
SEVENTH FRAMEWORK PROGRAMME
Theme ICT-1-1.4 (Secure, dependable and trusted infrastructures)

WORLDWIDE OBSERVATORY OF
MALICIOUS BEHAVIORS AND ATTACK THREATS

D12 (D5.1) Root Causes Analysis

Contract No. FP7-ICT-216026-WOMBAT

Workpackage WP5 - Threats Intelligence
Author Engin Kirda
Version 2.3
Date of delivery M21
Actual Date of Delivery M23
Dissemination level Public
Responsible Eurecom

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°216026.

SEVENTH FRAMEWORK PROGRAMME
Theme ICT-1-1.4 (Secure, dependable and trusted infrastructures)

The WOMBAT Consortium consists of:

France Telecom Project coordinator France
Institut Eurecom France
Technical University Vienna Austria
Politecnico di Milano Italy
Vrije Universiteit Amsterdam The Netherlands
Foundation for Research and Technology Greece
Hispasec Spain
Research and Academic Computer Network Poland
Symantec Ltd. Ireland
Institute for Infocomm Research Singapore

Contact information:
Dr. Marc Dacier
2229 Route des Cretes
06560 Sophia Antipolis
France

e-mail: Marc Dacier@symantec.com
Phone: +33 4 93 00 82 17

Marc_Dacier@symantec.com

Contents

1 Introduction 6

2 Technical Survey of Root Cause Analysis 8
2.1 Introduction . 8
2.2 Investigative and security data mining . 10

2.2.1 Security data mining . 10
2.2.2 Crime data mining . 11

2.3 Multicriteria decision analysis . 12
2.3.1 MCDA applied to security problems 12

2.4 Malicious traffic analysis . 13
2.4.1 Research on monitoring darknet traffic 13

2.5 Research on identifying malicious networks 15

3 Preliminary Results (Published Papers) 16
3.1 Actionable Knowledge Discovery for Threats Intelligence Support using a

Multi-Dimensional Data Mining Methodology 17
3.2 Addressing the Attack Attribution Problem using Knowledge Discovery

and Multi-criteria Fuzzy Decision-Making 18
3.3 Learning More About the Underground Economy: A Case-Study of Key-

loggers and Dropzones . 18
3.4 Assessing Cybercrime Through the Eyes of the WOMBAT 19
3.5 Honeypot traces forensics : the observation view point matters 19
3.6 FIRE: FInding Rogue nEtworks . 20
3.7 The WOMBAT Attack Attribution method: some results 20
3.8 The Symantec Public Report on Rogue Security Software 20

4 Conclusion 204

3

4

Abstract

This deliverable aims at giving an overview of existing techniques for root cause analysis,
and provides some preliminary results with respect to the root cause analysis work
performed in the project so far. The deliverable is mainly made up of 6 published
peer-reviewed papers and one technical report that has reached a wide-audience.

1 Introduction

Anecdotal evidence indicates the existence of Internet companies and service providers
that are under the influence of criminal organizations or knowingly tolerate their activ-
ities. Such companies typically control a number of networks with public IP addresses
that are abused for a wide range of malicious activities. One such activity is offering
bullet-proof hosting, a service that guarantees the availability of hosted resources even
when they are found to be malicious or illegal. These hosting services are often used
for phishing purposes or for serving exploits and malware. Other malicious activities
involve the sending of spam, hosting scam pages, or providing a repository for pirated
software and child pornography.

An example of a rogue network that offered bullet-proof hosting was the Russian
Business Network (RBN), who made headlines in late 2007 [8, 25]. Various sources
alleged that the RBN hosted web sites, exploits, and malware that were responsible
for a significant fraction of online scams and phishing. Once publicly exposed, the
RBN ceased its operations in St. Petersburg, only to relocate and resume activities in
different networks [17]. More recently, a report exposed Atrivo (Intercage), a US-based
company that is frequently considered to provide hosting for malicious content [1, 26].
Often referred to as the RBN of the United States, this company is considered to be
a “dedicated crime hosting firm whose customer base is composed almost, or perhaps
entirely, of criminal gangs” [21]. Again, public outcry quickly lead reputable ISPs to
severe their peering relationships with Atrivo, effectively cutting this rogue network off
the Internet.

Obviously, rogue networks and bullet-proof hosting providers are only one component
of the flourishing underground economy, which is responsible for many of the security
problems that Internet users face. Over the last few years, criminals have increasingly
leveraged botnets to hide their tracks [15]. Also, large-scale exploitation (such as the re-
cent wave of SQL injection attacks [19] that affected more than half a million web pages)
has lead to a situation where malicious content is unwittingly served by many benign,
compromised Internet hosts. These hosts are often combined into fast-flux networks to
increase the availability of malicious sites and executables [22].

Despite the large numbers of bot-infected machines and compromised servers, rogue
networks do play an important role in the underground economy. These networks often
house back-end machines (called motherships) that serve scam pages and exploits, while

6

bots and compromised web pages act as proxies. In this setup, criminals hide their
malicious servers behind a layer of bots that can be easily replaced when they are taken
down or cleaned up [23]. In addition, the content is located at a central location, which
eases management. For example, it is straightforward to check for multiple accesses from
the same IP. Often, subsequent accesses to malware pages are redirected to benign sites
(such as msn.com). This makes life more difficult for human malware analysts, but also
foils client-side honeypots that require multiple accesses to the same site to determine
malicious pages1.

Root cause analysis is a class of problem solving methods aimed at identifying the
root causes of problems or events. With respect to security and Internet-based attacks,
root cause analysis tries to identify which groups, organizations, or machines are behind
the attacks and what methods are being used by the attackers.

The partners of WOMBAT have been very active in WP5 which deals with threats
intelligence. That is, we have been developing novel techniques and methods to improve
the state of the art in root cause analysis research.

This deliverable aims at giving an overview of existing techniques for root cause anal-
ysis, and provides some preliminary results with respect to the root cause analysis work
performed in the project so far.

As research publications are not only the best approach to disseminate the results of a
research project, but also to validate the novelty and quality of the work thanks to peer
reviews and competitive selection by experts, we have been very active in publishing
papers on the techniques developed within WP5. To provide a good overview of the
preliminary results we have achieved, we have decided to include the project papers that
have been published in this area. Note that besides the Symantec threats report (that
has been published as a whitepaper that is available to a wide audience and received a
wide coverage in the media world-wide), all of the papers that we have listed have been
published at well-known, peer-reviewed workshops and conferences.

The deliverable is structured as follows. The next section provides a technical survey
of root cause analysis in the context of the WOMBAT project. More bibliographic
references and detailed revisions of the state of the art are offered in each paper appearing
in the following section. Section 3 first briefly discusses the papers that we have included
in the deliverable, and then offers a copy of each of them. Finally, Section 3 concludes
the deliverable.

1For performance reasons, the well-known honeyclient Capture-HPC [36] visits a set of pages in parallel
before checking for malicious system modifications. Once an unwanted modification is observed, all
pages in a set have to be individually re-visited a second time to determine the ones that are malicious.

FP7-ICT-216026-WOMBAT 7

msn.com

2 Technical Survey of Root Cause Analysis

2.1 Introduction

There is currently no universally agreed definition for “attack attribution” in the cyber
domain. If one looks at a general definition of the term attribution in a dictionary, one
will find something similar to: “to explain by indicating a cause” [Merriam-Webster].
However, we note that most previous work related to that field tend to use the term
“attribution” as a synonym for traceback, which consists in “determining the identity or
location of an attacker or an attacker’s intermediary” [48].

In the context of a cyber-attack, the obtained identity can refer to a person’s name,
an account, an alias, or similar information associated with a person or an organization.
The location may include physical (geographic) location, or any virtual address such
as an IP address or Ethernet address. In other words, (IP) traceback is a process that
begins with the defending computer and tries to recursively step backwards in the attack
path toward the attacker so as to identify her, and to subsequently enable appropriate
protection measures (or even counter-attack actions in some cases). The rationales for
developing such attribution techniques are mainly due to the untrusting nature of the
IP protocol, in which the source IP address is not authenticated and can thus be easily
spoofed. For this reason, most existing approaches dealing with IP traceback have been
tailored toward (D)DoS attack detection, or to some specific cases of targeted attacks
performed by a human attacker who uses stepping stones or intermediaries in order to
hide her true identity.

Some typical methods used for IP traceback include packet marking techniques (i.e.,
marking packets as they traverse routers through the Internet [35, 40, 6]), logging packets
or maintaining information on routers situated on the path between the attacker and the
defender [39], traceback of active attack flows (that is, by marking data flowing back to
the attacker, e.g., using packet watermarking techniques [45]), and reconfiguring network
paths during an attack (for instance with controlled flooding of links [10], to determine
how this flooding affects the attack stream). An extensive survey of attack attribution
techniques used in the context of IP traceback has been done by Wheeler and Larsen,
under the umbrella of the US Defense Technical Information Center [48].

We refer to “attack attribution” as something quite different from what is described

8

2.1 Introduction

here above, both in terms of techniques and objectives. Although tracing back to an
ordinary, isolated hacker is an important issue, we are primarily concerned by larger
scale attacks that could be mounted by criminal organizations, dissident groups, rogue
corporations, and profit-oriented underground organizations. In this context, we aim at
developing an effective and systematic method that can help security analysts to deter-
mine the root causes of global attack phenomena (which usually involves a large amount
of sources), and to easily derive their modus operandi. These phenomena can be observed
through many different means (e.g., honeypots, IDS’s, sandboxes, web crawlers, mal-
ware collecting systems, etc). In most cases, we believe that attack phenomena manifest
themselves through so-called “attack events”, which can be observed with well-placed
distributed sensors. Typical examples of attack phenomena that we want to identify can
go from malware families that propagate in the Internet through code injection attacks,
to zombie armies (or botnets) controlled by the same people and targeting machines in
the IP space to recruit new bots, or even to certain client-side threats such as rogue
software campaigns run by the same organization, which aims at deploying numerous
malicious websites (or compromising legitimate ones) in order to host and sell rogue
software.

Attack phenomena are often largely distributed in the Internet, and their lifetime can
vary from only a few days to several months. They typically involve a considerable
amount of features interacting sometimes in a non-obvious way, which makes them in-
herently complex to identify. That is, due to their changing nature, the attribution of
distinct events having the same root phenomenon can be a challenging task, since several
attack features may evolve over time. To address this problem, we developed a method
that is based on a novel combination of a graph-based knowledge discovery technique
with a multi-criteria decision analysis process.

As noted by Tim Bass in [5], “Next-generation cyberspace intrusion detection (ID)
systems will require the fusion of data from myriad heterogeneous distributed network
sensors to effectively create cyberspace situational awareness [...] Multisensor data fusion
is a multifaceted engineering approach requiring the integration of numerous diverse
disciplines such as statistics, artificial intelligence, signal processing, pattern recognition,
cognitive theory, detection theory, and decision theory. The art and science of data fusion
is directly applicable in cyberspace for intrusion and attack detection”. Not surprisingly,
our methods are at the crossroads of several active research domains, which we can try
to categorize as follows:

i) investigative and security data mining, i.e., knowledge discovery and data mining
(KDD) techniques that are specifically tailored to problems related to computer
security or intelligence analysis;

FP7-ICT-216026-WOMBAT 9

2 Technical Survey of Root Cause Analysis

ii) problems related to multi criteria decision analysis (MCDA), and multisensor data
fusion;

iii) general techniques for malicious traffic analyses on the Internet, with an emphasis
on methods that aim to improve the “cyber situational awareness” (Cyber-SA).

In the next paragraphs, we give an overview of some key contributions in each research
area.

2.2 Investigative and security data mining

2.2.1 Security data mining

In the last decenny, a considerable research effort has been devoted to applying data
mining techniques to security-related problems. However, a large part of this effort has
been exclusively focused on the improvement of intrusion detection (ID) systems via data
mining techniques, rather than on the discovery of new fundamental insights into the
nature of attacks or their underlying root causes, as noted by Julisch in [4]. Furthermore,
only a subset of common data mining techniques (e.g., association rules, frequent episode
rules or classification algorithms) have been applied to intrusion detection, either on raw
network data (such as ADAM [2], MADAM ID [27, 28] and MINDS [18]), or on intrusion
alerts streams [16, 24]. A comprehensive survey of DM techniques applied to ID can be
found in [3, 9].

All previous approaches aimed at improving alerts classification or intrusion detection
capabilities, or at constructing better detection models by (automatically) generating
new rules (e.g., using some inductive rule generation mechanism). Our work within
the context of WP5 is quite different in many aspects. First, we take advantage of
data sets that contain only malicious activities (high and low-interaction honeypots,
malware samples, honeyclients, etc). Secondly, we use a graph-based, unsupervised data
mining technique to discover a priori unknown attack patterns performed by groups or
communities of attackers. Then, our objective does not consist in generating new IDS
rules to better protect a single network, but instead to determine the root causes of
large-scale attack phenomena (e.g., worm, botnet, etc) observed by distributed sensors,
and to get insights into their global behavior, i.e., how long do they stay active, what is
their average size, their spatial distribution, and more importantly, how do they evolve
over time with respect to their origins, or the type of activities they perform?

10 SEVENTH FRAMEWORK PROGRAMME

2.2 Investigative and security data mining

2.2.2 Crime data mining

There are many similarities between the tasks performed by analysts in computer secu-
rity and in crime investigations or law-enforcement domains. Several researchers have,
thus, explored the possibilities of DM techniques to assist law-enforcement profession-
als. In [29], McCue provides real-world examples showing how data mining has identified
crime trends and helped crime investigators in refining their analysis and decisions. Pre-
vious to that work, in [30] Jesus Mena has described and illustrated the usefulness of
data mining as an investigative tool by showing how link analysis, text mining, neural
networks and other machine learning techniques can be applied to security and crime
detection. Finally, a more recent book from Westphal provides even more real-world ap-
plications of crime data mining, such as border protection, money laundering, financial
crimes or fraud analytics, and it describes also the advantages of using information-
sharing protocols and systems in combination with these analytical methods [46].

We observe, however, that most previous work in the crime data mining field has
primarily focused on “off the shelf” software implementing traditional data mining tech-
niques (such as clustering, classification based on neural networks and Kohonen maps,
or link analysis). Still, Chen et al. have conducted some active research in crime data
mining in the context of the COPLINK project [12], using text mining, neural networks
and Social Network Analysis (SNA) on different case studies. In our graph-based ap-
proach, we can see some similarity with link analysis methods used in crime data mining.
However, there are also many differences: for instance, how relationships are created in
classical link analysis tools is quite straightforward (usually, using the output of simple
comparisons between basic features), whereas we use an aggregation function to combine
multiple correlation patterns found in different graphs in order to identify more com-
plex relationships. Furthermore, our approach can be applied to many different types of
features vectors, even to statistical distributions.

Finally, there are also some obvious relationships between our graph-based clustering
technique and Social Network Analysis (SNA), which has been recognized as an appro-
priate methodology to uncover previously unknown structural patterns from social or
criminal networks. SNA heavily relies on the usage of network graphs and link anal-
ysis as key techniques to analyze social communities and networks. Different metrics
are used to emphasize the characteristics of a social group and its members, such as
centrality, betweenness, closeness, structural cohesion of actors, clustering coefficient,
etc [34, 41]. In this context, analysis of n-cliques, n-clans, k-plexes, or more generally
“connected component”, can reveal interesting subgroups within a network or a com-
munity that are strongly connected in the graph representation, i.e., network members
sharing many common traits. Probably for those reasons, SNA has been ranked in the

FP7-ICT-216026-WOMBAT 11

2 Technical Survey of Root Cause Analysis

top 5 intelligence analysis methods by K. Wheaton, assistant professor of intelligence
studies at Mercyhurst College [47]. Some of our techniques are admittedly inspired by
SNA, namely the clique-based clustering of attackers. However, we use a novel, effi-
cient clique algorithm based on dominant sets, and our attribution method can combine
multiple graphs (reflecting multi-dimensional features) into a combined graph by using a
multicriteria aggregation function, which enables us to model more complex relationships
among coalitions of features (e.g., an interdependency between two or more features). As
far as we know, this kind of processing is not yet available in traditional SNA techniques.

2.3 Multicriteria decision analysis

2.3.1 MCDA applied to security problems

In our approaches, we have formalized the attribution problem as an application of
multi criteria decision analysis (MCDA), in which the criteria of concern are given by
the links (or distance) values computed during the graph-based clustering (which is
performed for each attack feature). That is, we use the distance values between two
events as degrees of evidence (or fuzzy measures) to decide whether or not they are
likely due the same root phenomenon. As such, it can be considered as a classical multi
attribute decision making problem where a decision (or an alternative) has to be chosen
based on several, eventually conflicting criteria. A combined output is evaluated based
on different attributes (or features), which are expressed numerically and can sometimes
be obtained as the output of a fuzzy system (e.g., when we need to model vagueness
and uncertainty about a given attribute). It is worth noting that MCDA has also been
ranked in the top 5 intelligence analysis methods by K. Wheaton [47].

In this formalization, we need, thus, to define an appropriate function that can model
a certain decision scheme matching as closely as possible the phenomenons under study.
In many MCDA systems, the aggregation process is a sort of averaging function, like
a simple weighted means (e.g., Simple Additive Weighting, Weighted Product Method,
Analytical Hierarchy Process [52]), or the Ordered Weighted Average (OWA) [49, 7], and
Choquet or Sugeno integrals [7]. ELECTRE, TOPSIS and PROMETHEE [20] are three
well-known outranking methods that are based on a similar aggregation process. These
techniques aim at selecting or ranking different alternatives by using multiple criteria
weighted by coefficients. However, one could choose also conjunctive or disjunctive
functions (such as t-norms and t-conorms), or mixed functions (such as uninorms and
nullnorms) to model the aggregation of criteria in more complex systems [7].

We have chosen the Ordered Weighted Average (introduced by Yager [49]) as aggre-
gation function to model more complex relationships among criteria, for example “at

12 SEVENTH FRAMEWORK PROGRAMME

2.4 Malicious traffic analysis

least three” attack criteria to be satisfied in the overall decision function. The power of
such an aggregation function lies in the fact that different combinations of criteria may
apply to each pair of events. Furthermore, the decision-maker does not need to specify
in advance which criteria (or features) must be satisfied to link two events to the same
phenomenon.

Despite their great flexibility in combining features or evidences, we note that rather
few previous works have used MCDA approaches in order to address security-related
problems. However, in [11] the authors consider the problem of discovering anomalies
in a large-scale network based on the data fusion of heterogeneous monitors. They eval-
uate the usability of two different approaches for multisensor data fusion: one based
on the Dempster-Shafer Theory of Evidence and one based on Principal Component
Analysis. The Dempster-Shafer theory is a mathematical theory of evidence [37] based
on belief functions and plausible reasoning. It allows one to combine evidence from dif-
ferent sources and to obtain a certain degree of belief (represented by a belief function)
that takes into account all the available evidence. It can be seen as a generalization
of Bayesian inference where probability distributions are replaced by belief functions,
which can thus provide a certain degree of belief (also referred to as a mass). When
used as a method for sensor fusion, different degrees of belief are combined using Demp-
ster’s rule which is a generalization of the special case of Bayes theorem where events
are independent. In our attribution method, we prefer using aggregation functions as
described previously, for the greater flexibility they offer in defining how we want to
model interactions between different criteria. Moreover, in our case we have absolutely
no certainty that events observed by different sensors are always independent.

2.4 Malicious traffic analysis

2.4.1 Research on monitoring darknet traffic

Our research builds also on prior work in malicious traffic analysis, for which the liter-
ature in this field is quite significant. For example, in [50], Yegneswaran et. al. have
studied the global characteristics and prevalence of Internet intrusions by systematically
analyzing a set of firewall logs (from D-Shield) collected from a wide perspective (over
four months of data collected from many different networks worldwide). Their study is
a general analysis that focused on the issues of volume, distribution (e.g., spatial and
temporal), categorization and prevalence of intrusions. Then, in [31] Pang et al. charac-
terize the incessant nonproductive network traffic (which they term Internet background
radiation) that can be monitored on unused IP subnets when deploying network tele-
scopes or more active responders such as honeypots. They analyzed temporal patterns

FP7-ICT-216026-WOMBAT 13

2 Technical Survey of Root Cause Analysis

and correlated activity within this unsolicited traffic, and they found that probes from
worms heavily dominate. More recently, similar research has been conducted by Chen
et al. in[13]. While all these previous works provide meaningful results and have much
contributed in making advances in malicious traffic analysis, the traffic correlation and
analysis techniques used by the authors stay at a fairly basic level. Indeed, they basi-
cally break down the components of background radiation by protocol, by application
and sometimes by specific exploit, and then apply some statistics across each compo-
nent. Whereas we apply more elaborated techniques on honeynet traffic, such as graph
clustering based on statistical distances, combined with multi-criteria analysis in order
to elevate the abstraction level, and to improve the insights into global phenomena.

On our side, we previously developed in [42] an efficient clique-based clustering method
to extract groups of correlated attack clusters from a large honeynet dataset, and in [43,
44] we explored two different approaches to combine attack knowledge extracted through
these means. Moreover, we have also presented in [32, 33] different signal processing
techniques that can be used to extract systematically interesting attack events from a
large set of honeynet traces.

It would be incomplete to discuss attack attribution without mentioning some active
research carried out in Cyber Situational Awareness (or Cyber-SA). We acknowledge
the seminal work of Yegneswaran and colleagues in this field, such as in [51] where they
explore ways to integrate honeypot data into daily network security monitoring, with
the purpose of effectively classifying and summarizing the data to provide ongoing situa-
tional awareness on Internet threats. However, their approach aims at providing tactical
information, usable for the day to day operations, whereas we are interested in strate-
gic information that reveal long term trends and the modus operandi of the attackers.
Closer to our research, Li et. al. have described in [53] a framework for automating
the analysis of large-scale botnet probing events and worm outbreaks using different
statistical techniques applied to aggregated traffic flows. They also design schemes to
extrapolate the global properties of the observed scanning events (e.g., total population
and target scope) as inferred from the limited local view of a honeynet. Finally, a first
compilation of scientific approaches for Cyber-SA has recently been published in [38], in
which a multidisciplinary group of leading researchers (from cyber security, cognitive sci-
ence, and decision science areas) try to establish the state of the art in cyber situational
awareness and to set the course for future research. The goal of this pioneering book is
to explore ways to elevate the situation awareness in the Cyber domain. We have con-
tributed to [38] with a chapter on Macroscopic Cyber Situational Awareness, in which
we present our extensive data collection infrastructure and illustrate the usefulness of
applying a multidimensional analysis to the attack events detected by our honeypots.

