefore hinder from reporting
its findings to the kernel). Another opportunity could be trying to run the malicious
activities from inside the scanner.

We argue that neither of these attacks can succeed for the following reasons: Firstly,
the slice can only contain instructions that were observed during the initial run of the
malware. Thus, any attack on the scanner must have had occurred during the emulation
also. As we run the inspected malware on the emulated system directly, the malware
can neither detect nor attack the scanner environment and any attempt to do so will
not find its way into the generated slice.

Secondly, we can use various techniques, such as multithreading and segmentation,
to keep the slice from accessing or altering internal memory structures of the scanner.
Lastly, the only way to access data or interact with the operating system is through the
callback functions provided by the scanner. Therefore, the system is able to detect and
prevent any attempt to perform malicious activities in the context of the scanner.

Mimicry attacks

A malware can imitate the actions observable from kernel level of a well-known benign
program. Such mimicry attacks, generate system call signatures that trigger very often
on the benign program, rendering generic system call signatures unusable.

Since we only use these signatures for a first level of detection, we argue that it is
highly unlikely that a malware author can generate code that mimics the behavior of
a benign program while still achieving the intended malicious behavior. Verifying all
alerts by replaying the generated slices will clearly eliminate the false positives while
still detecting malicious programs.

Changing encoding mechanism

Our system’s main focus lies on the detection of data input-output relations and the
intermediary encoding algorithm. As soon as a malware writer decides to implement a
new encoding format, our slices are rendered useless (for the new malware).

However, completely changing the encoding algorithm contained in a program requires
a lot of manual work, as this process can hardly be automated, if at all. Comparing
the time required for implementing a new encoding mechanism to the proces of fully
automated generation of malware slices, we clearly see higher ground for the detection
system. Eventually, this gives us a chance to win the arms race between malware con-
cealment and detection.

72 SEVENTH FRAMEWORK PROGRAMME

5.3 Malware Slicing for Information Flow-based Detection

Conclusion

Malware binary signatures are failing and current approaches to behavioral detection
have not yet provided an accurate replacement so far. In this section, we have proposed
an extension to the conventional malicious behavioral detection that uses program slicing
to extract data encoding algorithms. These algorithms can then be used to anticipate
detailed actions, like system calls and their precise arguments.

We leverage an enhanced version of the full system emulator Qemu with taint analysis
and record all input transforming instructions. These instructions are then extracted
into Microsoft Windows DLLs that comprise the malware’s actions. Furthermore, we
generate generic system call sequences invoked by a malware during its execution.

By monitoring unknown executables running on a live system, we can match the pre-
viously generated call sequences and invoke a second-level scanner as soon as a program
matches any of the sequences. This second stage then uses the encoding DLLs to trans-
form input previously consumed by the suspicious program into an expected output. If
the expected and effectively monitored arguments of subsequent system call invocations
share salient characteristics, we confirmed the suspicion and can take adequate actions.

FP7-ICT-216026-WOMBAT 73

Bibliography

[1] Anubis. http://anubis.iseclab.org/.

[2] Behavioral Analysis Report XML schema definition. http://anubis.iseclab.
org/xml_schema/.

[3] MAFIA: Metasploit anti forensics investigation arsenal. Available online at http:
//metasploit.com/projects/antiforensics/.

[4] Ntinternals - the undocumented functions microsoft windows nt/2k/xp/2003.

[5] pcap (format). http://imdc.datcat.org/format/1-002W-D=pcap (accessed on
20081203).

[6] Shelia. http://www.cs.vu.nl/~herbertb/misc/shelia/.

[7] VirusTotal. http://www.virustotal.com/.

[8] Advanced antiforensics – SELF. Available online at http://www.phrack.org/
issues.html?issue=63&id=11, 2005.

[9] ANUBIS. http://anubis.seclab.tuwien.ac.at, 2008.

[10] CWSandbox. http://www.cwsandbox.org/, 2008.

[11] Norman Sandbox. http://www.norman.com/microsites/nsic/, 2008.

[12] D. Arthur and S. Vassilvitskii. How slow is the k-means method? In SCG ’06:
Proceedings of the twenty-second annual symposium on Computational geometry,
pages 144–153, New York, NY, USA, 2006. ACM.