Finally, another related project that looks interesting is Cyber-Threat Analytics (Cyber-

14 SEVENTH FRAMEWORK PROGRAMME

2.5 Research on identifying malicious networks

TA), founded by SRI International [14]. Cyber-TA is an initiative that gathers several
reputed security researchers. It aims at accelerating the ability of organizations to de-
fend against Internet-scale threats by delivering technology that will enable the next-
generation of privacy-preserving digital threat analysis centers. According to Cyber-TA,
these analysis centers must be fully automatic, scalable to alert volumes and data sources
that characterize attack phenomena across millions of IP addresses, and give higher fi-
delity in their ability to recognize attack commonalities, prioritize, and isolate the most
critical threats. However, very few information is available at [14] on which scientific
techniques could enable organizations to achieve such goals or to elevate their cyber
situation awareness.

2.5 Research on identifying malicious networks

Although much work has been done on studying malicious activity on the Internet (such
as phishing, drive-by-download exploits, and malware-based scams), not much focus
has been put on automatically identifying the networks and infrastructures used by the
attackers. With the novel work we present in this paper, we approach the problem from
a different angle and hope to help prevent victims from accessing or receiving traffic
from networks that have proven to be malicious in nature.

FP7-ICT-216026-WOMBAT 15

3 Preliminary Results (Published Papers)

In this section, we first briefly summarize the papers that we have included in the
deliverable in order to provide some preliminary results of the ongoing work in WP5.
Then, we provide full copies of these papers. Note that each paper has a related work
section that throughly describes the existing work in the problem domain that is being
addressed.

In the following, we list the papers, sorted by publication date, that have been accepted
for publication and that we have included in this deliverable. It is worth pointing out
that papers 2 and 5 have each received the best paper award of the conference where
they have been presented. Paper 7 is an invited keynote speech (with a paper published
in the proceedings) in the most prestigious conference in India.

1. Olivier Thonnard, Marc Dacier Actionable knowledge discovery for threats intelli-
gence support using a multi-dimensional data mining methodology ICDM’08, 8th
IEEE International Conference on Data Mining series, December 15-19, 2008, Pisa,
Italy , pp 154-163

2. Olivier Thonnard, Wim Mees, Marc Dacier, Addressing the attack attribution
problem using knowledge discovery and multi-criteria fuzzy decision-making KDD’09,
15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Work-
shop on CyberSecurity and Intelligence Informatics, June 28th-July 1st, 2009,
Paris, France , pp 11-21

3. Thorsten Holz, Markus Engelberth, Felix Freiling, Learning More About the Un-
derground Economy: A Case-Study of Keyloggers and Dropzones, 14th European
Symposium on Research in Computer Security (ESORICS 2009), Saint Malo, Brit-
tany, France, September 2009

4. M. Dacier, C. Leita, O. Thonnard. V. H. Pham and E. Kirda, ”Assessing Cy-
bercrime Through the Eyes of the WOMBAT”, chapter 3 (pp. 103-136) in Cy-
ber Situational Awareness: Issues and Research, Sushil Jajodia, Peng Liu, Vipin
Swarup, Cliff Wang, eds., ISBN: 98-1-4419-0139-2, Springer International Series
on Advances in Information Security, 2009.

16

3.1 Actionable Knowledge Discovery for Threats Intelligence Support using a Multi-Dimensional Data Mining
Methodology

5. Van-Hau Pham, Marc Dacier, Honeypot traces forensics : the observation view
point matters, NSS 2009, 3rd International Conference on Network and System
Security, October 19-21, 2009, Gold Cost, Australia

6. Brett Stone-Gross, Andreas Moser, Christopher Kruegel, Kevin Almaroth, Engin
Kirda, FIRE: FInding Rogue nEtworks, 25th Annual Computer Security Applica-
tions Conference (ACSAC), Honolulu, December 7-10, 2009

7. The WOMBAT Attack Attribution method: some results, M. Dacier, V. H. Pham
and O. Thonnard, Fifth International Conf. On Information Systems Security
(ICISS 2009), 14-18 December 2009,Kokata, India (Invited Keynote talk with pa-
per in the proceedings).

8. The Symantec Public Report on Rogue Security Software, (July 08 - June 09),
October 2009

In the following sections, we provide an executive summary of each paper, and briefly
discuss its relevance to root cause analysis. Each listed paper covers a specific problem
domain in root cause analysis.

3.1 Actionable Knowledge Discovery for Threats Intelligence
Support using a Multi-Dimensional Data Mining
Methodology

This first paper that was published at ICDM’08. It describes the initial idea of using a
multi-dimensional knowledge discovery and data mining (KDD) methodology that aims
at discovering actionable knowledge related to Internet threats, taking into account do-
main expert guidance and the integration of domain-specific intelligence during the data
mining process. The objectives are twofold: i) to develop global indicators for assessing
the prevalence of certain malicious activities on the Internet, and ii) to get insights into
the modus operandi of new emerging attack phenomena, so as to improve our under-
standing of threats. In this paper, we first present the generic aspects of a domain-driven
graph-based KDD methodology, which is based on two main components: a clique-based
clustering technique and a concepts synthesis process using cliques’ intersections. Then,
to evaluate the applicability of the approach to our application domain, we use a large
dataset of real-world attack traces collected since 2003.

With respect to root cause analysis, our experimental results show that significant
insights can be obtained into the domain of threat intelligence by using this multi-
dimensional knowledge discovery method. This is the seminal paper on our attack

FP7-ICT-216026-WOMBAT 17

3 Preliminary Results (Published Papers)

attribution method which has been slightly modified and enriched in the following spec-
ification.

3.2 Addressing the Attack Attribution Problem using
Knowledge Discovery and Multi-criteria Fuzzy
Decision-Making

In network traffic monitoring, and more particularly in the realm of threat intelligence,
the problem of “attack attribution” refers to the process of effectively attributing new
attack events to (un)known phenomena, based on some evidence or traces left on one or
several monitoring platforms. Real-world attack phenomena are often largely distributed
on the Internet, or can sometimes evolve quite rapidly. This makes them inherently
complex and thus difficult to analyze. In general, an analyst must consider many different
attack features (or criteria) in order to decide about the plausible root cause of a given
attack, or to attribute it to some given phenomenon.

The paper we have listed that was accepted at KDD’09 introduces a global analysis
method to address this problem in a systematic way. The approach is based on a novel
combination of a knowledge discovery technique with a fuzzy inference system, which
mimics the reasoning of an expert by implementing a multi-criteria decision-making
process built on top of the previously extracted knowledge. By applying this method on
attack traces, we are able to identify large-scale attack phenomena with a high degree
of confidence. In most cases, the observed phenomena can be attributed to so-called
zombie armies - or botnets, i.e. groups of compromised machines controlled remotely by
a same entity.

With respect to root cause analysis, by means of experiments with real-world attack
traces, the paper shows how this method can effectively help us to perform a behavioral
analysis of those zombie armies from a long-term, strategic viewpoint.

3.3 Learning More About the Underground Economy: A
Case-Study of Keyloggers and Dropzones

In this paper that was accepted at ESORICS 2009, we study an active underground econ-
omy that trades stolen digital credentials. In particular, we investigate keylogger-based
stealing of credentials via dropzones, anonymous collection points of illicitly collected
data. Based on the collected data from more than 70 dropzones, we present an empiri-
cal study of this phenomenon, giving many first-hand details about the attacks that were

18 SEVENTH FRAMEWORK PROGRAMME

3.4 Assessing Cybercrime Through the Eyes of the WOMBAT

observed during a seven-month period between April and October 2008. We found more
than 33 GB of keylogger data, containing stolen information from more than 173,000
victims.

With respect to root cause analysis, analyzing this data set helps us better under-
stand the attacker’s motivation and the nature and size of these emerging underground
marketplaces.

3.4 Assessing Cybercrime Through the Eyes of the WOMBAT

In this paper that was a book chapter, we offer an early synthesis of the various results
that have been obtained when analyzing a large amount of information. However, in
order for this chapter to be as self-contained as possible, it starts by re-stating the
rationales for this work, as well as by providing a summarized introduction to the data
collection infrastructure. It has been produced at the very beginning of 2009 for a
presentation in March 2009 at George Mason University at the ARO Cyber Situational
Awareness Workshop (Fairfax, Virginia). This led, afterwards, to this book chapter.

3.5 Honeypot traces forensics : the observation view point
matters

In this paper, that was accepted to NSS 2009 for publication, we dig deeper in the pre-
requisites for attack attribution which is the identification of “attack events” in network
traces. A method is proposed to identify and group together traces left on low interac-
tion honeypots by machines belonging to the same botnet(s) without having any a priori
information about these botnets. In other terms, the paper offers a solution to detect
new botnets thanks to very cheap and easily deployable solutions. The approach is val-
idated with several months of data collected with the worldwide distributed Leurre.com
system maintained by the WOMBAT project. To distinguish the relevant traces from
the other ones, groups are created according to either the platforms, or the countries of
origin of the attackers.

With respect to attacks event identification, the paper shows that the choice of one
of these two observations view points dramatically influences the results obtained. That
is, each one can help in revealing unique botnets. The paper elaborates on why this is
the case.

FP7-ICT-216026-WOMBAT 19

3 Preliminary Results (Published Papers)

3.6 FIRE: FInding Rogue nEtworks

In this paper that was accepted at ACSAC 2009, we present FIRE, a novel system
to identify and expose organizations and ISPs that demonstrate persistent, malicious
behavior. The goal is to isolate the networks that are consistently implicated in malicious
activity from those that are victims of compromise. To this end, FIRE actively monitors
botnet communication channels, drive-by-download servers, and phishing web sites. This
data is refined and correlated to quantify the degree of malicious activity for individual
organizations.

With respect to root cause analysis, these results can be used to pinpoint and to track
the activity of rogue organizations, preventing criminals from establishing strongholds
on the Internet. Also, the information can be compiled into a null-routing blacklist to
immediately halt traffic from malicious networks.

3.7 The WOMBAT Attack Attribution method: some results

In this paper which was a keynote speech at ICISS 09, we present a new attack attribution
method that has been developed within the WOMBAT project together with some
initial results. This analytical method aims at identifying large scale attack phenomena
composed of IP sources that are linked to the same root cause. All malicious sources
involved in a same phenomenon constitute what we call a Misbehaving Cloud (MC). The
paper offers an overview of the various steps the method goes through to identify these
clouds, providing pointers to external references for more detailed information. Four
instances of misbehaving clouds are then described in some more depth to demonstrate
the meaningfulness of the concept.

3.8 The Symantec Public Report on Rogue Security Software

The Symantec Report on Rogue Security Softwareis an in-depth analysis of rogue security
software programs. This includes an overview of how these programs work and how
they affect users, including their risk implications, various distribution methods, and
innovative attack vectors. It includes a brief discussion of some of the more noteworthy
scams, as well as an analysis of the prevalence of rogue security software globally. It
also includes a discussion on a number of servers that Symantec observed hosting these
misleading applications. Except where otherwise noted, the period of observation for
this report was from July 1, 2008, to June 30, 2009.

20 SEVENTH FRAMEWORK PROGRAMME

3.8 The Symantec Public Report on Rogue Security Software

With respect to root cause analysis, the Symantec report provides significant insights
into the ways the attackers are organized and are operating on the Internet today.

More importantly, its second half presents the application of the WOMBAT attack
attribution method to a distinct set of initial attack events than the ones used so far.
Indeed, instead of looking at identified attack events, in network traces, we now apply
the method to identified malicious websites and show how the very same method can be
applied to derive meaningful information on the strategies and modus operandi of the
malicious actors behind these sites.

FP7-ICT-216026-WOMBAT 21

Actionable Knowledge Discovery for Threats Intelligence Support
using a Multi-Dimensional Data Mining Methodology

Olivier Thonnard
Royal Military Academy

Polytechnic Faculty
Brussels, Belgium

Olivier.Thonnard@rma.ac.be

Marc Dacier
Symantec Research Labs
Sophia Antipolis, France

marc dacier@symantec.com

Abstract

This paper describes a multi-dimensional knowledge
discovery and data mining (KDD) methodology that aims
at discovering actionable knowledge related to Internet
threats, taking into account domain expert guidance and
the integration of domain-specific intelligence during the
data mining process. The objectives are twofold: i) to
develop global indicators for assessing the prevalence of
certain malicious activities on the Internet, and ii) to get
insights into the modus operandi of new emerging attack
phenomena, so as to improve our understanding of threats.
In this paper, we first present the generic aspects of a
domain-driven graph-based KDD methodology, which is
based on two main components: a clique-based clustering
technique and a concepts synthesis process using cliques’
intersections. Then, to evaluate the applicability of this
approach to our application domain, we use a large dataset
of real-world attack traces collected since 2003. Our
experimental results show that significant insights can be
obtained into the domain of threat intelligence by using this
multi-dimensional knowledge discovery method.

Keywords: Internet threat intelligence, domain-driven
data mining, knowledge discovery

1. Introduction

Recently, the security community has been facing what
appears to be highly organized and professional malicious
activities on the Internet. It has been reported that, moti-
vated by financial profit, today’s cybercriminals seem to be
building a new and growing underground economy by of-
fering commoditization of activities such as the sale of 0-
day exploits and new yet-undetected malware, the sale of
compromised hosts, spamming, phishing, etc [12]. For se-

curity researchers, this leads to the observation of increas-
ingly coordinated attack activities, which are often related
to botnets [37], stealthy multi-headed worms [29] or other
sophisticated emerging threats. Client’s applications, typ-
ically web-browsers and email applications, become also
a common infection vector for propagating new malwares
that in turn aim at scanning and recruiting more vulnerable
machines into zombie armies, which seem to be the pre-
ferred weapon of cybercriminals today.

There are several data collection initiatives that offer
plausible indicators supporting those claims. However,
these data sources are often built in an ad-hoc way to study
a specific problem. In fact, the security community seems
to lack two important things regarding threats evaluation: i)
unbiased, meaningful and publicly available data about In-
ternet threats, and ii) global threat analysis techniques that
can offer real scientific answers to open questions and spec-
ulations circulating in the community. Similarly to criminal
forensics, the security analyst needs to synthesize different
pieces of evidence in order to investigate the root causes of
attack phenomena. This is a tedious, lengthy and informal
process mostly relying on the analysts expertise. For those
reasons, we seek to develop a multi-dimensional knowledge
discovery and data mining (KDD) methodology that should
help us to improve, in a more systematic way, our under-
standings of new Internet threats. Our idea consists in i)
extracting relevant nuggets of knowledge by mining a com-
plex dataset according to different properties considered as
relevant by a domain expert; and in ii) synthesizing those
pieces of knowledge so as to create higher-level concepts
describing the underlying phenomena.

The remainder of this paper is organized as follows: in
Section 2, we report on related work. In Section 3, we
present the theoretical foundations of our method. Section 4
describes our experimental environment. Section 5 presents
the lessons learned when applying our technique to a large
dataset of real-world attack traces. Finally, we conclude in

Section 6.

2. Related Work

This work is at the crossroads of several domains of
expertise. Regarding Internet threats, there are, broadly
speaking, three main approaches to monitor, collect and
analyze network threats: i) low- or high-interaction hon-
eypots [35, 34, 36, 1, 42], which are vulnerable comput-
ers intentionally set up as traps to attract and observe at-
tackers on the Internet; ii) the so-called Internet telescopes,
or darknets [27, 39, 38, 33, 8], which are used in order to
monitor all unsolicited traffic directed to unused IP subnets;
and iii) projects of collecting and sharing firewall and IDS
logs gathered from a very large number of heterogeneous
sources [11]. This work builds upon a broad experience in
this specific security domain [25, 23, 29, 31, 30]. Then,
in [32], we investigated the usability of a clique-based tech-
nique to group together network traces that share some spe-
cific features, namely packet inter-arrival times (IAT’s), and
more recently in [41] we developed an efficient graph-based
clustering method to extract groups of correlated attack time
series from an extensive honeynet dataset. We acknowledge
the seminal work of Yegneswaran and colleagues on “Inter-
net situational awareness” [44], in which they explore ways
to integrate honeypot data into daily network security mon-
itoring, with the purpose of effectively classifying and sum-
marizing the data to provide ongoing situational awareness.
Their approach aims at providing tactical information, us-
able for the day to day operations whereas we are interested
in strategic information that reveal long term trends and the
modus operandi of the attackers. Another closely related
work is BotMiner [14], a general botnet detection frame-
work that is independent of botnet C&C protocol and struc-
ture, and requires no a priori knowledge of botnets. The
authors developed a prototype system that is based on: i) a
two-steps clustering (based on X-Means) of C&C commu-
nication and activity flows of bots, so as to detect similarity
patterns; and ii) the combination of both types of patterns by
means of cross-correlation. Our research is different as we
do not focus exclusively on the problem of detecting bot-
nets, but instead we aim at understanding the higher-level
modus operandi of global attack phenomena (e.g., which
“communities” of machines are possibly involved in what
type of activities, on which networks they are hosted, etc.).

In the past ten years, a growing number of research
projects have applied data mining to various problems in
the security field, but almost exclusively in intrusion detec-
tion rather than honeynets. Furthermore, most research has
focused on the construction and the improvement of oper-
ational IDSs via data mining techniques, rather than on the
discovery of new and fundamental insights into the nature of
attacks [3]. Only a few well-known data mining techniques

(e.g., association rules, frequent episode rules or clustering
algorithms) have been widely used in intrusion detection,
either on raw network data (such as ADAM [2], MADAM
ID [21], and [22]), or on intrusion alerts streams [18, 10].
Our work is very different, both in terms of techniques and
objectives. We seek to develop a domain-driven knowl-
edge discovery method that could help us to better un-
derstand and characterize the modus operandi of Internet
threats from a global perspective, rather than focusing on a
technique to improve the detection rate of an IDS on one
given network.

Finally, some facets of our work are related to some
other graph-theoretical data mining techniques, such as the
hypergraph model used for clustering of data in a high-
dimensional space [15], or the hyperclique pattern discov-
ery approach for mining association patterns [43, 16]. In
both cases, all data properties are used together in the
graph partitioning algorithm to create hypergraph struc-
tures, while in our case we adopt a bottom-up approach
by combining different sets of one-dimensional cliques ob-
tained for each property separately.

3. A Methodology for Multi-Dimensional
Knowledge Mining

3.1. Overview

This section presents our approach in general terms
which will be instantiated according to our concrete ap-
plication domain requirements in Section 5. The proposed
methodology consists of two steps:

1) An unsupervised clique-based clustering of data ob-
jects according to well-defined properties. This com-
ponent aims at finding all groups of highly similar pat-
terns within an object dataset with respect to a single
property each time. A domain expert is required to de-
fine the possible interesting properties of the dataset.
The clusters are formed via the extraction of maximal
cliques from a graph.

2) A concepts synthesis process using cliques’ intersec-
tions, which can be seen as a data fusion process by
which different combinations of dataset properties are
computed so as to create higher-level concepts.

The clustering in step 1 is not applied directly to the
raw datasets but to complex data patterns we derive from
it. By “complex pattern”, we mean an aggregated, higher-
level data structure that already represents a certain abstrac-
tion of the dataset. A complex pattern is supposed to carry
some semantic regarding the measured phenomena. Statis-
tical distributions, for example the geographical distribution

of a sampled population, or the aggregated time series of a
dynamic process, are some examples of complex patterns,
as opposed to simple numerical or categorical features such
as the weight, the color or a stock value.

Each such pattern is represented as a node in a graph
where every edge represents a similarity relationship be-
tween two nodes. A graph-based clustering is then per-
formed via the extraction of cliques, which are complete
subgraphs, for all properties identified as potentially rele-
vant by a domain expert. The idea is to create N sets of
cliques where the members of each clique share a highly
similar characteristic pattern created along one of the N de-
fined properties.

Following the clustering process, we synthesize the pat-
terns by combining different sets of cliques. This leads to
the creation of meta-groups, which are termed concepts, and
where group members have one or more similarity patterns
in common. The original cliques are considered as groups
of dimension 1. Meta-groups of dimension 2 (resp. 3,. . . ,
N) are obtained by combining 2 (resp. 3,. . . , N) properties.
A detailed description of each component of the methodol-
ogy is provided in the next paragraphs.

3.2. Clique-based Clustering

The first component of our knowledge mining method-
ology involves a graph-theoretic clustering. Typical cluster-
ing tasks involve the following steps [17]: i) feature selec-
tion and/or extraction, and pattern representation; ii) defini-
tion of a similarity measure between patterns; iii) grouping
similar patterns; iv) data abstraction (if needed), to provide
a compact representation of each cluster; v) the assessment
of the clusters quality and coherence (if needed).

In any clustering task, we must select certain features
characterizing relevant aspects of the dataset, i.e., salient
features that may provide meaningful patterns. Those
patterns are represented with feature vectors, which are
usually built with formatted data series, or simply arrays
of values. There are two key aspects in the clustering
process herein presented: i) even complex patterns, such
as statistical distributions, may be easily used in the
clustering algorithm, and ii) the types of features used
to create different patterns may (and even should) be
quite different, introducing thus a certain diversity in
the classification. Once the sets of patterns are created,
we need to measure the similarity between two patterns.
For that purpose, several types of similarity distances
are available (e.g., Mahalanobis, Minkowski, Pearson
or Spearman correlations, jackknife correlation, etc.).
Clearly, the choice of a similarity metric must be carefully
determined in consideration of the original data series
and the expected properties of the clusters, such as the
cluster size, quality, or consistency. In Section 5, we

present a few similarity measures we use in practice in our
domain-specific application. The following step consists
in grouping all patterns that look very similar. There
exists a plethora of clustering algorithms for doing this.
We use here an unsupervised graph-theoretic approach to
formulate the problem, and the clustering is then performed
by extracting maximal weighted cliques from a graph. To
the best of our knowledge, this type of clustering has not
been widely covered in previous KDD applications, yet it
is in our opinion a convenient and appropriate formulation
for solving domain-driven data mining problems, and it has
several advantages over other more classical approaches
such as K-Means or Bayesian classification, especially
when dealing with high-dimensional datasets [15].

A graph is a structure that comprises a set of vertices
(or nodes) connected by links called edges, which can be
directed or undirected. A clique is defined as an induced
sub-graph of a (un)directed graph in which the vertices are
fully connected. A clique is maximal if it is not contained
within any other clique.
Hence, finding the largest group of similar elements in
a data set can now be transformed into the problem of
searching for complete subgraphs where the vertices
represent the patterns, and the links express the similarity
relationships between those vertices. This is a classical
NP-complete problem studied in graph-theory, also known
as the maximal clique problem (MCP) [4]. Because of
its NP-hard complexity, many approximate algorithms for
solving the MCP have been developed, like local search
heuristics, Hopfield network, Ant Colony Optimization,
and the heuristic based genetic algorithm, among others.

In this clique-based clustering, we use the dominant sets
approach of Pavan et al. [28], which proved to be an ef-
fective method for finding maximal weighted cliques. This
means that the weight of every edge is also taken into con-
sideration by the algorithm, as it seeks to discover maxi-
mal cliques whose total weight is maximized. This gen-
eralization of the MCP is also known as the maximum
weight clique problem (MWCP). This approximate method
for solving the MWCP aims at finding iteratively domi-
nant sets of maximally similar nodes in the graph. We
can show that dominant sets are equivalent to maximum
weighted cliques, but finding those dominant sets is far eas-
ier to compute. Indeed, this can be done with a continuous
optimization technique, which applies replicator dynamics
(from evolutionary game theory). As a result, we can solve
the problem of extracting dominant sets by simply making a
particular temporal expression converge. Let for instance A
be a non-negative real-valued n × n matrix that represents
the adjacency matrix of the graph introduced here above,
and consider the following dynamical system represented

with its discrete time equation:

xi(t+ 1) = xi(t) ·
(Ax(t))i

x(t)TAx(t)
, i = 1, ..., n

Starting from an arbitrary initial state, this replicator dy-
namical system will eventually be attracted by the nearest
asymptotically stable point. As it has been proven in [28],
this corresponds to a dominant set, hence to a maximum
weight clique. In our global knowledge discovery process,
for the N identified properties, we apply this clique-based
clustering on each edge-weighted graph.

3.3. Concepts Synthesis via Cliques Inter-
sections

The second component of our methodology is similar to
a dynamic data fusion process. Starting from all sets of
cliques, the idea is to combine k sets out of the N dimen-
sions, with k = 2, ..., N , in order to discover actionable
knowledge about certain phenomena.

To introduce this concepts synthesis, let us consider
some notions used in Formal Concept Analysis (FCA).
There is a strong parallel between our KDD method and
FCA, since the cliques, and any combination thereof, can
be seen as the formal representation of concepts describ-
ing a certain phenomenon (or at least some aspect hereof).
In FCA [13], a concept is defined as the combination of
both an object cluster, which comprises all objects that
share a common subset of attributes, and a property clus-
ter, which is the set of all properties shared by all the ob-
ject clusters. Let us consider for example a set of ob-
jects O = {O1, . . . , On}, and a set of properties P =
{P1, P2, . . . , PN} with:

P1 = {p1,1, . . . , p1,k1}, P2 = {p2,1, . . . , p2,k2}, . . .

PN = {pN,1, . . . , pN,kn
}

The different subsets of patterns {pi,j} correspond to the
different feature vectors that are extracted for each property
Pi.
A basic example of dataset properties and their
associated patterns could be as follows: P =
{color, shape, nr edges}, and :

P1 = {blue, red, yellow}

P2 = {line, square, circle, ellipse}

P3 = {0, 1, 2, 3, 4, 5, others}

An example of a dimension 3-concept can be defined as the
set of all objects sharing the following (unordered) values
for the 3 properties: {red, square, 4}. With this example,
we emphasize also the fact that we do not consider the case

Figure 1. An example of concept lattice, represented with
a Hasse diagram. In total, 14 concepts have been con-
structed via the extraction of maximal cliques (in light grey)
from the initial dataset containing 10 objects. In each con-
cept, the first line of the label represents the members of the
concept (or the extent), and the second line is the pattern(s)
of the concept (or the intent).

of a boolean concept lattice, but we generalize rather to
the case of properties characterized by discrete sets of at-
tributes. It is worth noting that, in our domain application,
while relevant properties can be defined by a domain ex-
pert, the subsets of potential patterns related to those prop-
erties (i.e., the {pi,j}) are completely unknown prior the ex-
ecution of the clique-based clustering. So, the patterns are
discovered via the extraction of cliques along each dataset
property. The complete set of concepts is called the concept
lattice, and it can be represented with a Hasse diagram. This
is illustrated in Figure 1 for a simple case of 10 objects char-
acterized by three properties, each containing one or two
different patterns. The boxes filled in light grey can be seen
here as the initial cliques (i.e., the dimension-1 concepts),
which allowed to extract the a priori unknown patterns for
each dataset property.

Note that there exist many algorithms for generating con-
cept lattices [20], but to the best of our knowledge, our
method is the first one that relies on maximal cliques to
achieve this goal by discovering a priori unknown intents in
a dynamic fashion. Moreover, another advantage is its ex-
tensibility. That is, when a practitioner finds a new dataset
property to be of interest for the knowledge discovery pro-
cess, (s)he only needs to include a new set of cliques, inde-

pendently of the existence of previous concepts or cliques.
As a result, new combined viewpoints, and thus new formal
concepts, are immediately available for assisting the root
cause analysis of the phenomena.

4. Honeynet Environment

We describe here the specific dataset we used to vali-
date our multi-dimensional data mining methodology. This
unique dataset is made of network attack traces and has
been collected in the context of the Leurre.com Project [25,
35], a global distributed honeynet. A honeypot is a security
resource whose value lies in being probed, attacked, or com-
promised [40]. Honeypots should have no production value
and hence should not see any legitimate traffic or activity.
Whatever they capture can then be considered as malicious
or at least suspicious. By extension, a network of intercon-
nected honeypots has been termed “honeynet”.
Since 2003, a distributed set of identical honeypot plat-
forms, based on honeyd [36], has been deployed in many
different countries and on various academic and industrial
IP subnets. Recently, a second phase of the project was
started with the deployment of high-interaction honeypots
based on the ScriptGen [24, 23] technology, in order to en-
rich the network conversations with the attackers and to in-
tercept code injections, which may lead in some cases to the
retrieval of malicious binaries used by the attackers. The
Leurre.com dataset is publicly available for any researcher
under the condition of a Non-Disclosure Agreement that
aims at protecting the privacy of the partners involved in
the deployment of those honeypot platforms.
A platform runs three virtual honeypots, each one has its
own public IP address and they emulate different operat-
ing systems (two Windows and one Linux machine) with
various common services faking to be open. The collected
traffic, including the payloads of the packets, is automati-
cally stored into an Oracle database. The network traces are
also enriched with contextual information (geographical lo-
cation of the attackers, ISP’s, domain names, etc). All IP
sources are grouped into so-called attack clusters [31] built
according to the network traces they have left when talking
to the honeypot. Each such cluster is defined thanks to net-
work characteristics such as the number of virtual machines
targeted on a platform by a given IP, the number of pack-
ets and bytes sent to each honeypot, the attack duration, the
average inter-arrival time between packets, the associated
port sequence being probed by the attacker, and the packet
payload (when available).

Our work builds upon this notion of clusters, as defined
in [31], but in the rest of this document, to avoid any am-
biguity with our own clique-based clustering technique, we
use the expression attack profile or simply attack instead of
cluster. In other terms, an attack profile, or attack, consists

of a group of IP addresses that have targeted at least one of
the Leurre.com platforms and have left very similar network
traces when talking to that platform.

In [29], it has been shown that the IPs found in a given
attack profile could be linked to distinct attack phenom-
ena happening during successive, limited periods of time on
each sensor. In the rest of this paper, we use the terms attack
events to refer to the subset of IPs from a given attack pro-
file on a sensor, and observed within a specific time window
identified thanks to the method presented in [29]. Namely,
the experiments presented in this paper are based on 351 at-
tack events found in a timeframe spanning from September
2006, until June 2008. Those attack events have targeted
36 different sensors, which are located in 20 different coun-
tries and spread over 18 subnetworks on the Internet. In
this dataset we observed a total of 282,363 distinct sources,
distributed over 136 different types of attack profiles.

5. KDD Application for Threats Intelligence
Support

5.1. Clique-based Clustering

We first present the different properties that we have se-
lected to cluster the attack events together. We motivate this
choice based on domain experience in monitoring malicious
traffic. Then, for each dimension, we briefly describe how
we have applied the clique-based clustering, more specifi-
cally: i) which type of patterns (and representation hereof)
do we consider, ii) how can we measure the similarities be-
tween them, and iii) what are the results in terms of cliques
and what type of insights do they deliver. In the last sec-
tion, we take advantage of cliques’ intersections to synthe-
size higher-level concepts describing some attack phenom-
ena observed on our sensors.

5.1.1 Geolocalization of Attackers. The geographical
location of the attackers can be used to identify attack
activities having a specific pattern in terms of originating
countries. Such information can be important to identify,
for instance, botnets that are located in a limited number of
countries. It is also a way to confirm the existence, or not,
of so-called safe harbors for the hackers.

Patterns Selection. For every attack event, we generate
a feature vector that represents the attacking sources’ dis-
tribution of all IPs found in that attack event, grouped by
country of origin (in absolute values). Concretely, for each
attack event, we build an histogram whose elements are la-
beled with the ISO 3166-1 country codes and we identify
how many source IPs belong to each country (Figure 2-Left
illustrates such a geographical pattern).

Distance Metric for Frequency Data. To measure how
similar two attack events are, with respect to that specific
property, we need an appropriate distance metric. In this
case, we rely on non-parametric statistical tests to compare
those empirical distributions (i.e., the histograms). In our
application, for each pair of distributions, we use a com-
bination of three different statistical tests to obtain the dis-
tance: first, we compute the maximal p-value according to
the Pearson’s χ2 test and the Kolmogorov-Smirnov (KS)
test, and secondly we validate this result with the Kullback-
Leibler divergence.
χ2 and Kolmogorov-Smirnov are among the most com-

monly used non-parametric statistical methods for testing
the null hypothesis (H0) that the frequency distribution of
certain observations of a sample is consistent with a partic-
ular hypothesized distribution (also called a test of “good-
ness of fit”). In other words, those tests are used to deter-
mine whether two underlying one-dimensional probability
distributions differ in a significant way. The output of both
tests is a p-value, which is compared against a given sig-
nificance level to decide if the investigator can safely reject
the null hypothesis. Low probability values lead to the re-
jection of H0. Inversely, p-values that are largely above
the significance level can be interpreted as an indication of
a very strong relationship between the two samples, which
means that both samples are very likely coming from the
same population.

From our observations, the p-values given by both tests
(χ2 and Kolmogorov-Smirnov) are usually very close to
each other. Still, under certain circumstances, they can
also differ substantially. To solve this issue, we validate
the significance of the obtained p-values by computing the
Kullback-Leibler divergence (also known as the relative en-
tropy [19]) between both distributions. When this diver-
gence tends to be large, we set the similarity value to zero,
whatever the result of χ2 or KS might be; otherwise we
keep the maximal p-value as measurement as the similarity
degree between the two patterns. This technique appears to
be, at least for the datasets we deal with, a quite robust and
reliable metric for comparing categorical frequency data.

Geographical Cliques. Running the clique-based cluster-
ing on the initial dataset of 351 attack events delivers 45
cliques containing between 2 and 23 attack events. In to-
tal, 273 attack events (77%) have been classified into those
cliques, accounting for 66% of the total volume of sources.
The largest cliques contain about twenty different attack
events having exactly the same geographical distribution.
From those results, we observe that geographical cliques
provide good indications of the prevalence of certain coun-
tries to be involved in different specific activities (e.g., US,
China, Canada, Korea, Taiwan, Italy, France, Germany,
Great-Britain, Brasil, Japan and Russia). Moreover, geo-

graphical cliques can be useful to identify communities of
machines used to perform a given type of activity. Surpris-
ingly enough, we observe also groups of targeted attacks
coming from rather small or unexpected countries, such as
Poland, Hungary, Romania, Pakistan, Argentina or India1.

Figure 2. Left: the pattern of a geographical clique of
attack events. Right: the pattern of a subnets clique (the
labels are the anonymized /8 subnets). All attack events
belonging to a same clique have the very same pattern.

Figure 3. The pattern of a platforms clique of attack
events, in which all events have a distribution similar to this
one (regarding the targeted platforms in this case).

5.1.2 Netblocks of Origin. The source IP network block
is another property that nicely complements the geoloca-
tion as described before. Instead of giving insight on pos-
sible geostrategic decisions made by the hackers, they can
typically reveal some strategies in the propagation model of
the malwares. Indeed, attackers’ IP subnets can provide a
good indication of the spatial “uncleanliness” of certain net-
works, i.e., the tendency for compromised hosts to stay clus-
tered within unclean networks, especially for zombie ma-
chines belonging to botnets as demonstrated in [7]. Previ-
ous studies have also demonstrated that some worms show
a clear bias in their propagation scheme, such as a tendency

1More details about the cliques can be found in an ex-
tended technical report available from the Eurecom website
(http://www.eurecom.fr/people/dacier.en.htm).

for scanning machines of the same (or nearby) network so
as to optimize their propagation [6]. So, for each attack
event, we create a feature vector representing the distribu-
tion of IP addresses grouped by considering the /8 subnet
(which means the first 8-bytes prefix of each IP address).
An example of such vector, obtained for a given clique of
attack events, is given in Figure 2 (Right). Since we have
signed a non-disclosure agreement, we have changed the
subnet values while maintaining, as much as possible, the
relationships between the discovered netblocks (e.g., con-
secutive subnets values). As explained in the previous sec-
tion, we can use the same statistical distances to measure
the similarity degree between a pair of subnets histograms.

Subnets Cliques. From the output of the clique-based
clustering applied to the subnets dimension, we obtain
about 30 cliques; they contain in total 262 attack events
(75% of the dataset) accounting for 56% of the total vol-
ume of sources. A few cliques are fairly large: about fifty
attack events grouped in the same clique and having all the
very same subnet distribution. Here also, we observe again
many relevant relationships within the attack dataset regard-
ing this dimension. For example, the characteristics of some
of those cliques (e.g., the targeted port sequences, etc.), and
an additional in-depth analysis, have lead us to conclude
that the sources involved in those cliques were apparently
members of a larger botnet that has been active during an
extended period of time (about three months) in a given In-
ternet region. Those subnets cliques revealed also a sort of
dynamism in the affected IP regions (due to new bot infec-
tions and computers cleaning) during the lifetime of the bot-
net, with still some stable clustered IP zones of bot infected
machines (i.e., in “unclean networks”).

5.1.3 Attack Time Series. Time series analysis can also
provide useful information about the underlying attack phe-
nomena [41]. By “attack time series” we mean an aggre-
gated source count for an attack on a given sensor, in a
given timeframe. This dataset property can provide indica-
tions about synchronized activities targeting different sen-
sors. It can also reveal some typical pattern related to a bot-
net activity [9]. Finally, discovering synchronized probes on
completely different TCP ports (and thus, a priori unrelated
attacks) might help to identify multi-headed worms [29],
which combine different exploits in a single piece of soft-
ware.
To include this attack dimension, we have created, for each
attack event, a feature vector where each element repre-
sents the aggregated source count per day for that specific
attack on a given sensor. There are numerous appropriate
techniques to compute the similarity between time series,
such as singular value decomposition (SVD), piecewise ag-
gregate approximation (PAA), discrete Fourier transform,

wavelets, etc. The method we use in this application is an
adapted version of SAX (symbolic aggregate approxima-
tion) [26]. It falls in the category of PAA techniques which
tend to approximate time series by segmenting them into
time intervals of equal size and summarizing each of these
intervals by its mean value. Each time series (usually of
complex shape) is thus replaced by a quantized vector of
symbolic values whose shape is by far simpler to process
when measuring the similarities among time series. More-
over, SAX provides a lower-bounding distance measure that
is easy to interpret, and which can be used in the clustering
to decide if two time series are similar or not. More details
about the SAX technique can be found in [26], and we refer
the interested reader to [41] for a more detailed description
of our SAX adaptation.

Cliques of Time Series. The clique-based clustering ap-
plied to the 351 events delivered 82 cliques of time series
encompassing 92% of the attacking sources, which already
confirms the highly organized aspect of activities related to
Internet attacks. As noted in [41, 29], we observe only three
types of temporal pattern in the resulting cliques: (i) a few
“voluminous” cliques containing attacks with a continuous
activity pattern, primarily due to Messenger Spammers (on
UDP ports 1026-1028) and some classical network worms
(e.g., Allaple, Slammer, etc.); (ii) cliques involving attacks
in the form of sustained bursts, mainly due to large botnet
attack waves or multi-headed worms; and (iii) a very large
number of small cliques related to ephemeral attacks tar-
geting one or a few sensors on the same day, due either to
small botnet probes, targeted scan activities or misconfigu-
rations in some rare cases. Figure 4 illustrates the pattern
of a clique of the second type, where 21 attack events have
targeted 5 different sensors on well-known Windows ports
(445T and 139T) for a period of 20 days in December 2006.
Even though they target different IP subnets, all those attack
events exhibit a quite perfect synchronization. In the light of
our detailed analyses, this was attributed to an attack wave
of a botnet coming mainly from China, Canada and US.

5.1.4 Targeted Platforms. Apparently, some recent
crimeware toolkits are now able to deliver a specific type
of malware to different geographical regions [5]. By us-
ing this new feature, cybercriminals can thus set up well
targeted campaigns by delivering specialized crimeware in
specific geographical regions. Indeed, malware may benefit
from being adapted to, e.g., the local version of an operat-
ing system or application. Therefore, it seems important to
look at relationships that may exist between attack events
and the platforms they have been observed on.

Attack events are defined per platform. To calculate a
feature vector representing the distribution of platforms, we
decided to group all strongly correlated attack events within

Figure 4. The patterns of an extracted clique of attack
time series targeting Windows ports and ICMP (I, I-445T,
I-445T-139T). Note the almost perfect synchronization of
the attacks on 5 different sensors located in 4 different IP
subnets.

its time window of existence, and we then used this group
of attack events to create the feature vector representing the
proportion of platforms that have been targeted. Fig 3 illus-
trates the kind of pattern we are looking for in this dimen-
sion. Here again, we can use the statistical distance mea-
sures introduced previously (in Section 5.1.1) to compare
two frequency distributions.

Platforms Cliques. The experiments indicate that 284
events (encompassing 70% of the sources) could be clus-
tered into only 17 cliques for this dimension. According
to our in-depth analysis, those cliques helped to discover
some nice phenomena too. One such example is related to
a large series of ephemeral attack events on high (unusual)
TCP ports that were always launched against the very same
platform, and where each individual attack event had a quite
high intensity but a very short duration (one or two days).
A security analyst would most probably disregard such sus-
picious traffic since each traffic peak is targeting a quite un-
usual TCP port (on which there is no well-known applica-
tion running), and unlike worm propagation, those attack
events do not sustain an activity over a long period of time.
So, without this platform viewpoint, it would be actually
very hard to get a global overview of such long-term and
stealthy phenomenon. Another finding related to this view-
point is that several groups of platforms seem to be targeted
in a very similar way (thus, by coordinated sources), prob-
ably because of their IP proximity, and this hostile traffic
represents, in total, a significant volume (70%).

5.2. Concepts Synthesis

So far, we have created N sets of cliques, i.e., one set of
cliques for each relevant attack property. As suggested here
above, each clique pattern can hold a piece of actionable
knowledge about an attack phenomenon, but in some cases
the security analyst will have to synthesize different pieces
of evidence in order to perform a root causes analysis, and
to really understand what happened. Therefore, we can
take advantage of all one-dimensional cliques to construct
higher-level concepts by simply computing cliques’ inter-
sections. Based on the type of phenomenon under scrutiny,
the practitioner may include any number of properties in
order to create concepts containing more or less semantic
meaning. Moreover, those concepts have by construction
some relationships with other super- or sub-concepts (from
a lower/higher combination level), so a concept lattice can
be built dynamically to represent the connections between
those different concepts describing certain phenomena.

Based on the initial sets of cliques obtained via the
clique-based clustering, we have computed the total num-
ber of combinations that could, in theory, be derived from
those dimension-1 concepts. As this is essentially a com-
binatorial problem, the theoretical number of combinations
grows very quickly, even with as few as 4 dimensions. In-
deed, more than 2 millions combinations could exist in the-
ory, based on the number of cliques we have obtained. In
practice though, we observe that the number of concepts
synthesized at each level is not excessive, and in total we
obtain only 0.04% of the theoretical number of combina-
tions. This indicates also that the selected attack proper-
ties are not equally distributed and thus seem to carry some
meaningful semantics on the observed phenomena, since
many cliques’ combinations are empty. While the analysis
of raw network traces (composed of millions of packets) on
each sensor would definitively be impractical, now we ob-
serve that the analysis of those concepts can easily provide
a more global insight into the real-world phenomena that
have caused the attack traffic. To illustrate this, we provide
two such examples here under.

Attack concepts analysis - Two case-studies. Table 1
gives an overview of three interesting concepts. The first
two concepts belong to the dimension 4 whereas the last
one is of dimension 2.