[13] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario.
Automated classification and analysis of internet malware. In Proceedings of the 10th
International Symposium on Recent Advances in Intrusion Detection (RAID’07),
September 2007.

74

http://anubis.iseclab.org/
http://anubis.iseclab.org/xml_schema/
http://anubis.iseclab.org/xml_schema/
http://metasploit.com/projects/antiforensics/
http://metasploit.com/projects/antiforensics/
http://imdc.datcat.org/format/1-002W-D=pcap
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.virustotal.com/
http://www.phrack.org/issues.html?issue=63&id=11
http://www.phrack.org/issues.html?issue=63&id=11
http://anubis.seclab.tuwien.ac.at
http://www.cwsandbox.org/
http://www.norman.com/microsites/nsic/

Bibliography

[14] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for Analyzing Malware.
In 15th European Institute for Computer Antivirus Research (EICAR 2006) Annual
Conference, April 2006.

[15] U. Bayer, P. Milani Comparetti, C. Kruegel, and E. Kirda. Scalable, Behavior-
Based Malware Clustering. In 16th Symposium on Network and Distributed System
Security (NDSS) (to appear), 2009.

[16] F. Bellard. Qemu, a Fast and Portable Dynamic Translator. In Usenix Annual
Technical Conference, 2005.

[17] H. Berghel. Hiding data, forensics, and anti-forensics. Commun. ACM, 50(4):15–20,
2007.

[18] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering
of the web. Comput. Netw. ISDN Syst., 29(8-13):1157–1166, 1997.

[19] M. Burdach. In-memory forensics tools. Available online at http://forensic.
seccure.net/.

[20] J. B. D. Cabrera, L. Lewis, and R. Mehara. Detection and classification of intrusion
and faults using sequences of system calls. ACM SIGMOD Record, 30(4), 2001.

[21] G. Casas-Garriga, P. Dı́az, and J. Balcázar. ISSA: An integrated system for sequence
analysis. Technical Report DELIS-TR-0103, Universitat Paderborn, 2005.

[22] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing.
ACM, 2002.

[23] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-
aware malware detection. In SP ’05: Proceedings of the 2005 IEEE Symposium on
Security and Privacy, pages 32–46, Washington, DC, USA, 2005. IEEE Computer
Society.

[24] Core Security Technologies. CORE Impact. http://www.coresecurity.com/
?module=ContentMod&action=item&id=32.

[25] J. Crandall and F. Chong. Minos: Architectural support for software security
through control data integrity. In International Symposium on Microarchitecture,
2004.

FP7-ICT-216026-WOMBAT 75

http://forensic.seccure.net/
http://forensic.seccure.net/
http://www.coresecurity.com/?module=ContentMod&action=item&id=32
http://www.coresecurity.com/?module=ContentMod&action=item&id=32

Bibliography

[26] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for Unix
processes. In Proceedings of the 1996 IEEE Symposium on Security and Privacy,
Washington, DC, USA, 1996. IEEE Computer Society.

[27] J. Foster and V. Liu. Catch me if you can. . . . In Blackhat Briefings 2005, Las
Vegas, NV, August 2005.

[28] S. Garfinkel. Anti-Forensics: Techniques, Detection and Countermeasures. In Pro-
ceedings of the 2nd International Conference on i-Warfare and Security (ICIW),
pages 8–9, 2007.

[29] S. Garfinkel and A. Shelat. Remembrance of data passed: a study of disk sanitiza-
tion practices. Security & Privacy Magazine, IEEE, 1(1):17–27, 2003.

[30] M. Geiger. Evaluating Commercial Counter-Forensic Tools. In Proceedings of the
5th Annual Digital Forensic Research Workshop.

[31] M. Gheorghescu. An Automated Virus Classification System. In Virus Bulletin
conference, 2005.

[32] Grugq. The art of defiling: defeating forensic analysis. In Blackhat briefings 2005,
Las Vegas, NV, August 2005.

[33] J. Han and M. Kamber. Data Mining: concepts and techniques. Morgan-Kauffman,
2000.