Concepts 1 and 2 justify our initial design choice which
was to use attack events, as opposed to attack profiles, for
the atomic objects of our datasets. These two concepts are
made of nine attack events, each. These nine attack events
belong to the same type of attack profile observed over con-
secutive periods of time. In fact, it is as if we were observ-
ing two consecutive waves of the same attack against the
same set of targets. The first wave lasts for 30 days in Febru-

Id Dim.
Nr Events

Date
Patterns (intent)

Nr Sources Port Sequences
(Extent) (duration) Time Series Platforms distri. Geographical distri Subnets distri

1 4 9
2008-01-20

p.m.
32,21,27,61,59,

HU,PL,FR,BR 86,84,85,90,83,87,89,203 880 5900T (VNC)
(30 days) 49,48,80,63

2 4 9
2008-03-11

p.m.
32,21,27,61,59,

KR,US,CA,DE 123,89,87,61,90,91,213,222 3,456 5900T (VNC)
(7 days) 49,48,80,63

3 2 48 p.m. 50 - 12,305

9763T, 15264T, 29188T, 6134T, 6769T, 7690T
2006-09-21 87,82,83,84,151, 1755T, 50656T, 64264T, 32878T, 64783T,
(262 days) 80,81,85,213,others 18462T, 4152T, 25083T, 9661T, 25618T,

28238T, 38009T, 53842T, 64697T, 46030T

Table 1. Some examples of concepts obtained at different semantic levels (the real subnets of origin have been anonymized).

ary while the second starts in March and lasts for only seven
days. One could be tempted to consider these two waves as
part of a single phenomenon. If that was the case, relax-
ing the constraint on the time series analysis, i.e. inspecting
dimension-3 concepts, would result in having those various
attack events ending up in the same concept. This is not
what happens. Indeed, the geographical distribution and the
subnet distributions also differ between these two concepts.
In other terms, even if the modus operandi as well as the
targets appeared to be the same, the origins were clearly
different. Figuring out if this can be explained by two dif-
ferent botnets being controlled by the same entity or two
distinct entities using the same tool lies outside the scope of
this paper as it pertains to forensics activities. What mat-
ters here is that the approach revealed simply and clearly an
important element that can help in the understanding of the
observed phenomena.

The second case, illustrated with the concept 3 in Ta-
ble 1, justifies our motivation to look not only at all
dimension-1 and dimension-N concepts, but also to analyze
the concepts obtained in between, as there are also phenom-
ena that can emerge at those intermediary semantic levels.
There are 48 events involved in concept 3, and all of them
have targeted the very same sensor (located in China) at dif-
ferent dates, in the form of very ephemeral spikes of ac-
tivity, and now they all seem to originate from the same
IP netblocks. By raising the dimensional level, this phe-
nomenon would not appear as clearly since the events’ time
series are not correlated. The events involved in this con-
cept could at first sight appear as Internet noise; but now,
a new type of phenomenon clearly emerges. Since it has
lasted for at least 262 days, it is quite unlikely that it is
due to a pure random process or to background noise. At
this stage, there is no obvious reason that could further ex-
plain the intent of this fairly large community of machines
(12,305 sources), and more viewpoints are probably needed
to refine our concept-based root cause analysis. However,
those simple examples demonstrate that our technique can
effectively highlight stealthier phenomena that would oth-
erwise stay hidden in the Internet background noise.

6. Conclusions

The global analysis of Internet threats is clearly a com-
plex but critical problem, and thus appropriate analysis
methods are required in order to effectively get insights
into the modus operandi of new emerging attack phenom-
ena. In this work, we have presented a multi-dimensional
knowledge discovery and data mining method that can help
us to improve our understandings of new Internet threats.
Our method consists in (i) extracting meaningful nuggets of
knowledge by mining a complex dataset according to dif-
ferent properties considered as relevant; and in (ii) synthe-
sizing those pieces of knowledge at different dimensional
levels, so as to create a concept lattice that can best describe
real-world phenomena for a domain expert. An experimen-
tal validation on real-world attack traces has shown that sig-
nificant insights can be obtained into the threats intelligence
domain thanks to this approach.

The analysis of the concepts has revealed the importance
of finding the appropriate association of concepts to under-
stand the underlying phenomena. As future work, we seek
to develop algorithms and heuristics that can take advantage
of the concept lattice to highlight systematically all rele-
vant attack phenomena found at different dimensional lev-
els. The objective is to further improve the concept-based
root cause analysis, and, more importantly, to facilitate the
work of the security analyst.

References

[1] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling. The
nepenthes platform: An efficient approach to collect malware. In
Proceedings of the 9th International Symposium on Recent Advances
in Intrusion Detection (RAID), 2006.

[2] D. Barbarà, J. Couto, S. Jajodia, L. Popyack, and N. Wu. Adam: A
testbed for exploring the use of data mining in intrusion detection. In
ACM SIGMOD Record, 30(4), pages 15–24, 2001.

[3] D. Barbará and S. Jajodia, editors. Applications of Data Mining in
Computer Security, volume 6 of Advances in Information Security,
chapter Data Mining For Intrusion Detection - A Critical Review.
Springer, 2002.

[4] I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum
clique problem. In Handbook of Combinatorial Optimization, vol-
ume 4. Kluwer Academic Publishers, Boston, MA, 1999.

[5] Finjan Malicious Code Research Center. Web security trends report
q1/2008, http://www.finjan.com/content.aspx?id=827, sep 2008.

[6] Z. Chen, L. Gao, and K. Kwiat. Modeling the spread of active worms.
In Proceedings of IEEE INFOCOM, 2003.

[7] M. P. Collins, T. J. Shimeall, S. Faber, J. Janies, R. Weaver, M. De
Shon, and J. Kadane. Using uncleanliness to predict future botnet
addresses. In IMC ’07: Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, pages 93–104, New York, NY,
USA, 2007. ACM.

[8] SRI International Cyber-TA Honeynet Project. www.cyber-
ta.org/honeynet, [july 2008].

[9] D. Dagon, C. Zou, and W. Lee. Modeling botnet propagation using
time zones. In Proceedings of the 13th Annual Network and Dis-
tributed System Security Symposium (NDSS’06), February 2006.

[10] H. Debar and A. Wespi. Aggregation and correlation of intrusion-
detection alerts. In RAID ’00: Proceedings of the 4th International
Symposium on Recent Advances in Intrusion Detection, pages 85–
103, London, UK, 2001. Springer-Verlag.

[11] DShield. http://www.dshield.org, sep 2008.

[12] J. Franklin, V. Paxson, A. Perrig, and S. Savage. An inquiry into
the nature and causes of the wealth of internet miscreants. In CCS
’07: Proceedings of the 14th ACM conference on Computer and com-
munications security, pages 375–388, New York, NY, USA, 2007.
ACM.

[13] B. Ganter, G. Stumme, and R. Wille. Formal Concept Analysis:
Foundations and Applications. Lecture Notes in Artificial Intelli-
gence, no. 3626, Springer-Verlag, 2005.

[14] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering anal-
ysis of network traffic for protocol- and structure-independent botnet
detection. In Proceedings of the 17th USENIX Security Symposium,
2008.

[15] E-H. Han, G. Karypis, V. Kumar, , and B. Mobasher. Clustering in a
high-dimensional space using hypergraph models. Technical report,
Department of Computer Science, University of Minnesota, 1997.

[16] Y. Huang, H. Xiong, W. Wu, and Z. Zhang. A hybrid approach for
mining maximal hyperclique patterns. IEEE International Confer-
ence on Tools with Artificial Intelligence (ICTAI), 0:354–361, 2004.

[17] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice-
Hall advanced reference series, 1988.

[18] K. Julisch and M. Dacier. Mining intrusion detection alarms for ac-
tionable knowledge. In Proceedings of the 8th ACM International
Conference on Knowledge Discovery and Data Mining, 2002.

[19] S. Kullback and R. A. Leibler. On information and sufficiency. An-
nals of Mathematical Statistics 22: 79-86., 1951.

[20] S. Kuznetsov and S. Obiedkov. Algorithms for the construction of
concept lattices and their diagram graphs. In PKDD ’01: Proceed-
ings of the 5th European Conference on Principles of Data Min-
ing and Knowledge Discovery, pages 289–300, London, UK, 2001.
Springer-Verlag.

[21] W. Lee and S. J. Stolfo. Combining knowledge discovery and knowl-
edge engineering to build IDSs. In RAID ’99: Proceedings of the 3th
International Symposium on Recent Advances in Intrusion Detection,
1999.

[22] W. Lee, S.J. Stolfo, and K.W. Mok. A data mining framework for
building intrusion detection models. In Proceedings of the 1999
IEEE Symposium on Security and Privacy, pages 120–132, 1999.

[23] C. Leita and M. Dacier. Sgnet: a worldwide deployable framework
to support the analysis of malware threat models. In Proceedings of
the 7th European Dependable Computing Conference (EDCC 2008),
2008.

[24] C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an automated
script generation tool for honeyd. In Proceedings of the 21st Annual
Computer Security Applications Conference, 2005.

[25] C. Leita, V.H. Pham, O. Thonnard, E. Ramirez-Silva, F. Pouget,
E. Kirda, and Dacier M. The Leurre.com Project: Collecting Inter-
net Threats Information Using a Worldwide Distributed Honeynet.
In Proceedings of the WOMBAT Workshop on Information Security
Threats Data Collection and Sharing, WISTDCS 2008. IEEE Com-
puter Society press, April 2008.

[26] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representa-
tion of time series, with implications for streaming algorithms. In
Proceedings of 8th ACM SIGMOD workshop on Research Issues in
data mining and knowledge discovery, California, USA, 2003.

[27] D. Moore, C. Shannon, G.M. Voelker, and S. Savage. Network tele-
scopes: Technical report. CAIDA, April, 2004.

[28] M. Pavan and M. Pelillo. A new graph-theoretic approach to cluster-
ing and segmentation. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, 2003.

[29] V. Pham, M. Dacier, G. Urvoy Keller, and T. En Najjary. The quest
for multi-headed worms. In DIMVA 2008, 5th Conference on De-
tection of Intrusions and Malware & Vulnerability Assessment, July,
2008, Paris, France, Jul 2008.

[30] F. Pouget. Distributed system of honeypot sensors : Discrimination
and correlative analysis of attack processes. PhD thesis, Ecole Na-
tionale Supérieure des Télécommunications (ENST), Paris., 2006.

[31] F. Pouget and M. Dacier. Honeypot-based forensics. In
AusCERT2004, AusCERT Asia Pacific Information technology Se-
curity Conference 2004, 23rd - 27th May 2004, Brisbane, Australia,
2004.

[32] F. Pouget, M. Dacier, J. Zimmerman, A. Clark, and G. Mohay. In-
ternet attack knowledge discovery via clusters and cliques of attack
traces. Journal of Information Assurance and Security, Volume 1,
Issue 1, March, 2006.

[33] Team Cymru Darknet Project. http://www.cymru.com/darknet/, [july
2008].

[34] The Honeynet Project. http://www.honeynet.org, [july 2008].

[35] The Leurre.com Project. http://www.leurrecom.org, [july 2008].

[36] N. Provos. A virtual honeypot framework. In Proceedings of the 13th
USENIX Security Symposium, 2004.

[37] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted
approach to understanding the botnet phenomenon. In IMC ’06: Pro-
ceedings of the 6th ACM SIGCOMM conference on Internet mea-
surement, pages 41–52, New York, NY, USA, 2006. ACM.

[38] J. Riordan, D. Zamboni, and Y. Duponchel. Building and deploy-
ing billy goat, a worm-detection system. In Proceedings of the 18th
Annual FIRST Conference, 2006.

[39] Internet Motion Sensor. http://ims.eecs.umich.edu/, [july 2008].

[40] L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley, 2002.

[41] O. Thonnard and M. Dacier. A framework for attack patterns’ dis-
covery in honeynet data. Journal of Digital Investigation, 5S:S128–
S139, 2008.

[42] T. Werner. Honeytrap. http://honeytrap.mwcollect.org/, [july 2008].

[43] H. Xiong, Pang-Ning Tan, and V. Kumar. Hyperclique pattern dis-
covery. Data Mining and Knowledge Discovery Journal, 13(2):219–
242, 2006.

[44] V Yegneswaran, P Barford, and V Paxson. Using honeynets for in-
ternet situational awareness. In Fourth ACM Sigcomm Workshop on
Hot Topics in Networking (Hotnets IV), 2005.

Addressing the Attack Attribution Problem
using Knowledge Discovery and Multi-criteria

Fuzzy Decision-Making

Olivier Thonnard
Royal Military Academy

Polytechnic Faculty
Brussels, Belgium

olivier.thonnard@rma.ac.be

Wim Mees
Royal Military Academy

Polytechnic Faculty
Brussels, Belgium

wim.mees@rma.ac.be

Marc Dacier
Symantec Research

Sophia Antipolis
France

marc_dacier@symantec.com

ABSTRACT
In network traffic monitoring, and more particularly in the
realm of threat intelligence, the problem of “attack attri-
bution” refers to the process of effectively attributing new
attack events to (un)-known phenomena, based on some ev-
idence or traces left on one or several monitoring platforms.
Real-world attack phenomena are often largely distributed
on the Internet, or can sometimes evolve quite rapidly. This
makes them inherently complex and thus difficult to analyze.
In general, an analyst must consider many different attack
features (or criteria) in order to decide about the plausi-
ble root cause of a given attack, or to attribute it to some
given phenomenon. In this paper, we introduce a global
analysis method to address this problem in a systematic
way. Our approach is based on a novel combination of a
knowledge discovery technique with a fuzzy inference sys-
tem, which somehow mimics the reasoning of an expert by
implementing a multi-criteria decision-making process built
on top of the previously extracted knowledge. By applying
this method on attack traces, we are able to identify large-
scale attack phenomena with a high degree of confidence.
In most cases, the observed phenomena can be attributed
to so-called zombie armies - or botnets, i.e. groups of com-
promised machines controlled remotely by a same entity.
By means of experiments with real-world attack traces, we
show how this method can effectively help us to perform a
behavioral analysis of those zombie armies from a long-term,
strategic viewpoint.

Keywords
Intelligence monitoring and analysis, attack attribution.

1. INTRODUCTION
In the field of threat intelligence,“attack attribution”refers

to the process of effectively attributing new attack events to
known or unknown phenomena by analyzing the traces they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSI-KDD ’09, June 28, Paris, France
Copyright 2009 ACM 978-1-60558-669-4 ...$10.00.

have left on sensors or monitoring platforms deployed on
the Internet. The objectives of such a process are twofold:
i) to get a better understanding of the root causes of the
observed attacks; and ii) to characterize emerging threats
from a global viewpoint by producing a precise analysis of
the modus operandi of the attackers on a longer time scale.

In this paper, we introduce a global threat analysis method
to address this problem in a systematic way. We present a
knowledge mining framework that enables us to identify and
characterize large-scale attack phenomena on the Internet,
based on network traces collected with very simple and easily
deployable sensors. Our approach relies on a novel combina-
tion of knowledge discovery (by means of maximum cliques)
and a multi-criteria decision-making algorithm that is based
on a fuzzy inference system (FIS). Interestingly, a FIS does
not need any training prior making inferences. Instead, it
takes advantage of the previously extracted knowledge to
make sound inferences, so as to attribute incoming attack
events to a given phenomenon.

A key aspect of the proposed method is the exploitation
of external characteristics of malicious sources, such as their
spatial distributions in terms of countries and IP subnets,
or the distribution of targeted sensors. We take advantage
of these statistical characteristics to group events that seem
a priori unrelated, whereas most current techniques used
for anomalous traffic correlation rely only on the intrinsic
properties of network flows (e.g., protocol characteristics,
IDS alerts or signatures, firewall logs, etc) [1, 31].

Our research builds also on prior work in malicious traf-
fic analysis, also referred to as Internet background radia-
tion [17, 4]. We acknowledge also the seminal work of Yeg-
neswaran et al. on “Internet situational awareness” [30], in
which they explore ways to integrate honeypot data into
daily network security monitoring. Their approach aims at
providing tactical information, for daily operations, whereas
our approach is more focused on strategic information re-
vealing the long-term behaviors of large-scale phenomena.
Furthermore, many of these large-scale phenomena are ap-
parently related to the ubiquitous problem of zombie armies
- or botnets, i.e. groups of compromised machines that are
remotely controlled and coordinated by a same entity. Still
today, zombie armies and botnets constitute, admittedly,
one of the main threats on the Internet, and they are used
for different kinds of illegal activities (e.g., bulk spam send-
ing, online fraud, denial of service attack, etc) [3, 18]. While
most previous studies related to botnets have focused on un-

derstanding their inner working [23, 6, 2], or on techniques
for detecting bots at the network-level [8, 9], we are instead
more interested in studying the global behaviors of those
armies from a strategic viewpoint, i.e.: how long do they
stay alive on the Internet, what is their average size, and
more importantly, how do they evolve over time with re-
spect to different criteria such as their origins, or the type
of activities (or scanning) they perform.

In Section 2, we present the first component of our method,
namely the extraction of cliques of attackers. This step aims
at discovering knowledge by identifying meaningful correla-
tions in a set of attack events. In Section 3, we present a
multi-criteria decision-making algorithm that is based on a
fuzzy inference system. The purpose of this second compo-
nent consists in combining intelligently the previously ex-
tracted knowledge, so as to build sequences of attack events
that can be very likely attributed to the same global phe-
nomena. Then, in Section 4, we present our experimental
results and the kind of findings we can obtain by applying
this analysis method to a set of attack events. Finally, we
conclude in Section 5 and we suggest some future directions.

2. KNOWLEDGE DISCOVERY IN ATTACK
TRACES

2.1 Introduction
We need first to introduce the notion of “attack event”.

Our dataset is made of network attack traces collected from
a distributed set of sensors (e.g., server honeypots), which
are deployed in the context of the Leurre.com Project [14,
22]. Since honeypots are systems deployed for the sole pur-
pose of being probed or compromised, any network connec-
tion that they establish with a remote IP can be considered
as malicious, or at least suspicious. We use a classical clus-
tering algorithm to perform a first low-level classification of
the traffic. Hence, each IP source observed on a sensor is
attributed to a so-called attack cluster [21] according to its
network characteristics, such as the number of IP addresses
targeted on the sensor, the number of packets and bytes sent
to each IP, the attack duration, the average inter-arrival time
between packets, the associated port sequence being probed,
and the packet payload (when available). Therefore, all IP
sources belonging to a given attack cluster have left very
similar network traces on a given sensor and consequently,
they can be considered as having the same attack profile.
This leads us then to the concept of attack event, which is
defined as follows:

An attack event refers to a subset of IP sources
having the same attack profile on a given sen-
sor, and whose coordinated activity has been ob-
served within a specific time window.

Fig. 1 illustrates this notion by representing the time se-
ries (i.e., the number of sources per day) of three coordinated
attack events observed on two different sensors in the same
time interval, and targeting three different ports. The iden-
tification of those events can be easily automated by using
the method presented in [20]. By doing so, we are able to
extract interesting events from this spurious, nonproductive
traffic collected by our sensors (previously termed “Internet
background radiation” in [17]), and we can focus on the most

82 84 86 88 90 92 94 96 98 100 102
0

50

100

150

200

250

300

350

400

450

Time (by day)

Nr
 o

f s
ou

rc
es

AE103 (139T) on sensor 45
AE171 (1433T) on sensor 45
AE173 (5900T) on sensor 9

Figure 1: Illustration of 3 attack events observed on 2

different sensors, and targeting 3 different ports.

important events that might originate from coordinated phe-
nomena. In the rest of this Section, we show how to take
advantage of different characteristics of such attack events
to discover knowledge by means of an unsupervised clique-
based clustering technique.

2.2 Defining Attack Characteristics
In most knowledge discovery applications, the first step

consists in selecting certain key characteristics from the dataset,
i.e., salient features that may (hopefully) provide meaningful
patterns [11]. We give here an overview of different attack
characteristics we have selected to perform the extraction
of knowledge from our set of attack events. In this specific
case, we consider these characteristics as useful to analyze
the root causes of global phenomena observed on our sensors.
However, we do not pretend that they are the only ones that
could be used in threat monitoring, and other characteristics
might certainly prove even more relevant in the future. For
this reason, the framework is built such that other attack
features could be easily included when necessary.

So, the two first characteristics retained are related to
the origins of the attackers, i.e. their spatial distributions.
First, the geographical location can be used to identify at-
tack activities having a specific distribution of originating
countries. Such information can be important to identify,
for instance, botnets that are located in a limited number of
countries. It is also a way to confirm the existence, or not, of
so-called safe harbors for cybercriminals or hackers. Some-
how related to the geographical location, the IP network
blocks provide also an interesting viewpoint on the attack
phenomena. Indeed, IP subnets can give a good indication
of the spatial “uncleanliness” of certain networks, i.e., the
tendency for compromised hosts (e.g., zombie machines) to
stay clustered within unclean networks [5]. So, for each at-
tack event, we can create a feature vector representing either
the distribution of originating countries, or of IP addresses
grouped by Class A-subnet (i.e., by /8 prefix).

The next attack characteristic deals with the targets of the
attackers, namely the distribution of sensors that have been
targeted by the sources. Botmasters may indeed send com-
mands at a given time to all zombies to instruct them to start

scanning (or attacking) one or several IP subnets, which of
course will create coordinated attack events on specific sen-
sors. Therefore, it seems important to look at relationships
that may exist between attack events and the sensors they
have been observed on. Since attack events are defined per
sensor, we decided to group all strongly correlated attack
events that occurred within the same time window of exis-
tence (as explained in [20]), and we then use each group of
attack events to create the feature vector representing the
proportion of sensors that have been targeted.

Besides the origins and the targets, the type of activity
performed by the attackers seems also relevant to us. In
fact, bot software is often crafted with a certain number of
available exploits targeting a reduced set of TCP or UDP
ports. In other words, we might think of each botnet having
its own attack capability, which means that a botmaster will
normally issue scan or attack commands only for vulnerabil-
ities that he might exploit to expand his botnet. So, it seems
to make sense to take advantage of this feature to look for
similarities between the sequences of ports that have been
targeted by the sources of the attack events. Let us remind
that, in our low-level classification of the network traffic [21],
each source is associated to the complete sequence of ports
that it has targeted on a given sensor for the whole dura-
tion of the attack session (e.g., less than 24 hours), which
allows us to compute and compare the distributions of port
sequences for the observed attack events.

Finally, we have also decided to compute, for each pair
of events, the ratio of common IP addresses. We are aware
of the fact that, as time passes, some zombie machines of a
given botnet might be cured while others may get infected
and join the botnet. Additionally, certain ISPs apply a quite
dynamic policy of IP address allocation to residential users,
which means that bot-infected machines can have different
IP addresses when we observe them at different moments.
Nevertheless, and according to our domain experience, it
is reasonable to expect that if two distinct attack events
have a high percentage of IP addresses in common, then
the probability that those two events are somehow related
to the same global phenomenon is increased (assuming that
the time difference between the two events is not too large).

2.3 Extracting Cliques of Attackers

2.3.1 Principles
In our global threat analysis method, we have developed

a knowledge discovery component that involves an unsu-
pervised graph-theoretic correlation process. The idea con-
sists in discovering all groups of highly similar attack events
(through their corresponding feature vectors) in a reliable
and consistent manner, and for each attack characteristic
that can bring an interesting viewpoint on the root causes.

In a clustering task, we typically consider the following
steps [11]: i) feature selection and/or extraction; ii) defini-
tion of a similarity measure between pairs of patterns; iii)
grouping similar patterns; iv) data abstraction (if needed),
to provide a compact representation of each cluster; and v)
the assessment of the clusters quality and coherence.

In the previous Section, we have already described the at-
tack features that are of interest in this paper; so now we
need to measure the similarity between two such input vec-
tors (or distributions, in our case). Clearly, the choice of
a similarity metric is very important, as it has an impact

on the properties of the final clusters, such as their size,
quality, and consistency. To reliably compare the kind of
empirical distributions mentioned here above, we have cho-
sen to rely on strong statistical distances. As we do not
know the real underlying distribution from which the ob-
served samples were drawn, we use non-parametric statis-
tical tests, such as Pearson’s χ2, to determine whether two
one-dimensional probability distributions differ in a signifi-
cant way (with a significance level of 0.05). The resulting
p-value is then validated against the Jensen-Shannon diver-
gence (JSD) [15], which derives itself from the Kullback-
Leibler divergence [12]. Let p1 and p2 be for instance two
probability distributions over a discrete space X, then the
K-L divergence of p2 from p1 is defined as:

DKL(p1||p2) =
X

x

p1(x) log
p1(x)

p2(x)

which is also called the information divergence (or relative
entropy). DKL is commonly used in information theory to
measure the difference between two probability distributions
p1 and p2, but it is not considered as a true metric since it
is not symmetric, and does not satisfy the triangle inequal-
ity. For this reason, we can also define the Jensen-Shannon
divergence as:

JS(p1, p2) =
DKL(p1||p̄) +DKL(p2||p̄)

2

where p̄ = (p1 + p2)/2. In other words, the Jensen-Shannon
divergence is the average of the KL-divergences to the av-
erage distribution. The JSD has the following notable prop-
erties: it is always bounded and non-negative; JS(p1, p2) =
JS(p2, p1) (symmetric), and JS(p1, p2) = 0 when p1 = p2

(idempotent). To be a true metric, the JSD must also sat-
isfy the triangular inequality, which is not true for all cases
of (p1, p2). Nevertheless, it can be demonstrated that the
square root of the Jensen-Shannon divergence is a true met-
ric [7], which is what we need for our application.

Finally, we take advantage of those similarity measures to
group all attack events whose distributions look very simi-
lar. We simply use an unsupervised graph-based approach to
formulate the problem: the vertices of the graph represent
the patterns (or feature vectors) of all attack events, and
the edges express the similarity relationships between those
vertices, as calculated with the distance metrics described
here above. Then, the clustering is performed by extracting
so-called maximal cliques from the graph, where a maxi-
mal clique is defined as an induced sub-graph in which the
vertices are fully connected and it is not contained within
any other clique. To perform this unsupervised clustering,
we use the dominant sets approach of Pavan et al. [19],
which proved to be an effective method for finding maximal
weighted cliques. This means that the weight of every edge
(i.e., the relative similarity) is also taken into consideration
by the algorithm, as it seeks to discover maximal cliques
whose total weight is maximized. This generalization of the
MCP is also known as the maximum weight clique prob-
lem (MWCP). We refer the interested reader to [27, 26] for
a more detailed description of this clique-based clustering
technique applied to our honeynet traces.

2.3.2 Some Experimental Clique Results
Our data set comes from a 640-day attack trace obtained

with the Leurre.com honeynet in the time period from Septem-
ber 2006 to June 2008. This trace was collected by 36 plat-
forms located in 20 different countries and belonging to 18
different class A-subnets. We have selected only the most
prevalent types of activities observed on the sensors, i.e.
about 130 distinct attack profiles for which an activity in-
volving a sufficient number of IP sources had been observed
at least once on a given day during the whole period. This
data set comprises totally 1,195,254 distinct sources, which
have sent about 3,423,577 packets to the sensors. By using
the technique described in [20], we have extracted 351 at-
tack events that were somehow coordinated on at least two
different sensors. This reduced set of attack events still ac-
counts for 282,363 unique sources (23.6 % of the data set),
or 741,349 packets (21.5%).

For the set of attack characteristics considered above, we
applied our clique-based clustering on those attack events.
Table 1 on page 5 presents a high-level overview of the
cliques obtained for each attack dimension separately. As we
can see, a relatively high volume of sources could be classified
into cliques for each dimension. The last colon with the most
prevalent patterns gives an indication of which countries or
class A-subnets (e.g., originating or targeted IP subnets)
are most commonly observed in the cliques that lie in the
upper quartile with respect to the number of sources. Inter-
estingly, it seems that many coordinated attack events are
coming from a given IP subspace. Regarding the targeted
platforms, several cliques involve a single class A-subnet.
About the type of activities, we can observe some com-
monly targeted ports (e.g., Windows ports used for SMB
or RPC, or SQL and VNC ports), but also a large num-
ber of uncommon high TCP ports that are normally unused
on standard (and clean) machines (such as 6769T, 50286T,
9661T, . . .). A non-negligeable volume of sources is also due
to UDP spammers targeting Windows Messenger popup ser-
vice (ports 1026 to 1028/UDP).

2.4 Consolidation of the Knowledge
In order to assess the consistency of the resulting cliques of

attack events, it can be useful to see them charted on a two-
dimensional map so as to i) verify the proximities among
clique members (intra-clique consistency), and ii) under-
stand potential relationships between different cliques that
are somehow related (i.e. inter-clique relationships). More-
over, the statistical distances used to compute those cliques
make them intrinsically coherent, which means also that cer-
tain cliques of events may be somehow related to each other,
although they were separated by the clique algorithm.

Since most of the feature vectors we are dealing with have
a high number of variables (e.g., a geographical vector has
more than 200 country variables), obviously the structure of
such high-dimensional data set cannot be displayed directly
on a 2D map. Multidimensional scaling (MDS) is a set of
methods that can help to address this problem. MDS is
based on dimensionality reduction techniques, which aim at
converting a high-dimensional dataset into a two or three-
dimensional representation that can be displayed, for exam-
ple, in a scatter plot. The aim of dimensionality reduction is
to preserve as much of the significant structure of the high-
dimensional data as possible in the low-dimensional map.
As a consequence, MDS allows an analyst to visualize how
far observations are from each other for different kinds of
similarity measures, which in turn can deliver insights into

!!" !#" !$" " $" #" !"
!!"

!#"

!$"

"

$"

#"

!"

%

%
&'(&)
*+(&)
&)(*+

&)(&'

&)(,- &)(*+

,-(&)

./(,-
,-(0122

*+(&'

,-(&'

,-(&'
*+(&'

*+(3-

*+(3-

45(67
45(3-

8*(45

&'

4,(,-

3-(&)

*+(45

3-(9.
*+(&)

*+(&)

*+(0122

*+(67

&)(*+

&)(:4
&)(*+

*+(&)

*+(:4

&)(0122

67('.

67(.-

7+(9.
3-(9.7+(9.
9.(95

9.(7+

9.(+7
9.(67

9.(7+

9.(7+

"

;

<"

<;

$"

$;

="

Figure 2: Visualization of geographical cliques of attack-

ers. The coloring refers to the different cliques and the

red circles indicate their sizes on the low-D map. The

superposed text labels indicate only the two top attacking

countries for some of the data points.

the underlying structure of the high-dimensional dataset.
Because of the intrinsic non-linearity of real-world data

sets, we applied a recent MDS technique called t-SNE to
visualize each dimension of the data set, and to assess the
consistency of the cliques results. t-SNE [28] is a variation
of Stochastic Neighbour Embedding ; it produces significantly
better visualizations than other MDS techniques by reducing
the tendency to crowd points together in the centre of the
map. Moreover, this technique has proven to perform bet-
ter in retaining both the local and global structure of real,
high-dimensional datasets in a single map, in comparison to
other non-linear dimensionality reduction techniques such
as Sammon mapping, Isomaps or Laplacian Eigenmaps [10].
Stochastic Neighbor Embedding aims at minimizing a cost
function that is based on the sum of Kullback-Leibler diver-
gences over all datapoints using a gradient descent method.
t-SNE improves further this technique by using an initial
Student-t distribution, rather than a Gaussian, to compute
the similarity between two points in the low-dimensional
space (which tends to alleviate the problem of “crowding”
points in the center of the map, see [28] for a detailed ex-
planation).

Figure 2 shows the resulting two-dimensional plot ob-
tained by mapping the geographical vectors on a 2D map
using t-SNE. Each datapoint on this map represents the ge-
ographical distribution of a given attack event. The coloring
refers to the clique membership of each event, as obtained
previously by applying the clique-based clustering, and the
dotted circles indicate the clique sizes. We could easily verify
that two adjacent events on the map have highly similar ge-
ographical distributions (even from a statistical viewpoint),
while two distant events have clearly nothing in common
in terms of originating countries. Quite surprisingly, the
resulting mapping is far from being chaotic; it presents a
relatively sparse structure with clear datapoint groupings,
which means also that most of those attack events present
very tight relationships regarding their origins. Due to the

Attack Dimension Nr of Max.size Min.size Volume of Most prevalent patterns found in the cliques(1)

Cliques (nr events) (nr events) sources (%)
Geolocation 31 40 3 84.4 〈CN,CA,US,FR,TW〉, 〈IT,ES,FR,SE,DE,IL〉, 〈KR,US,BR,PL,CN,CA〉

〈US,JP,GB,DE,CA,FR,CN,KR〉, 〈US,FR,JP,CN,DE,ES,TW〉, 〈CA,CN〉
〈PL,DE,ES,HU,FR〉

IP Subnets (Class A) 25 51 3 91.2 〈87,82,151,83,84,81,85,213〉, 〈222,221,60,218,58,24,124,121,219,82,220〉
〈201,83,200,24,211,218,89,124,61,82,84〉, 〈24,60〉
〈83,84,85,80,88〉, 〈193,195,201,202,203,216,200,61,24,84,59〉

Targeted platforms 17 86 2 70.1 〈202〉, 〈88, 192〉, 〈195〉, 〈193〉, 〈194〉
〈129, 134, 139, 150〉, 〈24, 213〉

Port sequences 22 66 4 93.2 〈I〉, 〈1433T〉, 〈I-445T〉, 〈5900T〉, 〈1026U〉, 〈135T〉, 〈50286T〉
〈I-445T-139T-445T-139T-445T〉, 〈6769T〉, 〈1028U-1027U-1026U〉

Table 1: Some experimental clique results obtained from a honeynet dataset collected from Sep 06 until June 08.

(1) the given patterns represent the average distributions for the most prevalent cliques, i.e. the ones lying in the

upper quartile in terms of number of sources. For the IP subnets (resp. targeted platforms), the numbers refer to the

distributions of originating (resp. targeted) class A-subnets.

!!" !#" !$" " $" #" !"
!!"

!#"

!$"

"

$"

#"

!"

%

%
&

&

'(!)*

!!##*

& &
&##'*

&##'*

#!!$*

+',!#*
&
&

&

&

',""*

',""*

(+'*

',""*

##'*

&##'*(+,*##'*---

##'*
$,!.*

(+'*

(#++*

("$./("$!/("$)/

("$!/

$,!)*

$,!)*$,!.*

$,!.*

',""*

("$'*

',""*

(#++*

',""*($$,+*

$#!'+*

#!!$*

!$((*

!(+#*
$,())*

!.!,*

#!!$*

'+)#$*

"

'

("

('

$"

$'

+"

Figure 3: Same visualization of the geographical cliques

of attackers as Fig 2, but here the superposed text labels

indicate the port sequences targeted by the attackers.

strict statistical distances used to calculate cliques, this kind
of correlation can hardly be obtained by chance only.

Similar “semantic mapping” can naturally be obtained for
the other dimensions (e.g., subnets, platforms, etc), so as to
help assessing the quality of other cliques of attackers. To
conclude this Section, Figure 3 shows the same geographi-
cal mapping on which the port sequences of several attack
events have been superposed on top of the datapoints. This
can help to visualize unobvious relationships among differ-
ent types of activities and their origins, and it leads also
to the natural intuition that an intelligent algorithm could
potentially leverage the results of this knowledge discovery
process, by combining efficiently different sets of cliques.

3. MULTI-CRITERIA DECISION-MAKING

3.1 Requirements and Motivation
The decision-support component of our method shall take

advantage of the knowledge obtained via the extraction of
cliques, and of the global semantic mappings obtained through
dimensionality reduction. The final objective consists in

re-constructing sequences of attack events that can be at-
tributed with a high confidence to the same root phenomenon
in function of multiple criteria. In other words, we want
to build an inference engine that takes as input the ex-
tracted knowledge to classify incoming attack events into
either “known phenomena”, or otherwise to identify a new
phenomenon when needed (e.g., when we observe the first
attack event of a new zombie army). There exists certainly
many different classification algorithms that are able to map
multiple input features to multiple output classes, even for
complex, non-linear mappings, such as Support Vector Ma-
chines, Artificial Neural Networks, etc. However, we are con-
fronted to specific constraints that do not allow us to use this
type of supervised machine learning techniques. First, we
have a priori zero-knowledge of the expected output, which
means that we can not provide training samples showing the
characteristics of the output we are looking for. Secondly,
we want to include some domain knowledge to specify which
type of combinations we expect to be promising in the root
cause identification. Third, the inference system must be
flexible enough to allow additional criteria to be used in
the future, so as to further improve the inference capabil-
ities. Finally, we favor the “white-box” approach having a
transparent reasoning process, which allows an expert to un-
derstand the reasons (i.e., the combinations of criteria) for
which the system has grouped a given set of events into the
same root phenomenon.

Although large-scale phenomena on the Internet are com-
plex and dynamic, our intuition is that two consecutive at-
tack events should be linked to the same root phenomenon
if and only if they share at least two different attack char-
acteristics. That is, we want to build a decision-making
process that will attribute two attack events to the same
phenomenon when the events features are “close enough” for
any combination of at least two attack dimensions out of the
complete set of criteria: {origins, targets, activity, commonIP }.
So, we hypothesize that real-world phenomena may perfectly
evolve over time, which means that two consecutive attack
events of the same zombie army must not necessarily have
all their attributes in common. For example, the bots com-
position of a zombie army may evolve over time because
of the cleaning of infected machines and the recruitment of
new bots. From our observation viewpoint, this will trans-
late into a certain shift in the IP subnet distribution of the
zombie machines for subsequent attack events of this army

!"#$!%&!&'(()!*'+#,-!#./.0!!

!!!1'+#!20!3&!!"!3,!#!456!$"!3,!%!$7#5!&"!3,!'!!

!!!1'+#!80!3&!!(!3,!#)!$7#5!&(!3,!')!!

!!!!

!!!1'+#!50!9!

!
:5;'$,!

<=2-)2>!

=8!

<=?-)?>!

9!

:5;'$!@4*34A+#,!4*#!&'((3B#6!456!4++!*'+#,!4*#!!

#@4+'4$#6!C3$7!;*#D6#B5#6!E#EA#*,73;!&'5FG%5,!!

H7#!35;'$,!4*#!!

F*3,;!5'EA#*,!

I++!%'$;'$,!(3!4*#!F%EA35#6!!

C3$7!45!4//*#/4G%5!E#$7%6.!

Figure 4: Main components of a Fuzzy System.

(and thus, most probably different cliques w.r.t. the ori-
gins). Or, a zombie army may be instructed to scan several
consecutive IP subnets in a rather short interval of time,
which will lead to the observation of different events hav-
ing highly similar distributions of originating countries and
subnets, but those events will target completely different
sensors, and may eventually use different exploits (hence,
targeting different port sequences).

On the other hand, we consider that only one correlated
attack dimension is not sufficient to link two attack events
to the same root cause, since the result might then be due
to chance only (e.g., a large proportion of attacks originate
from some large or popular countries, certain Windows ports
are commonly targeted, etc). However, by combining intelli-
gently several attack viewpoints, we can reduce considerably
the probability that two attack events would be attributed
to the same root cause whereas they are in fact unrelated.

3.2 Fuzzy Inference Systems
We still need to formally define what is the “relatedness

degree” between two attack events, certainly when they do
not belong to a same clique but are somehow “close” to each
other. Intuitively, attack events characteristics in the real
world have unsharp boundaries, and the membership to a
given phenomenon can be a matter of degree. For this rea-
son, we have developed a decision-making process that is
based on a fuzzy inference system (FIS). The mathemat-
ical concepts behind fuzzy reasoning are quite simple and
intuitive; in fact, it aims at reproducing the reasoning of
a human expert with very simple mathematical functions.
Fuzzy inference is thus a convenient way to map an input
space to an output space with a flexible and extensible sys-
tem, and using the codification of common sense and expert
knowledge. The mapping then provides a basis from which
decisions can be made.

The main components of an inference system are sketched
in Fig. 4. To map the input space to the output space,
the primary mechanism is a list of if-then statements called
rules, which are evaluated in parallel, so the order of the
rules is unimportant. Instead of using crisp variables, all
inputs are fuzzified using membership functions in order to
determine the degree to which the input variables belong to
each of the appropriate fuzzy sets. If the antecedent of a
given rule has more than one part (i.e., multiple ’if’ state-
ments), a fuzzy logical operator is applied to obtain one
number that represents the result of the antecedent for that
rule. For example, the fuzzy OR operator simply selects the
maximum of the two values. The results of all rules are then
combined and distilled into a single, crisp value that can be
used to make a decision. This aggregation process can be
done in two different ways. Mamdani’s inference [16] expects

!!" " !" #" $"
"

"%!

"%#

"%$

"%&

'

('

)
*
+
,
*
-.
/
01

2

2

!#" !3" !!" !'" "
"

"%!

"%#

"%$

"%&

'

4'

)
*
+
,
*
-.
/
01

2

2

5
"

"%!

"%#

"%$

"%&

'

6
7
8*
29
7
:1
7
:2

;*'

;*!
;*'

;*!

Figure 5: Fuzzy rule evaluation.

the output membership functions to be also fuzzy sets. After
the aggregation process, there is a fuzzy set for each output
variable that needs defuzzification by computing for instance
the centröıd of the output function. Whereas in a Sugeno-
type inference system [25], the output membership functions
are either linear or constant. The general form of a rule in a
Sugeno fuzzy model is: if Input1 is x and Input2 is y then
Output is z = a.x+ b.y+ c. For a zero-order Sugeno model,
the output level z is a constant (a=b=0). The output level
zi of each rule is weighted by the firing strength wi of the
rule. The most common way to calculate the final output of
the system is the weighted average of all rule outputs:

Final output =

P
i wi.ziP

i wi

When it is possible to model a fuzzy system using Sugeno-
type inference, the defuzzification and aggregation process
is thus greatly simplified and much more efficient than with
Mamdani’s inferences, which is why we used a Sugeno-type
system to model each attack phenomenon.

Concretely, we use the knowledge obtained from the ex-
traction of cliques to build the fuzzy rules that describe the
behavior of each phenomenon. The characteristics of new
incoming attack events are then used as input to the fuzzy
systems that model the phenomena identified so far. In
each of those fuzzy systems, the features of the most re-
cent attack event shall define the current parameters of the
membership function used to evaluate the following simple
rules: if xi is close AND if yi is close then zi is related,
∀i ∈ {geo, subnets, targets, portsequence}. Fig 5 gives a
graphical representation of how such a rule is evaluated for
the subnets of origins of two given attack events. Since this
characteristic is represented by a 2D mapping, we can see the
result of evaluating the relative position of the events accord-
ing to both dimensions (x, y). Each membership function is
maximal within the cliques, then it decreases smoothly to
take into account the fuzziness of real-world phenomena. In
this case, the antecedents of the rule hold respectively 0.16
and 1.0, which results in an output of 0.16 (since a logical
AND in fuzzy logic corresponds to the MIN operator).

So, the membership functions referred to as “is close”
in the fuzzy rules are defined by the characteristics of the
cliques to which the attack events belong. The calculation
of the rule output zi ∈ [0, 1] is just the intersection between
the two curves, which quantifies the inter-relationship be-
tween the cliques (and hence, between the attack events).
Similarly, we can evaluate the fuzzy rules for the other di-
mensions considered in the inference system. For the last
dimension, i.e. the common IP’s, we use a static member-
ship function whose input is the common IP ratio calculated
between the two events. Fig 6 represents this static member-
ship function, where we can see the output ZIP increasing

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Common IP ratio (%)

Fu
zz

y
ou

tp
ut

Figure 6: Common IP Membership function.

smoothly as the ratio of common IP addresses increases from
0 to 10%, where ZIP is then maximal. This curve is actu-
ally drawn from our knowledge, or domain experience, in
monitoring malicious traffic.

Note that, initially, the inference engine has no knowl-
edge, so the first incoming attack event will create the first
phenomenon. Then, each time a new event could not be
attributed to an existing phenomenon, the inference engine
will create a new fuzzy system to model this new emerging
phenomenon. The inference engine is thus self-adaptive by
design.