[34] R. Harris. Arriving at an anti-forensics consensus: Examining how to define and
control the anti-forensics problem. In Proceedings of the 6th Annual Digital Forensic
Research Workshop (DFRWS ’06), volume 3 of Digital Investigation, pages 44–49,
September 2006.

[35] “harry”. Exploit for CVE-2007-1719. Available online at http://www.milw0rm.
com/exploits/3578.

[36] T. H. Haveliwala, A. Gionis, and P. Indyk. Scalable techniques for clustering the
web. In WebDB (Informal Proceedings), pages 129–134, 2000.

[37] S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of
system calls. Journal of Computer Security, 6:151–180, 1998.

[38] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of
system calls. pages 151–180, 1998.

76 SEVENTH FRAMEWORK PROGRAMME

http://www.milw0rm.com/exploits/3578
http://www.milw0rm.com/exploits/3578

Bibliography

[39] T. Holz, C. Willems, K. Rieck, P. Duessel, and P. Laskov. Learning and Classifi-
cation of Malware Behavior. In Fifth Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA 08), June 2008.

[40] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proc. of 30th STOC, pages 604–613, 1998.

[41] G. Jacob, H. Debar, and E. Filiol. Malware behavioral detection by attributed-
automata using abstraction from the platform and language. In Submitted to the
29th Symposium on Security and Privacy (SSP09), 2009.

[42] G. Jacob, E. Filiol, and H. Debar. Functional polymorphic engines: Formalisation,
implementation and use cases. Journal in Computer Virology, Published online,
coming in the EICAR’08 Special Issue, 2008.

[43] G. Jacob, E. Filiol, and H. Debar. Malwares as interactive machines: A new frame-
work for behavior modelling. Journal in Computer Virology, 4(3, Special TCV’07
Issue):235–250, 2008.

[44] S. Jha, K. Tan, and R. A. Maxion. Markov chains, classifiers, and intrusion detec-
tion. In Proceedings of the 14th IEEE Workshop on Computer Security Foundations
(CSFW’01), pages 206–219, Washington, DC, USA, June 2001. IEEE Computer So-
ciety.

[45] N. Johnson and S. Jajodia. Exploring steganography: Seeing the unseen. COM-
PUTER, 31(2):26–34, 1998.

[46] D. E. Knuth. Semantics of context-free grammars. Theory of Computing Systems,
2:127–145, 1968.

[47] J. Z. Kolter and M. A. Maloof. Learning to detect and classify malicious executables
in the wild. J. Mach. Learn. Res., 7:2721–2744, 2006.

[48] A. P. Kosoresow and S. A. Hofmeyr. Intrusion detection via system call traces.
IEEE Softw., 14(5):35–42, 1997.

[49] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection of anomalous
system call arguments. In Proceedings of the European Symposium on Research in
Computer Security, pages 326–343, 2003.

[50] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the Detection of Anomalous Sys-
tem Call Arguments. In Proceedings of the 2003 European Symposium on Research
in Computer Security, Gjvik, Norway, October 2003.

FP7-ICT-216026-WOMBAT 77

Bibliography

[51] T. Lee and J. J. Mody. Behavioral Classification. In EICAR Conference, 2006.

[52] C. Leita and M. Dacier. SGNET: a worldwide deployable framework to support
the analysis of malware threat models. In 7th European Dependable Computing
Conference (EDCC 2008), May 2008.

[53] L.Kaufman and P. Rousseeuw. Finding groups in data: An introduction to cluster
analysis. New York: John Wiley & Sons, 1990.

[54] J. B. Macqueen. Some methods of classification and analysis of multivariate obser-
vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, pages 281–297, 1967.

[55] F. Maggi, M. Matteucci, and S. Zanero. Detecting intrusions through system call se-
quence and argument analysis. IEEE Trans. on Dependable and Secure Computing,
2008. accepted for publication.

[56] A. Moser, C. Kruegel, and E. Kirda. Limits of Static Analysis for Malware Detec-
tion. In ACSAC, pages 421–430. IEEE Computer Society, 2007.

[57] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel. Anomalous system call detection.
ACM Trans. Inf. Syst. Secur., 9(1):61–93, 2006.