3.3 Multi-criteria Decision-making
Having formally defined how to evaluate the output of

each rule, for each phenomenon, a last problem remains re-
garding the weighted average that is used as aggregation
function in a classical Sugeno inference system. In fact, it
does not allow us to express that certain combinations of
criteria (or rule outputs) must be somehow prioritized, as
previously described in the requirements. We need thus to
introduce another type of multi-criteria aggregation func-
tion that allows to model more complex requirements such
as “most of”, or “at least two” criteria to be satisfied in the
overall decision function. Yager has introduced in [29] a spe-
cial type of operator called Ordered Weighted Aggregation
(OWA), which allows to include some relationships between
multiple criteria in the aggregation process. An OWA opera-
tor provides an aggregation function for criteria whose result
lies between the classical “and”and“or”operators, which are
in fact the two extreme cases. Assume Z1, Z2, . . . , Zn are n
criteria of concern in our multi-criteria problem. For each
criteria, Zi(x) ∈ [0, 1] indicates the degree to which x satis-
fies that criteria, which corresponds in our case to the rules
output of a given fuzzy system. Then, we define a mapping
function F : In → I where I = [0, 1] as an OWA operator
of dimension n, if associated with F is a weighting vector
W = (W1,W2, . . . ,Wn) such that

1. Wi ∈ [0, 1]

2.
P

i Wi = 1

and where

F (z1, z2, . . . , zn) = W1.z
′
1 +W2.z

′
2 + . . .+Wn.z

′
n

with z′
i being the ith largest element in the collection z1, ..., zn.

That is, Z′ is an ordered vector composed of the elements
of Z put in descending order, which means that the weights
Wi are associated with a particular ordered position rather
than a particular element. Yager [29] has carefully studied
the mathematical foundations of OWA operators, and he
demonstrated that such operators have the desired proper-
ties such as monotonicity, generalized commutativity, asso-
ciativity and idempotence. To define the weights Wi to be
used, Yager suggests two possible approaches: either to use
some learning mechanism with sample data and a regression
model, or to give some semantics or meaning to the Wi’s by
asking a decision-maker to provide directly those values. We
selected the latter approach by defining the weighting vector
as W = (0.1, 0.35, 0.35, 0.1, 0.1), which translates our intu-
ition about the dynamic behaviors of large-scale phenomena.
It can be interpreted as: “at least three criteria must be sat-
isfied, but the first criteria is of less importance compared
to the 2nd and 3rd ones”. These values were carefully cho-
sen in order to avoid the grouping of unrelated events when,
for example, two events are coming from popular countries
and targeting common (Windows) ports in the same inter-
val of time, but those events are in reality not related to
the same phenomenon. In this worst-case scenario, we can
imagine that the ordered vector of criteria (obtained from
the evaluation of the fuzzy rules) could be something sim-
ilar to Z = (0.3, 0.1, 0, 1, 0). That is, we have a high cor-
relation for the targeted port sequences (z4 = 1), and we
have then some weak correlation (due to chance) for the
geographical origins (z1 = 0.3) and also for the subnets
of origins (z2 = 0.1). By applying our weighting vector
W to Z′ = (1, 0.3, 0.1, 0, 0), we get as final decision value
F = 1 ∗ 0.1 + 0.3 ∗ 0.35 + 0.1 ∗ 0.35 = 0.24. By considering
other scenarios, we can verify that the values of the weight-
ing vector W work as expected, i.e. it minimizes the final
output value in these cases. Moreover, these considerations
enable us also to fix our decision threshold to an empirical
value of about 0.25. That is, when the final output value
F lies under this threshold, we will reject the attribution of
the attack event under scrutiny to the current phenomenon
whose fuzzy system is being evaluated. Finally, when sev-
eral fuzzy systems provide an output value lying above the
threshold, we will obviously chose the highest one to at-
tribute the event; however, this case was rarely observed in
our experiments. There exists certainly other alternatives
for choosing the Wi’s, but according to our experimental re-
sults, this choice proved to be very effective in identifying
sequences of attack events having the same root cause.

4. BEHAVIORAL ANALYSIS OF GLOBAL
PHENOMENA

4.1 Main Characteristics
In this Section, we provide some experimental results ob-

tained by applying our multi-criteria inference method to
the same set of attack events we already introduced in Sec-
tion 2.3 (clique analysis). As already mentioned, these ex-
perimental results only aim at validating the applicability
and usefulness of the method proposed. They do not pre-

tend to offer a complete view of all possible phenomena ob-
servable on the Internet. At the contrary, they show that,
even with a limited number of data sources, it is possible
to observe and reason about a couple of interesting phe-
nomena. Furthermore, these anecdotal, yet representative,
examples show that our method helps in characterizing their
root cause, i.e., in addressing the attack attribution issue.

So, over the whole collection period (640 days), we found
about 32 global phenomena. In total, 348 attack events
(99% of our data set) could be attributed to a given large-
scale phenomenon. An in-depth analysis has revealed that
most of those phenomena (apart from the noisy network
worm W32.Rahack.H [24], also known as W32/Allaple) are
quite likely related to zombie armies, i.e., groups of compro-
mised machines belonging to the same botnet(s). We con-
jecture this for the following main reasons: i) the apparent
coordination of the sources, both in time (i.e., coordinated
events on several sensors) and in the distribution of tasks
(e.g., scanners versus attackers); ii) the short durations of
the attack events, typically a few days only, whereas “clas-
sical” worms tend to spread over longer, continuous periods
of time; iii) the absence of known classical network worm
spreading on many of the observed port sequences; and iv)
the source growing rate, which has a sort of exponential
shape for worms and is somehow different for botnets [13].

To illustrate the results, Table 2 on page 10 presents an
overview of some global phenomena found in our dataset.
Thanks to our method, we are able to characterize precisely
the behaviors of the identified phenomena or zombie armies.
Hence, we found that the largest army had in total 57 at-
tack events comprising 69,884 sources, and could survive for
about 112 days. The longest lifetime of a zombie army ob-
served so far was still 586 days. Fig. 7 shows the cumulative
distributions (CDF) of the lifetime and size of the identi-
fied armies. Those figures reveal some interesting aspects
of their global behaviors: according to our observations, at
least 20% of the zombie armies had in total more than ten
thousand observable1 sources during their lifetime, and the
same proportion of armies could survive on the Internet for
at least 250 days. On average, zombie armies have a total
size of about 8,500 observed sources, a mean number of 658
sources per event, and their mean survival time is 98 days.

Regarding the origins, we observe some very persistent
groups of IP subnets and countries of origin across many
different armies. On Fig. 8, we can see the CDF of the
sources involved in the zombie armies of Table 2, where the
x-axis represents the first byte of the IPv4 address space.
It appears clearly that malicious sources involved in those
phenomena are highly unevenly distributed and form a rel-
atively small number of tight clusters, which account for a
significant number of sources and are thus responsible for
a large deal of the observed malicious activities. This is
consistent with other prior work on monitoring global ma-
licious activities, in particular with previous studies related
to measurements of Internet background radiation [4, 17,
31]. However, we are now able to show that there are still
some notable differences in the spatial distributions of those
zombie armies with respect to the average distribution over

1It is important to note that the sizes of the zombie armies
given here only reflect the number of sources we could ob-
serve on our sensors; the actual sizes of those armies are
most probably much larger, even though some churn effects
(DHCP, NAT) could also affect these numbers.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lifetime (nr of days)

F(
x)

 0 10k 20k 30k 40k 50k 60k 70k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total size (nr of sources)

F(
x)

CDF size

CDF lifetime

Figure 7: Empirical CDF of the size and lifetime of

zombie armies.

30 60 90 120 150 180 210 240
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IPv4 space (class A−subnets)

C
D

F

Average
ZA1
ZA4
ZA5
ZA6
ZA9
ZA10
ZA11
ZA12
ZA20

Figure 8: Empirical CDF of sources in IPv4 address

space for the 9 zombie armies illustrated in Table 2.

all sources (represented with the blue dashed line). In other
words, certain armies of compromised machines can have
very different spatial distributions, even though there is a
large overlap between “zombie-friendly” IP subnets. More-
over, because of the dynamics of this kind of phenomena, we
can even observe very different spatial distributions within
a same army at different moments of its lifetime. This is a
strong advantage of our analysis method that is more precise
and enables us to distinguish individual phenomena, instead
of global trends, and to follow their dynamic behavior over
time.

Another interesting observation on Fig. 8 is related to
the subnet CDF of ZA1 (uniformly distributed in the IPv4
space, which means randomly chosen source addresses) and
ZA20 (a constant distribution coming exclusively from the
subnet 24.0.0.0/8). A very likely explanation is that those
zombie armies have used spoofed addresses to send UDP
spam messages to the Windows Messenger service. So, this
indicates that IP spoofing is still possible under the current
state of filtering policies implemented by certain ISP’s on
the Internet.

Finally, in terms of attack capability, we observe that about
50% of the armies could target at least two completely dif-

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5
1

G
eo

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5
1

Su
bn

et
s

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5
1

Ta
rg

et
s

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5
1

Po
rt

Se
q

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5
1

Co
m

m
on

IP
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5
1

Attack events (ordered in time)

Fu
zz

y
ou

tp
ut

Figure 9: Output of the fuzzy inference system (zi and

F (zi)) modeling the zombie army nr 12.

ferent ports (thus, probably two different exploits, at least),
and one army had even an attack capability greater than 10
(ZA4 in Table 2). At this stage, it is unclear why a zom-
bie army would target such a large number of unusual, high
TCP ports (12293T, 15264T, etc). A recurrent misconfigu-
ration or P2P phenomenon is thus not excluded; but even in
that case, it is very interesting to note that our method was
able to attribute all those different events to the same root
phenomenon, thanks to the combination of several statistical
metrics.

4.2 Some Detailed Examples
In this Section, we further detail two zombie armies to

illustrate some typical behaviors we could observe among
the identified phenomena, e.g.:

i) a move (or drift) in the origins of certain armies (both
geographical and IP blocks) during their lifetime;

ii) a large scan sweep by the same army targeting several
consecutive class A-subnets;

iii) within a same army, multiple changes in the port se-
quences (or exploits) used by zombies to scan or to
attack;

iv) a coordination between different armies.

Zombie army 12 (ZA12) is an interesting case in which we
can observe the behaviors ii) and iii). Fig. 9 represents the
output of the fuzzy system modeling this phenomenon. Each
bar graph represents the fuzzy output zi for a given attack
dimension, whereas the last plot shows the final aggregated
output from which the decision to group those events to-
gether was made (i.e., F (zi)). We can clearly see that the
targets and the activities of this army have evolved between
certain attack events (e.g., when the value of zi is low).
That is, this army has been scanning (at least) four con-
secutive class A-subnets during its lifetime (still 183 days),
while probing at the same time three different ports on these
subnetworks.

Then, the largest zombie army observed by the sensors
(ZA10) has showed the behaviors i) and iv). On Fig. 10,

100 120 140 160 180 200 220
0

200

400

600

800

1000

1200

1400

Time (by day)

Nr
 o

f s
ou

rc
es

Figure 10: Time series of coordinated attack events for

zombie army ZA10 (i.e., nr of sources observed by day).

we can see that this army had four waves of activity during
which it was randomly scanning 5 different subnets (note
the almost perfect coordination among those attack events).
When inspecting the subnet distributions of those different
attack waves, we could clearly observe a drift in the origins
of those sources, quite likely as certain machines were in-
fected by (resp. cleaned from) the bot software. Finally, we
found another smaller army (ZA11) that is clearly related to
ZA10 (e.g., same temporal behavior, similar activity, same
targets); but in this case, a different group of zombie ma-
chines, resulting in very different subnet CDF’s on Fig. 8),
was used to attack only specific IP addresses on our sensors,
probably by taking advantage of the results given by the
army of scanners (ZA10).

5. CONCLUSIONS
We have introduced a general analysis method to address

the complex problem related to “attack attribution”. Our
approach is based on a novel combination of knowledge dis-
covery and a multi-criteria fuzzy decision-making process.
By applying this method, we have showed how apparently
unrelated attack events could be attributed to the same
global attack phenomenon, or to the same army of zombie
machines operating in a coordinated manner. To the best of
our knowledge, this is the first formal, systematic and rig-
orous method that enables us to identify and characterize
precisely the behaviors of those large-scale attack phenom-
ena. As future work, we envisage to extend our method to
other data sets, such as high-interaction (eventually client)
honeypot data, or malware data sets, and to include even
more relevant attack features so as to improve further the in-
ference capabilities of the system, and thus also our insights
into malicious behaviors observed on the Internet.

Acknowledgments
This work has been partially supported by the European Com-
mission through project FP7-ICT-216026-WOMBAT funded by
the 7th framework program. The opinions expressed in this paper
are those of the authors and do not necessarily reflect the views
of the European Commission.

Id Nr of Total size Lifetime Targeted sensors Attack capability Main origins
events (nr sources) (nr days) (Class A- subnets) (countries / subnets)

1 10 18,468 535 24.*,193.*,195.*,213.* 1026U US,JP,GB,DE,CA,FR,CN,KR,NL,IT
69,128,195,60,81,214,211,132,87,63

4 82 26,962 321 202.* 12293T,15264T,18462T,25083T,25618T,28238T,29188T, IT,ES,DE,FR,IL,SE,PL
32878T,33018T,38009T,4152T,46030T,4662T,50286T,. . . 87,82,83,84,151,85,81,88,80

5 13 9,644 131 195.* 135T,139T,1433T,2968T,5900T CN,US,PL,IN,KR,JP,FR,MX,CA
218,61,222,83,195,221,202,24,219

6 15 51,598 >1 year > 7 subnets ICMP (W32.Rahack.H / Allaple) KR,US,BR,PL,CN,CA,FR,MX,TW
201,83,200,24,211,218,89,124

9 23 11,198 218 192.*,193.*,194.* 2967T,2968T,5900T US,CN,TW,FR,DE,CA,BR,IT,RU
193,200,24,71,70,213,216,66

10 57 69,884 112 128.*,129.*,134.*,139.*,150.* I-I445T CN,CA,US,FR,TW,IT,JP,DE
222,221,60,218,58,24,70,124

11 14 2,636 110 129.*,134.*,139.*,150.* I-445T-139T-445T-139T-445T US,FR,CA,TW,IT
82,71,24,70,68,88,87

12 14 27,442 183 192.*,193.*,194.*,195.* 1025T,1433T,2967T US,JP,CN,FR,TR,DE,KR,GB
218,125,88,222,24,60,220,85,82

20 10 30,435 337 24.*, 129.*, 195.* 1026U,1026U1028U1027U,1027U CA,CN
24,60

Table 2: Overview of some large-scale phenomena found in a honeynet dataset collected from Sep 06 until Jun 08.

6. REFERENCES
[1] Paul Barford and David Plonka. Characteristics of network

traffic flow anomalies. In In Proceedings of ACM
SIGCOMM Internet Measurement Workshop, 2001.

[2] Paul Barford and Vinod Yegneswaran. An Inside Look at
Botnets. Advances in Information Security. Springer, 2006.

[3] David Barroso. Botnets - the silent threat. In European
Network and Information Security Agency (ENISA),
November 2007.

[4] Zesheng Chen, Chuanyi Ji, and Paul Barford.
Spatial-temporal characteristics of internet malicious
sources. In Proceedings of INFOCOM, 2008.

[5] M. P. Collins, T. J. Shimeall, S. Faber, J. Janies,
R. Weaver, M. De Shon, and J. Kadane. Using
uncleanliness to predict future botnet addresses. In IMC
’07: Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, pages 93–104, New York, NY, USA,
2007. ACM.

[6] Evan Cooke, Farnam Jahanian, and Danny McPherson.
The Zombie roundup: Understanding, detecting, and
disrupting botnets. In Proceedings of the Steps to Reducing
Unwanted Traffic on the Internet (SRUTI 2005
Workshop), Cambridge, MA, July 2005.

[7] B. Fuglede and F. Topsoe. Jensen-shannon divergence and
hilbert space embedding. pages 31–, June-2 July 2004.

[8] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner:
Clustering analysis of network traffic for protocol- and
structure-independent botnet detection. In Proceedings of
the 17th USENIX Security Symposium, 2008.

[9] Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer:
Detecting botnet command and control channels in network
traffic. In Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS’08),
February 2008.

[10] Geoffrey Hinton and Sam Roweis. Stochastic neighbor
embedding. In Advances in Neural Information Processing
Systems 15, volume 15, pages 833–840, 2003.

[11] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data.
Prentice-Hall advanced reference series, 1988.

[12] S. Kullback and R. A. Leibler. On information and
sufficiency. Annals of Mathematical Statistics 22: 79-86.,
1951.

[13] Wenke Lee, Cliff Wang, and David Dagon, editors. Botnet
Detection: Countering the Largest Security Threat,
volume 36 of Advances in Information Security. Springer,
2008.

[14] C. Leita, V.H. Pham, O. Thonnard, E. Ramirez-Silva,
F. Pouget, E. Kirda, and Dacier M. The Leurre.com
Project: Collecting Internet Threats Information Using a
Worldwide Distributed Honeynet. In Proceedings of the

WOMBAT Workshop on Information Security Threats
Data Collection and Sharing, WISTDCS 2008. IEEE
Computer Society press, April 2008.

[15] J. Lin. Divergence measures based on the shannon entropy.
Information Theory, IEEE Transactions on, 37(1):145–151,
Jan 1991.

[16] E. H. Mamdani and S. Assilian. An experiment in linguistic
synthesis with a fuzzy logic controller. Int. J.
Hum.-Comput. Stud., 51(2):135–147, 1999.

[17] Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern
Paxson, and Larry Peterson. Characteristics of internet
background radiation. In IMC ’04: Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement,
pages 27–40, New York, NY, USA, 2004. ACM.

[18] Markus Kötter Georg Wicherski Paul Bächer,
Thorsten Holz. Know your enemy: Tracking botnets. In
http://www.honeynet.org/papers/bots/.

[19] M. Pavan and M. Pelillo. A new graph-theoretic approach
to clustering and segmentation. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition,
2003.

[20] V. Pham, M. Dacier, G. Urvoy Keller, and T. En Najjary.
The quest for multi-headed worms. In DIMVA 2008, 5th
Conference on Detection of Intrusions and Malware &
Vulnerability Assessment, July, 2008, Paris, France, Jul
2008.

[21] F. Pouget and M. Dacier. Honeypot-based forensics. In
AusCERT2004, AusCERT Asia Pacific Information
technology Security Conference 2004, 23rd - 27th May
2004, Brisbane, Australia, 2004.

[22] The Leurre.com Project. http://www.leurrecom.org.
[23] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A

multifaceted approach to understanding the botnet
phenomenon. In IMC ’06: Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, pages
41–52, New York, NY, USA, 2006. ACM.

[24] Symantec Security Response. W32.rahack.h, [april 2009].

[25] Michio Sugeno. Industrial Applications of Fuzzy Control.
Elsevier Science Inc., New York, NY, USA, 1985.

[26] Olivier Thonnard and Marc Dacier. A framework for attack
patterns’ discovery in honeynet data. DFRWS 2008, 8th
Digital Forensics Research Conference, August 11- 13,
2008, Baltimore, USA, 2008.

[27] Olivier Thonnard and Marc Dacier. Actionable knowledge
discovery for threats intelligence support using a
multi-dimensional data mining methodology. In ICDM’08,
8th IEEE International Conference on Data Mining series,
December 15-19, 2008, Pisa, Italy, Dec 2008.

[28] Laurens van der Maaten and Geoffrey Hinton. Visualizing

data using t-sne. Journal of Machine Learning Research,
9:2579–2605, November 2008.

[29] Ronald R. Yager. On ordered weighted averaging
aggregation operators in multicriteria decisionmaking.
IEEE Trans. Syst. Man Cybern., 18(1):183–190, 1988.

[30] V Yegneswaran, P Barford, and V Paxson. Using
honeynets for internet situational awareness. In Fourth
ACM Sigcomm Workshop on Hot Topics in Networking
(Hotnets IV), 2005.

[31] Vinod Yegneswaran, Paul Barford, and Johannes Ullrich.
Internet intrusions: global characteristics and prevalence.
In SIGMETRICS, pages 138–147, 2003.

Learning More About the Underground Economy:
A Case-Study of Keyloggers and Dropzones

Thorsten Holz1,2 Markus Engelberth1 Felix Freiling1

1 Laboratory for Dependable Distributed Systems, University of Mannheim, Germany
<holz,engelberth,freiling@informatik.uni-mannheim.de>

2 Secure Systems Lab, Vienna University of Technology, Austria

Abstract. We study an active underground economy that trades stolen digital
credentials. In particular, we investigate keylogger-based stealing of credentials
via dropzones, anonymous collection points of illicitly collected data. Based on
the collected data from more than 70 dropzones, we present an empirical study of
this phenomenon, giving many first-hand details about the attacks that were ob-
served during a seven-month period between April and October 2008. We found
more than 33 GB of keylogger data, containing stolen information from more than
173,000 victims. Analyzing this data set helps us better understand the attacker’s
motivation and the nature and size of these emerging underground marketplaces.

1 Introduction

With the growing digital economy, it comes as no surprise that criminal activities in
digital business have lead to a digital underground economy. Because it is such a fast-
moving field, tracking and understanding this underground economy is extremely dif-
ficult. Martin and Thomas [20] gave a first insight into the economy of trading stolen
credit card credentials over open IRC channels. The “blatant manner” in which the trad-
ing is performed with “no need to hide” [20] is in fact staggering. A large-scale study of
similar forms of online activity was later performed by Franklin et al. [10]. The result of
this study is that Internet-based crime is now largely profit-driven and that “the nature
of this activity has expanded and evolved to a point where it exceeds the capacity of a
closed group” [10]. In other words, digital and classical crime are merging.

In general, it is hard to estimate the real size of the underground economy. This is
because the only observable evidence refers to indirect effects of underground markets.
For example, both previous studies [10,20] did not observe real trading, but only an-
nouncements of trading and offers of stolen credentials in public IRC channels. It is
in fact a valid question how much of the offered data really belongs to online scams—
rather than being just the result of “poor scum nigerians and romanians try[ing] to make
20$ deals by ripping eachother off” [4].

In this paper, we report on measurements of the actual kind and amount of data that
is stolen by attackers from compromised machines, i.e., we directly observe the goods
that can be traded at an underground market. Obviously, this data gives us a much better
basis for estimating the size of the underground economy and also helps to understand
the attacker’s motivation.