[58] National Vulnerability Database. CVE-2007-1719. Available online at http://nvd.
nist.gov/nvd.cfm?cvename=CVE-2007-1719.

[59] National Vulnerability Database. CVE-2007-3641. Available online at http://nvd.
nist.gov/nvd.cfm?cvename=CVE-2007-3641.

[60] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analy-
sis, and signature generation of exploits on commodity software. In 12th Annual
Network and Distributed System Security Symposium (NDSS), 2005.

[61] J. Nick L. Petroni, A. Walters, T. Fraser, and W. A. Arbaugh. Fatkit: A framework
for the extraction and analysis of digital forensic data from volatile system memory.
Digital Investigation, 3(4):197–210, december 2006.

[62] U. D. of Defense. ”Orange Book” - Trusted Computer System Evaluation Criteria.
Rainbow Series, 1983.

[63] D. Ourston, S. Matzner, W. Stump, and B. Hopkins. Applications of Hidden Markov
Models to detecting multi-stage network attacks. In Proceedings of the 36th Annual
Hawaii International Conference on System Sciences, page 334, 2003.

78 SEVENTH FRAMEWORK PROGRAMME

http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-1719
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-1719
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-3641
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-3641

Bibliography

[64] S. Piper, M. Davis, G. Manes, and S. Shenoi. Detecting Hidden Data in Ext2/Ext3
File Systems, volume 194 of IFIP International Federation for Information Process-
ing, chapter 20, pages 245–256. Springer, Boston, 2006.

[65] M. D. Preda, M. Christodorescu, S. Jha, and S. Debray. A semantics-based ap-
proach to malware detection. In POPL ’07: Proceedings of the 34th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
377–388, New York, NY, USA, 2007. ACM.

[66] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting system emulators. In ISC,
pages 1–18, 2007.

[67] S. Ring and E. Cole. Volatile Memory Computer Forensics to Detect Kernel
Level Compromise. In Proceedings of the 6th International Conference on Informa-
tion And Communications Security (ICICS 2004), Malaga, Spain, October 2004.
Springer.

[68] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Usenix Large
Installation System Administration Conference (LISA), 1999.

[69] B. Schatz. Bodysnatcher: Towards reliable volatile memory acquisition by software.
In Proceedings of the 7th Annual Digital Forensic Research Workshop (DFRWS ’07),
volume 4 of Digital Investigation, pages 126–134, September 2007.

[70] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems.
In CCS ’02: Proceedings of the 9th ACM conference on Computer and communica-
tions security, pages 255–264, New York, NY, USA, 2002. ACM.

[71] Wireshark: The World’s Most Popular Network Protocol Analyser. http://www.
wireshark.org.

[72] S. Zanero. Unsupervised Learning Algorithms for Intrusion Detection. PhD thesis,
Politecnico di Milano T.U., Milano, Italy, May 2006.

[73] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algorithms. In ICSE
’03: Proceedings of the 25th International Conference on Software Engineering,
pages 319–329, Washington, DC, USA, 2003. IEEE Computer Society.

FP7-ICT-216026-WOMBAT 79

http://www.wireshark.org
http://www.wireshark.org

	Introduction
	General design
	Malware Analysis Architecture
	Specification Languages
	A Flexible Language Framework
	Raw Behavior Specification
	Abstract Malicious Behavior Language
	Behavioral Profile
	Behavioral Analysis Report

	Usage Scenarios

	Specification Languages
	Raw Behavior Specification
	Design goals
	Language

	Abstract Malicious Behavioral Language
	Design goals
	Language
	Translation into the abstract specification

	Behavioral Profile
	Design goals
	Language

	Behavioral Analysis Report
	Design goals
	Language

	Behavioral Malware Analysis
	Malware Analysis Service
	Malware Behavior Database
	Malware Clustering
	Locality Sensitive Hashing (LSH)
	Hierarchical Clustering
	Asymptotic Performance

	Behavioral Malware Detection
	System call anomaly detection using sequence and parameters
	Malware Detection by Attributed-Automata
	Malware Slicing for Information Flow-based Detection
	Our approach
	Evasion Techniques