It may seem as if direct observations of illicitly traded goods are much harder to
obtain than indirect ones. In this paper we show that this must not be the case. In partic-
ular, we focus on the newly emerging threat of keyloggers that communicate with the
attacker through so-called dropzones. A dropzone is a publicly writable directory on a
server in the Internet that serves as an exchange point for keylogger data. The attack is
visualized in Figure 1. The attacker A first infects victims V1, V2 and V3 with keylog-
ging malware. This malware secretly collects credentials that victims use to authenticate
to online services like a bank P1 or a webmailer P2. After collecting these credentials,
the malware running on a compromised machine sends them to the dropzone, where the
attacker can pick them up and start to abuse them [9,30,31,32,34].

Bank
P1

Attacker
A

Victim
V1

keylogger

authenticate
using

account # /
password

access
with

stolen
credentials

dropzoneVictim
V2

Victim
V3

Webmail
P2

c22
c32

c11

Fig. 1: Schematic overview of keylogger-based attacks using dropzones.

We analyzed these keylogger-based attacks by first collecting keyloggers with dif-
ferent techniques such as honeypots [27] or spamtraps, and then executing them within
an instrumented environment [37], thereby extracting the location of the dropzone. By
accessing the dropzone directly, we harvested the keylogger data just like the attacker
would have done this. We perform our case study using two different classes of key-
loggers called Limbo/Nethell and ZeuS/Zbot/Wsnpoem. We give details of attacks we
observed during a seven-month period between April and October 2008. In particular,
we were able to harvest a total of 33 GB of keylogger data from more than 70 unique
dropzones, resulting in information about stolen credentials from more than 173,000
compromised machines. We present the results of a statistical analysis of this data. To
our knowledge, this is the first time that it has been possible to perform such an anal-
ysis on stolen data on such a large scale. It gives rather credible answers to questions

about the type and the amount of data criminals steal, which allows us to study the
underground economy since these stolen credentials are marketable goods. For exam-
ple, we recovered more than 10,700 stolen online bank account credentials and over
149,000 stolen email passwords, potentially worth several million dollars on the under-
ground market. Our analysis shows that this type of cybercrime is a profitable business,
allowing an attacker to potentially earn hundreds or even thousands of dollars per day.

1.1 Related Work

Besides the related work discussed previously, this paper touches on a several related
research areas. In the field of phishing prevention and mitigation, there has been some
work specific to attacks based on email and fake websites [5,11]. Chandrasekaran et
al. [5] generate fake input and investigate a site’s response to detect phishing sites.
Gajek and Sadeghi [11] use fake credentials to track down phishers. Our work is com-
plementary to this work: we study the actual dropzone and infer from this data more
information about the extent and size of the attack.

Recently Kanich et al. studied the conversion rate of spam, i.e., the probability that
an unsolicited e-mail will ultimately elicit a sale [15]. This is another example of a
direct observation of the underground economy and provides a different point of view
into the market mechanisms behind cybercrime.

The keylogger-based attacks we study in this paper can be stopped using differ-
ent kinds of techniques, for example multi-factor authentication, biometrics, or spe-
cial hardware or software. While techniques like SpoofGuard [7], Dynamic Security
Skins [8], or Transport Login Protocol [6] can protect against certain forms of these at-
tacks, e.g., classical phishing attacks, they can not stop keylogger-based attacks that we
study in this paper. Preventing this kind of attacks is harder since the user machine itself
is compromised, which allows the malicious software to steal credentials directly as the
victim performs the login procedure. Modern keyloggers also defeat simple tricks to
conceal the entered password as proposed by Herley and Florêncio [12]. However, mal-
ware prevention methods and systems that protect confidential information can defend
against this kind of attacks [21,35].

1.2 Summary of Contributions

To summarize, our work presented in this paper makes the following contributions: We
investigate keylogging attacks based on dropzones and provide a detailed analysis of
the collected data, giving a first-hand insight into the underground economy of Inter-
net criminals from a unique and novel viewpoint. We believe that our method can be
generalized to many other forms of credential-stealing attacks, such as phishing attacks.

We argue that combined with prices from the underground economy, our study gives
a more precise estimate of the dangers and potential of the black market than indirect
measures performed previously [10,20]. Together with these prior studies, we hope that
our results help to relinquish the common mindset we often see with politicians and
commercial decision-makers that we do not need to track down and prosecute these
criminals because it is too costly. We feel that the sheer size of the underground econ-
omy now and in the future will not allow us to neglect it.

Paper Outline. We describe in Section 2 in more detail how keylogging based attacks
work and introduce two different families of keyloggers. In Section 3, we introduce our
analysis setup and present statistics for the dropzones we studied during the measure-
ment period. We analyze the collected data in Section 4 using five different categories
and briefly conclude the paper in Section 5 with an overview of future work.

Data Protection and Privacy Concerns. The nature of data analyzed during this study
is very sensitive and often contains personal data of individual victims. We are not in a
position to inform each victim about the security breach and therefore decided to hand
over the full data set to AusCERT, Australia’s National Computer Emergency Response
Team. This CERT works together with different banks and other providers to inform the
victims. We hope that the data collected during this study can help to recover from the
incidents and more damage is prevented.

2 Background: Keylogger-based Attacks

Figure 1 provides a schematic overview of keylogger-based attacks using dropzones.
Each victim Vi has a specific credential cij

to authenticate at provider Pj to use the
service. For example, P1 is an online banking website and V1 uses his account number
and a password to log in. The attacker A uses different techniques to infect each victim
Vi with a keylogger. Once the victim Vi is infected, the keylogger starts to record all
keystrokes: A defines in advance which keystrokes should be logged and the malware
only records these. For example, A can specify that only the login process of an online
banking website should be recorded. The malware then observes the values entered in
input fields on the website and sends this information to a dropzone. This dropzone
is the central collection site for all harvested information. The attacker can access the
dropzone, extract the stolen credentials, and use them to impersonate at Pj as Vi.

2.1 Studying the Attack

The practical challenge of our approach is to find a way to access the harvested informa-
tion so that it can be used for statistical analysis. To study this attack, we use the concept
of honeypots, i.e., information system resources whose value lies in unauthorized or il-
licit use of that resource [27]. We play the role of a victim Vi and react on incoming
attacks in the same way a legitimate victim would do. For example, we use spamtraps,
i.e., email accounts used to collect spam, and open email attachments to emulate the
infection process of malware that propagates with the help of spam. Furthermore, we
also visit links contained in spam mails with client-side honeypots to examine whether
or not the spammed URL is malicious and the website tries to install a keylogger via a
drive-by download [28,36]. Using these techniques, our honeypot can be infected with
a keylogger in an automated way and we obtain information about the attack vector.

After a successful infection, we extract the sample from the honeypot for further
analysis. We perform dynamic analysis based on an analysis tool called CWSand-
box [37] since static analysis can be defeated by malware using many different tech-
niques [17,24,26]. CWSandbox executes the malware in a controlled environment and

analyzes the behavior of the sample during runtime by observing the system calls is-
sued by the sample. As a result, we obtain an analysis report that includes for example
information about changes to the filesystem or the Windows registry, and all network
communication generated by the sample during the observation period.

When executing, the keylogger typically first contacts the dropzone to retrieve con-
figuration information. The configuration file commonly includes a list of websites that
should be monitored for credentials and similar customization options for the malware.
From an attacker’s perspective, such a modus operandi is desirable since she does not
have to hardcode all configuration options during the attack phase, but can dynamically
re-configure which credentials should be stolen after the initial infection. This enables
more flexibility since the attacker can configure the infected machines on demand. By
executing the keylogger within our analysis environment and closely monitoring its be-
havior, we can identify the dropzone in an automated way since the keylogger contacts
the dropzone at an early stage after starting up.

However, certain families of keylogger already contain all necessary configuration
details and do not contact the dropzone: only after keystrokes that represent a credential
are observed by these keyloggers, they send the harvested information to the dropzone.
In order to study this in a more automated fashion, we need some sort of user simulation
to actually simulate a victim V . Note that we do not need to generically simulate the
full behavior of a user, but only simulate the aspects of user interaction that are relevant
for keyloggers, e.g., entering credentials in an online banking application or logging
into a webmail account. The keylogger then monitors this behavior and sends the col-
lected information to the dropzone, and we have successfully identified the location of
a dropzone in an automated way. More information about the actual implementation of
user activity simulation is provided in Section 3.1.

2.2 Technical Details of Analyzed Keyloggers

To exemplify a technical realization of the methodology introduced in this paper, we an-
alyzed in detail two different families of keyloggers that are widespread in today’s Inter-
net: Limbo/Nethell and ZeuS/Zbot/Wsnpoem. We provide a short overview of both fam-
ilies in this section. More details and examples are available in a technical report [13].

Limbo/Nethell. This family of malware typically uses malicious websites and drive-by
download attacks as attack channel to infect the victims who are lured by social engi-
neering tricks to visit these websites. The malware itself is implemented as a browser
helper object (BHO), i.e., a plugin for Internet Explorer that can respond to browser
events such as navigation, keystrokes, and page loads. With the help of the interface
provided by the browser, Limbo can access the Document Object Model (DOM) of
the current page and identify sensitive fields which should be monitored for creden-
tials (form grabbing). This enables the malware to monitor the content of these fields
and defeats simple tricks to conceal the entered password as proposed by Herley and
Florêncio [12]. The malware offers a flexible configuration option since the sites to be
monitored can be specified during runtime in a configuration file. Upon startup, the
malware contacts the dropzone to retrieve the current configuration options from there.
Furthermore, this malware has the capability to steal cookies and to extract information

from the Protected Storage (PStore). This is a mechanism available in certain versions
of Windows which provides applications with an interface to store user data [22] and
many applications store credentials like username/password combinations there.

Once a credential is found, the harvested information is sent to the dropzone via a
HTTP request to a specific PHP script installed at the dropzone, e.g., http://example.
org/datac.php?userid=21102008_110432_2025612. This example depicts the
initial request right after a successful infection with which the keylogger registers the
newly compromised victim. The userid parameter encodes the infection date and
time, and also a random victim ID. By observing the network communication during
the analysis phase, we can automatically determine the network location of the drop-
zone. The dropzone itself is implemented as a web application that allows the attacker
amongst other tasks to browse through all collected information, search for specific cre-
dentials, or instruct the victims to download and execute files. We found that these web
applications often contain typical configuration errors like for example world-readable
directory listings that lead to insecure setups, which we can take advantage of to obtain
access to the full data set.

ZeuS/Zbot/Wsnpoem. The attack channel for this family of malware is spam mails that
contain a copy of the keylogger as an attachment. The emails use common social engi-
neering tricks, e.g., pretending to be an electronic invoice, in order to trick the victim
into opening the attachment. In contrast to Limbo, which uses rather simple techniques
to steal credentials, ZeuS is technically more advanced: the malware injects itself into
all user space processes and hides its presence. Once it is successfully injected into In-
ternet Explorer, it intercepts HTTP POST requests to observe transmitted credentials.
This malware also steals information from cookies and the Protected Storage. All col-
lected information is periodically sent to the dropzone via HTTP requests. The dropzone
itself is implemented as a web application and the stolen credentials are either stored
in the filesystem or in a database. Again, insecure setups like world-readable directory
listings enable the access to the full dropzone data, allowing us to monitor the complete
operation of a certain dropzone.

Similar to Limbo, ZeuS can also be dynamically re-configured: after starting up, the
malware retrieves the current configuration file from the dropzone. The attacker can for
example specify which sites should be monitored (or not be monitored) for credentials.
Furthermore, the malware can create screenshot of 50 × 50 pixels around the mouse
pointer taken at every left-click of the mouse for specific sites. This capability is imple-
mented to defeat visual keyboards, i.e., instead of entering the sensitive information via
the keyboard, they can be entered via mouse clicks. This technique is used by differ-
ent banks and defeats typical keyloggers. However, by taking a screenshot around the
current position of the mouse, an attacker can also obtain these credentials. In addition,
the configuration file also specifies for which sites man-in-the-middle attacks should be
performed: each time the victim opens such a site, the request is transparently redirected
to another machine, which hosts some kind of phishing website that tricks the victim
into disclosing even more credentials. Finally, several other configuration options like
DNS modification on the victim’s machine or update functionality are available.

3 Studying Keylogger-based Attacks

In this section, we introduce the analysis and measurement setup, and present general
statistics about the dropzones. The next section then focusses on the results of a sys-
tematic study of keylogger-based attacks using keylogger and a dropzone as outlined in
the previous sections. All data was collected during a seven-month measurement period
between April and October 2008.

3.1 Improving Analysis by Simulating User Behavior

We developed a tool called SimUser to simulate the behavior of a victim Vi after an in-
fection with a keylogger. The core of SimUser is based on AutoIt, a scripting language
designed for automating the Windows GUI and general scripting [1]. It uses a combi-
nation of simulated keystrokes, mouse movement, and window/control manipulation in
order to automate tasks. We use AutoIt to simulate arbitrary user behavior and imple-
mented SimUser as a frontend to enable efficient generation of user profiles. SimUser
itself uses the concept of behavior templates that encapsulate an atomic user task, e.g.,
opening a website and entering a username/password combination in the form fields
to log in, or authenticating against an email server and retrieving emails. We imple-
mented 17 behavior templates that cover typical user tasks which require a credential
as explained before. These templates can be combined in an arbitrary way to generate
a profile that simulates user behavior according to specific needs.

In order to improve our analysis, we execute the keylogger sample for several min-
utes under the observation of CWSandbox. During the execution, SimUser simulates
the behavior of a victim, which browses to several websites and fills out login forms.
In the current version, different online banking sites, free webmail providers, as well as
social networking sites are visited. Furthermore, CWSandbox was extended to also sim-
ulate certain aspects of user activity, e.g., generic clicking on buttons to automatically
react on user dialogues. We also store several different credentials in the Windows Pro-
tected Storage of the analysis machine as some kind of honeytoken. By depositing some
credentials in the Protected Storage, we can potentially trigger on more keyloggers.

Simulating user behavior enables us to learn more about the results of a keylogger
infection, e.g., we can detect on which sites it triggers and what kind of credentials are
stolen. The whole process can be fully automated and we analyzed more than 2,000
keylogger samples with our tools as explained in the next section. Different families
of keyloggers can potentially use distinct encodings to transfer the stolen credentials
to the dropzone and the dropzone itself uses different techniques to store all stolen
information. In order to fully analyze the dropzone and the data contained there, we thus
need to manually analyze this communication channel once per family. This knowledge
can then be used to extract more information from the dropzone for all samples of this
particular family. To provide evidence of the feasibility of this approach, we analyzed
two families of keyloggers in detail, as we explain next. Note that even if we cannot
fully decode the malware’s behavior, we can nevertheless reliably identify the network
location of the dropzone based on the information collected during dynamic analysis.
This information is already valuable since it can be used for mitigating the dropzone,
the simplest approach to stop this whole attack vector.

3.2 Measurement Setup

With the help of CWSandbox, we analyzed more than 2,000 unique Limbo and ZeuS
samples collected with different kinds of spamtraps and honeypots, and user submis-
sions at cwsandbox.org, in the period between April and October 2008. Based on the
generated analysis reports, we detected more than 140 unique Limbo dropzones and
205 unique ZeuS dropzones. To study these dropzones, we implemented a monitoring
system that periodically collects information like for example the configuration file.

For 69 Limbo and 4 ZeuS dropzones we were able to fully access all logfiles col-
lected at that particular dropzone. This was possible since these dropzones were config-
ured in an insecure way by the attackers, enabling unauthenticated access to all stolen
credentials. The remaining dropzones had access controls in place which prevented us
from accessing the data. We periodically collected all available data from the open drop-
zones to study the amount and kind of stolen credentials to get a better understanding
of the information stolen by attackers. In total, our monitoring system collected 28 GB
of Limbo and 5 GB of ZeuS logfiles during the measurement period.

3.3 Analysis of Limbo Victims

To understand the typical victims of keylogger attacks, we performed a statistical anal-
ysis of the collected data. The number of unique infected machines and the amount of
stolen information per Limbo dropzone for which we had full access is summarized in
Table 1. The table is sorted by the number of unique infected machines and contains
a detailed overview of the top four dropzones. In total, we collected information about
more than 164,000 machines infected with Limbo. Note that an infected machine can
potentially be used by many users, compromising the credentials of many victims. Fur-
thermore, the effective number of infected machines might be higher since we might
not observe all infected machines during the measurement period. The numbers are
thus a lower bound on the actual number of infected machines for a given dropzone.
The amount of information collected per dropzone greatly varies since it heavily de-
pends on the configuration of the keylogger (e.g., what kind of credentials should be
harvested) and the time we monitored the server. The dropzones themselves are located
in many different Autonomous Systems (AS) and no single AS dominates. The country
distribution reveals that many dropzones are located in Asia or Russia, but we found
also many dropzones located in the United States.

We also examined the lifetime for each dropzone and the infection lifetime of all
victims, i.e., the total time a given machine is infected with Limbo. Each logfile of a
dropzone contains records that include a unique victim ID and a timestamp, which indi-
cates when the corresponding harvesting process was started. As the infection lifetime
of a victim we define the interval between the timestamp of the last and first record
caused by this particular victim. This is the lower bound of the total time of infection
since we may not be able to observe all log files from this particular infection and thus
underestimate the real infection time. The interval between the last and the first times-
tamp seen on the whole dropzone is defined as the lifetime of this dropzone. Using these
definitions, the average infection time of a victim is about 2 days. This is only a coarse
lower bound since we often observe an infected machine only a limited amount of time.

Table 1: Statistical overview of largest Limbo dropzones, sorted according to the total
number of infected machines.

Dropzone # Infected machines Data amount AS # Country Lifetime in days
webpinkXXX.cn 26,150 1.5 GB 4837 China 36
coXXX-google.cn 12,460 1.2 GB 17464 Malaysia 53
77.XXX.159.202 10,394 503 MB 30968 Russia 99
finXXXonline.com 6,932 438 MB 39823 Estonia 133
Other 108,122 24.4 GB
Total 164,058 28.0GB 61

IP address space

V
ic

ti
m

 I
P

 a
d

d
re

s
s
e

s
 (

a
c
c
u

m
u

la
te

d
)

58.0.0.0 93.0.0.0 189.0.0.0 221.0.0.0

0.0.0.0 50.0.0.0 100.0.0.0 150.0.0.0 200.0.0.0 250.0.0.0

0
2
0
0
0
0

6
0
0
0
0

1
0
0
0
0
0

1
4
0
0
0
0

(a) Cumulative distribution of IP addresses in-
fected with Limbo.

Country # Machines Percentage
Russia 26,700 16,3%
United States 23,704 14,4%
Spain 20,827 12,7%
United Kingdom 19,240 11,7%
Germany 10,633 6,5%
Poland 8,598 5,4%
Australia 6,568 4,0%
Turkey 5,328 3,2%
Brazil 4,369 2,7%
India 3,980 2,4%
Ukraine 2,674 1,6%
Egypt 2,302 1,4%
Italy 1,632 0,9%
Thailand 1,356 0,8%
Other 26,147 16,0%

(b) Distribution of Limbo infections by
country.

Fig. 2: Analysis of IP addresses for machines infected with Limbo and their regional
distribution.

The maximum lifetime of a Limbo victim we observed was more than 111 days. In
contrast, the average lifetime of a dropzones is approximately 61 days.

Figure 2a depicts the cumulative distribution of IP addresses for infected machines
based on the more than 164,000 Limbo victims we detected. The distribution is highly
non-uniform: The majority of victims are located in the IP address ranges between 58.*
– 92.* and 189.* – 220.*. Surprisingly, this is consistent with similar analysis of spam
relays and scam hosts [3,29]. It could indicate that these IP ranges are often abused by
attackers and that future research should focus on securing especially these ranges.

We determined the geographical location of each victim by using the Geo-IP tool
Maxmind [18]. The distribution of Limbo infections by country is shown in Figure 2b.
We found a total of 175 different countries and almost one third of the infected machines
are located in either Russia or the United States.

3.4 Analysis of ZeuS Victims

We performed a similar analysis for the ZeuS dropzones and the victims infected with
this malware. Figure 3a lists the top five countries in which the dropzones are located
based on 205 dropzones we identified with our method. Most ZeuS dropzones can be
found in North America, Russia, and East Asia — a results that also applies to the
Limbo dropzones. We also found that the dropzones are located in many different Au-
tonomous Systems (68 different AS in total), but several AS host a larger percentage of
ZeuS dropzones: The three most common AS host 49% of all dropzones, indicating that
there are some providers preferred by the attackers. Presumably those providers offer
bullet-proof hosting, i.e., takedown requests are not handled properly by these providers
or the providers even tolerate certain abusive behavior.

Country # Dropzones Percentage
United States 34 17%
Russia 29 14%
Netherlands 16 8%
Malaysia 14 7%
China 8 4%

(a) Top countries in which ZeuS drop-
zones are located.

OS version # Infected Machines %
Windows XP SP2 6,629 70.2 %
Windows XP SP0 1,264 13.1 %
Windows XP SP1 1,146 12.1 %
Windows 2000 SP4 285 3.0 %
Other 156 1.6 %

(b) Distribution of operating system for machines
infected with ZeuS.

Fig. 3: General statistics for ZeuS dropzones and victims.

The four dropzones we had full access to contained information stolen from about
9,480 infected machines. Based on this data, we can determine the operating system
version of each infected machine since the keylogger also extracts this information.
Figure 3b provides an overview of the operating system running on the infected ma-
chines. The majority of victims is using Windows XP with Service Pack 2, thus they
are not on the latest patch level (Service Pack 3 was released on May 6, 2008). A large
fraction of machines run on even older version of the operating system. Only a minority
of all victims have the latest service pack installed or are running Windows Vista. We
also examined the language version of the operating system. Most infected machines
have either English (53.8%) or Spanish (20.2%) as language. Consistent to the machines
infected with Limbo, the majority of ZeuS infections can be found in the two network
ranges 58.* – 92.* (56.9%) and 189.* – 220.* (25.8%).

As explained in Section 2.2, ZeuS can be dynamically re-configured by the attacker
via a configuration file. The most frequent configurations are shown in Table 2. Web-
sites that should be logged are listed in the first part of the table and the second part
enumerates the websites that should be logged and where a screenshot should be taken.
Online banking websites clearly dominate this statistic and indicate that these attacks
aim at stealing credentials for bank accounts. Finally, websites where no keystrokes
should be recorded are listed at the end of the table. This excluding of websites from
the harvesting process is presumably done in order to minimize the logged data.

Table 2: Overview of top four websites a) to be logged, b) to be logged including a
screenshot, and c) not to be logged.

Website # Appearances (205 dropzones)
a) https://internetbanking.gad.de/*/portal?bankid=* 183

https://finanzportal.fiducia.de/*?rzid=*&rzbk=* 177
https://www.vr-networld-ebanking.de/ 176
https://www.gruposantander.es/* 167

b) @*/login.osmp.ru/* 94
@*/atl.osmp.ru/* 94
@https://*.e-gold.com/* 39
@https://netteller.tsw.com.au/*/ntv45.asp?wci=entry 29

c) !http://*myspace.com* 132
!*.microsoft.com/* 98
!http://*odnoklassniki.ru/* 80
!http://vkontakte.ru/* 72

4 Analysis of Stolen Credentials

Based on the data collected by our monitoring system, we analyzed what kind of creden-
tials are stolen by keyloggers. This enables a unique point of view into the underground
market since we can study what goods are available for the criminals from a first-hands
perspective. We mainly focus on five different areas: online banking, credit cards, on-
line auctions, email passwords, and social networks. At first sight, the last two areas do
not seem to be very interesting for an attacker. However, especially these two kinds of
stolen credentials can be abused in many ways, e.g., for identity theft, spear phishing,
spamming, anonymous mail accounts, and other illicit activities. This is also reflected
in the market price for these two types of goods as depicted in Table 3 based on a study
by Symantec [33].

Identifying which credentials are stolen among the large number of collected data
is a challenge. The key insight is that credentials are typically sent in HTTP POST
requests from the victim to the provider. To find credentials, we thus need to pin-point

Table 3: Breakdown of prices for different goods and services available for sale on the
underground market according to a study by Symantec [33]. Percentage indicates how
often these goods are offered.

Goods and services Percentage Range of prices
Bank accounts 22% $10 – $1000
Credit cards 13% $0.40 – $20
Full identities 9% $1 – $15
Online auction site accounts 7% $1 – $8
Email passwords 5% $4 – $30
Drop (request or offer) 5% 10% – 50% of total drop amount
Proxies 5% $1.50 – $30

which requests fields are actually relevant and contain sensitive information. We use
a trick to identify these fields: when a victim enters his credential via the keyboard,
Limbo stores this information together with the current URL. Based on the collected
data, we can thus build provider-specific models MPi that describe which input fields
at Pi contain sensitive information. For example, Mlogin.live.com = {login, passwd}
and Mpaypal.com = {login email, login password}. These models can then be used
to search through all collected data to find the credentials, independent of whether the
victim entered the information via the keyboard or they were inserted by a program via
the Protected Storage. In total, we generated 151,070 provider-specific models. These
models cover all domains for which keystrokes were logged by all infected machines.
For our analysis, we only used a subset of all provider-specific models that are relevant
for the area we analyzed.

We also need to take typing errors into account: if a victim makes a typing error
during the authentication process, this attempt is not a valid credential and we must
not include it in our statistics. We implement this by keeping track of which creden-
tials are entered by each victim and only counting each attempt to authenticate at a
specific provider once. During analysis, we also used methods like pattern matching or
heuristics to find specific credentials as we explain below.

4.1 Banking Websites

We used 707 banking models that cover banking sites like Bank of America or Lloyds
Bank, and also e-commerce business platforms like PayPal. These models were chosen
based on the ZeuS configuration files since this keylogger aims specifically at stealing
banking credentials. In total, we found 10,775 unique bank account credentials in all
logfiles. Figure 4a provides an overview of the top five banking websites for which we
found stolen credentials. The distribution has a long tail: for the majority of banking
websites, we found less than 30 credentials.

Banking Website # Stolen Credentials
PayPal 2,263
Commonwealth Bank 851
HSBC Holding 579
Bank of America 531
Lloyds Bank 447

(a) Overview of top five banking websites for
which credentials were stolen.

Credit Card Type # Stolen Credit Cards
Visa 3,764
MasterCard 1,431
American Express 406
Diners Club 36
Other 45

(b) Overview of stolen credit card informa-
tion.

Fig. 4: Analysis of stolen banking accounts and credit card data.

ZeuS has the capability to parse the content of specific online banking website to
extract additional information from them, e.g., the current account balance. We found
25 unique victims whose account balance was disclosed this way. In total, these 25 bank
accounts hold more than $130,000 in checking and savings (mean value is $1,768.45,

average is $5,225). Based on this data, we can speculate that the attackers can poten-
tially access millions of dollars on the more than 10,700 compromised bank accounts
we recovered during our analysis.

4.2 Credit Card Data

To find stolen credit card data, the approach with provider-specific models cannot be
used since a credit card number can be entered on a site with an arbitrary field name.
For example, an American site might use the field name cc number or cardNumber,
whereas a Spanish site could use numeroTarjeta. We thus use a pattern-based ap-
proach to identify credit cards and take the syntactic structure of credit card numbers
into account: each credit card has a fixed structure (e.g., MasterCard numbers are 16
digits and the first two digits are 51-55) that we can identify. Furthermore, the first six
digits of the credit card number are the Issuer Identification Number (IIN) which we
can also identify. For each potential credit card number, we also check the validity with
the Luhn algorithm [19], a checksum formula used to guard against one digit errors in
transmission. Passing the Luhn check is only a necessary condition for card validity and
helps us to discard numbers containing typing errors.

With this combination of patterns and heuristics, we found 5,682 valid credit card
numbers. Figure 4b provides an overview of the different credit card types we found.
To estimate the potential loss due to stolen credit cards we use the median loss amount
for credit cards of $223.50 per card as reported in the 2008 Internet Crime Complaint
Center’s Internet Crime Report [14]. If we assume that all credit cards we detected are
abused by the attacker, we obtain an estimated loss of funds of almost $1,270,000.

4.3 Email Passwords

Large portals and free webmail providers like Yahoo!, Google, Windows Live, or AOL
are among the most popular websites on the Internet: 18 sites of the Alexa Top 50
belong to this category [2]. Accordingly, we expect that also many credentials are stolen
from these kinds of sites. We used 37 provider-specific models that cover the large sites
of this category. In total, we found 149,458 full, unique credentials. We detected many
instances where the attackers could harvest many distinct webmail credentials from just
one infected machine. This could indicate infected system in public places, e.g., schools
or Internet cafes, to which many people have access. Figure 5a provides an overview of
the distribution for all stolen email credentials.

4.4 Social Networks and Online Trading Platforms

Another category of popular sites are social networks like Facebook and MySpace,
or other sites with a social component like YouTube. Of the Alexa Top 50, 14 sites
belong to this category. To analyze stolen credentials from social networks, we used
57 provider-specific models to cover common sites in this category. In total, we found
78,359 stolen credentials and Figure 5b provides an overview of the distribution. Such
credentials can for example be used by the attacker for spear phishing attacks.

Webmail Provider # Stolen Credentials
Windows Live 66,540
Yahoo! 27,832
mail.ru 17,599
Rambler 5,379
yandex.ru 5,314
Google 4,783
Other 22,011

(a) Overview of stolen credentials from
portals and webmail providers.

Social Network # Stolen Credentials
Facebook 14,698
hi5 8,310
nasza-klasa.pl 7,107
odnoklassniki.ru 5,732
Bebo 5,029
YouTube 4,007
Other 33,476

(b) Overview of stolen credentials from
social networking sites.

Fig. 5: Analysis of stolen credentials from free webmail providers and social networking
sites.

The final type of stolen credentials we analyze are online trading platforms. We
used provider-specific models for the big four platforms: eBay, Amazon, Allegro.pl
(third biggest platform world-wide, popular in Poland), and Overstock.com. In total,
we found 7,105 credentials that were stolen from all victims. Of these, the majority
belong to eBay with 5,712 and Allegro.pl with 885. We found another 477 credentials
for Amazon and 31 for Overstock.com. This kind of credentials can for example be
used for money laundering.

4.5 Underground Market

The analysis of stolen credentials also enables us to estimate the total value of this
information on the underground market: each credential is a marketable good that can be
sold in dedicated forums or IRC channels [10,20]. If we multiply the number of stolen
credentials with the current market price, we obtain an estimate of the overall value of
the harvested information. Table 4 summarizes the results of this computation. These
results are based on market prices as reported by Symantec [33,34]. Other antivirus
vendors performed similar studies and their estimated market prices for these goods are
similar, thus these prices reflect – to the best of our knowledge – actual prices paid on the
underground market for stolen credentials. These results indicate that the information
collected during our measurement period is potentially worth several millions of dollars.

Table 4: Estimation of total value of stolen credentials recovered during measurement
period. Underground market prices are based on a study by Symantec [33].

Stolen credentials Amount Range of prices Range of value
Bank accounts 10,775 $10 – $1000 $107,750 – $10,775,000
Credit cards 5,682 $0.40 – $20 $2,272 – $113,640
Full identities / Social Networks 78,359 $1 – $15 $78,359 – $1,175,385
Online auction site accounts 7,105 $1 – $8 $7,105 – $56,840
Email passwords 149,458 $4 – $30 $597,832 – $4,483,740
Total 224,485 n/a $793,318 – $16,604,605

0 5 10 15 20 25 30

time in days

0

100

200

300

400

500

600

700

800

900

#
 s

to
le

n
 c

re
d
e
n
ti

a
ls

(a) Number of stolen credentials per day

0 5 10 15 20 25 30

time in days

0

500

1000

1500

2000

2500

3000

3500

E
st

im
a
te

d
 e

a
rn

in
g
 i
n
 $

(b) Estimated daily earning for attackers

Fig. 6: Number of unique stolen credentials and estimated amount of money earned per
day due to harvested keylogger data for three Limbo dropzones. Other dropzones have
a similar distribution.

Given the fact that we studied just two families of keyloggers and obtained detailed
information about only 70 dropzones (from a total of more than 240 dropzones that we
detected during our study), we can argue that the overall size of the underground market
is considerably larger.

We also studied the estimated revenue of the individual dropzones. For each drop-
zone, we computed the total number of credentials stolen per day given the five cat-
egories examined in this paper. Furthermore, we use the range of prices reported by
Symantec [33] to estimate the potential daily earnings of the operator of each dropzone.
The results of this analysis are shown exemplarily in Figure 6 for three different Limbo
dropzones. These dropzones were chosen since we were able to obtain continuous data
for more than four weeks for these sites. However, the distribution for other dropzones
is very similar. Figure 6a depicts the number of unique stolen credentials per day. This
number varies greatly per day, presumably due to the fact that the malware has a certain
rate at which new victims are infected and this rate also varies per day. We also observe
that there is a steady stream of fresh credentials that can then be traded at the under-
ground market. On the other hand, Figure 6b provides an overview of the estimated
value of stolen credentials for each particular day. We obtain this estimate by multi-
plying the number of credentials stolen per day with the lowest market price according
to the study by Symantec [33] (see Figure 3). This conservative assumption leads to
a lower bound of the potential daily income of the attackers. The results indicate that
an attacker can earn several hundreds of dollars (or even thousands of dollars) per day
based on attacks with keyloggers — a seemingly lucrative business.

4.6 Discussion

Besides the five categories discussed in this section, ZeuS and Limbo steal many more
credentials and send them back to the attacker. In total, the collected logfiles contain
more than three million unique keystroke logs. With the provider-specific models ex-

Provider
P

Attacker
A

Victim
V

attack channel

harvesting channel

legitimate use of
P by V using
credential c

goal of A:
illegitimate use

of P by V

c

Fig. 7: Structure of attacks susceptible to our method.

amined in the five categories, we only cover the larger types of attacked sites and high-
profile targets. Many more types of stolen sensitive information against small websites
or e-commerce companies are not covered by our analysis. As part of future work, we
plan to extend our analysis and also include an analysis of stolen cookies and the infor-
mation extracted from the Protected Storage of the infected machines.

5 Conclusion and Future Work

Our user simulation approach is rather ad-hoc and does not allow us to study all as-
pects of keyloggers. The main limitation is that we do not know exactly on which sites
the keylogger becomes active and thus we may miss specific keyloggers. Our empiri-
cal results show that keyloggers typically target the main online banking websites and
also extract information from the Protected Storage. Nevertheless, we may miss key-
loggers that only steal credentials from a very limited set of sites. This limitation could
be circumvented by using more powerful malware analysis techniques like multi-path
execution [23] or a combination of dynamic and static analysis [16]. Another limitation
is that we do not exactly determine which credentials are stolen. Techniques from the
area of taint tracking [25,38] can be added to our current system to pinpoint the stolen
credentials. Despite these limitation, the ad-hoc approach works in practice and enables
us to study keyloggers as we showed in Section 3 and 4.

The approach we took in this paper works for keylogger-based attacks, but it can in
fact be generalized to other attacks as well, for example classical phishing. The abstract
schema behind the class of attacks that can be analyzed is shown in Figure 7. There, a
provider P offers some online service like an online bank or an online trading platform
(like eBay or Amazon). The victim V is a registered user of the service provided by P
and uses credentials c to authenticate as a legitimate user towards P . The attacker A
wants to use P ’s service by pretending to be V . To do this, A needs V ’s credentials c.
So for a successful attack, there must exist a (possibly indirect) communication channel
from V to A over which information about c can flow. We call this channel the har-
vesting channel. Apart from the harvesting channel there also exists another (possibly

indirect) communication channel from A to V . This channel is used by the attacker to
initiate or trigger an attack. We call this channel the attack channel. The generalization
of our approach presented in this paper involves an analysis of the harvesting channel.
This is a hard task, which together with more automation is a promising line for future
work in this area.

Acknowledgements. We would like to thank Carsten Willems for extending CWSand-
box such that certain aspects of user simulation such as generic clicking are directly im-
plemented within the sandbox. Jan Göbel provided valuable feedback on a previous ver-
sion of this paper that substantially improved its presentation. Frank Boldewin helped
in analyzing the ZeuS configuration files and the AusCERT team was very helpful in
notifying the victims. This work has been supported by the WOMBAT and FORWARD
projects funded by the European Commission.

References

1. AutoIt Script Home Page. Internet: http://www.autoitscript.com/, 2009.
2. Alexa, the Web Information Company. Global Top Sites, September 2008. http:

//alexa.com/site/ds/top_sites?ts_mode=global.
3. David S. Anderson, Chris Fleizach, Stefan Savage, and Geoffrey M. Voelker. Spamscatter:

Characterizing Internet Scam Hosting Infrastructure. In USENIX Security Symposium, 2007.
4. Anonymous. Comment about posting “Good ol’ #CCpower” on honeyblog. Internet: http:

//honeyblog.org/archives/194-CCpower-Only-Scam.html, June 2008.
5. Madhusudhanan Chandrasekaran, Ramkumar Chinchani, and Shambhu Upadhyaya.

PHONEY: Mimicking User Response to Detect Phishing Attacks. In Symposium on World
of Wireless, Mobile and Multimedia Networks (WoWMoM), 2006.

6. Taehwan Choi, Sooel Son, Mohamed Gouda, and Jorge Cobb. Pharewell to Phishing. In
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2008.

7. Neil Chou, Robert Ledesma, Yuka Teraguchi, and John C. Mitchell. Client-Side Defense
Against Web-Based Identity Theft. In Network and Distributed System Security Symposium
(NDSS), 2004.

8. Rachna Dhamija and J. D. Tygar. The Battle Against Phishing: Dynamic Security Skins. In
Symposium on Usable Privacy and Security (SOUPS), 2005.

9. Finjan. Malicious Page of the Month. http://www.finjan.com/Content.aspx?
id=1367, April 2008.

10. Jason Franklin, Vern Paxson, Adrian Perrig, and Stefan Savage. An Inquiry Into the Nature
and Causes of the Wealth of Internet Miscreants. In Conference on Computer and Commu-
nications Security (CCS), 2007.

11. Sebastian Gajek and Ahmad-Reza Sadeghi. A Forensic Framework for Tracing Phishers. In
IFIP WG 9.2, 9.6/11.6, 11.7/FIDIS International Summer School on The Future of Identity
in the Information Society, Karlstad University, Sweden, August 2007.

12. Cormac Herley and Dinei Florencio. How To Login From an Internet Cafe Without Worrying
About Keyloggers. In Symposium on Usable Privacy and Security (SOUPS), 2006.

13. Thorsten Holz, Markus Engelberth, and Felix Freiling. Learning More About the Under-
ground Economy: A Case-Study of Keyloggers and Dropzones. Technical Report TR-2008-
006, University of Mannheim, 2008.

14. Internet Crime Complaint Center (IC3). 2008 Internet Crime Report, March 2009. http:
//www.ic3.gov/media/annualreports.aspx.

15. Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright, Geoffrey M. Voelker,
Vern Paxson, and Stefan Savage. Spamalytics: An Empirical Analysis of Spam Marketing
Conversion. In Conference on Computer and Communications Security (CCS), 2008.

16. Engin Kirda, Christopher Kruegel, Greg Banks, Giovanni Vigna, and Richard Kemmerer.
Behavior-based Spyware Detection. In USENIX Security Symposium, 2006.

17. Cullen Linn and Saumya Debray. Obfuscation of Executable Code to Improve Resistance
to Static Disassembly. In Conference on Computer and Communications Security (CCS),
2003.

18. MaxMind LLC. MaxMind GeoIP. http://www.maxmind.com/app/ip-location, August 2008.
19. Hans P. Luhn. Computer for Verifying Numbers, August 1960. U.S. Patent 2,950,048.
20. Jerry Martin and Rob Thomas. the underground economy: priceless. USENIX ;login:, 31(6),

December 2006.
21. Jonathan M. McCune, Adrian Perrig, and Michael K. Reiter. Bump in the Ether: A Frame-

work for Securing Sensitive User Input. In USENIX Annual Technical Conference, 2006.
22. Microsoft. Protected Storage (Pstore), August 2008. Microsoft Developer Network (MSDN).
23. Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring Multiple Execution Paths

for Malware Analysis. In IEEE Symposium on Security and Privacy, 2007.
24. Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of Static Analysis for Mal-

ware Detection. In Annual Computer Security Applications Conference (ACSAC), 2007.
25. James Newsome and Dawn Xiaodong Song. Dynamic Taint Analysis for Automatic Detec-

tion, Analysis, and Signature Generation of Exploits on Commodity Software. In Network
and Distributed System Security Symposium (NDSS), 2005.

26. Igor V. Popov, Saumya K. Debray, and Gregory R. Andrews. Binary Obfuscation Using
Signals. In USENIX Security Symposium, 2007.

27. The Honeynet Project. Know Your Enemy: Learning About Security Threats. Addison-
Wesley Longman, 2nd edition, May 2004.

28. Niels Provos, Panayiotis Mavrommatis, Moheeb A. Rajab, and Fabian Monrose. All Your
iFRAMEs Point to Us. In USENIX Security Symposium, 2008.

29. Anirudh Ramachandran and Nick Feamster. Understanding the Network-Level Behavior of
Spammers. SIGCOMM Comput. Commun. Rev., 36(4):291–302, 2006.

30. SecureWorks. PRG Trojan. http://www.secureworks.com/research/
threats/prgtrojan/, June 2007.

31. SecureWorks. Coreflood Report. http://www.secureworks.com/research/
threats/coreflood-report/, August 2008.

32. Mika Stahlberg. The Trojan Money Spinner. In Virus Bulletin Conference, 2007.
33. Symantec. Global Internet Security Threat Report: Trends for July – December 07, April

2008.
34. Symantec. Report on the Underground Economy July 07 – June 08, November 2008.
35. XiaoFeng Wang, Zhuowei Li, Ninghui Li, and Jong Youl Cho. PRECIP: Towards Practical

and Retrofittable Confidential Information Protection. In Network and Distributed System
Security Symposium (NDSS), 2008.

36. Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad Verbowski, Shuo Chen,
and Samuel T. King. Automated Web Patrol with Strider HoneyMonkeys: Finding Web
Sites That Exploit Browser Vulnerabilities. In Network and Distributed System Security
Symposium (NDSS), 2006.

37. Carsten Willems, Thorsten Holz, and Felix Freiling. Toward Automated Dynamic Malware
Analysis Using CWSandbox. IEEE Security & Privacy Magazine, 5(2):32–39, March 2007.

38. Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda. Panorama:
Capturing System-wide Information Flow for Malware Detection and Analysis. In Confer-
ence on Computer and Communications Security (CCS), 2007.

Chapter 5
Assessing Cybercrime Through the Eyes of the
WOMBAT

Marc Dacier, Corrado Leita, Olivier Thonnard, Van-Hau Pham and Engin Kirda

5.1 Foreword

The WOMBAT project is a collaborative European funded research project that aims at providing
new means to understand the existing and emerging threats that are targeting the Internet economy
and the net citizens. The approach carried out by the partners include a data collection effort as well
as some sophisticated analysis techniques. In this chapter, we present one of the threats-related data
collection system in use by the project, as well as some of the early results obtained when digging
into these data sets.

In [21], the authors offer a thorough presentation of one of the data collection infrastructures
used within the WOMBAT project to collect threats-related data. The presentation is very detailed,
going as far as explaining the database scheme used to represent the vast amount of information
they have access to. In the following pages, we wish to offer to the reader an early synthesis of the
various results that have been obtained when analyzing this large amount of information. However,
in order for this chapter to be as self-contained as possible, we start the presentation by re-stating
the rationales for this work, as well as by providing a summarized introduction to the data collection
infrastructure. We invite the reader who is already familiar with the WOMBAT project to skip this
part and move directly to the presentation of the results.

Marc Dacier
Symantec, Sophia Antipolis, France, e-mail: marc_dacier@symantec.com

Corrado Leita
Symantec, Sophia Antipolis, France, e-mail: corrado_leita@symantec.com

Olivier Thonnard
Eurecom, Sophia Antipolis, France, e-mail: thonnard@eurecom.fr

Van-Hau Pham
Eurecom, Sophia Antipolis, France, e-mail: pham@eurecom.fr

Engin Kirda
Eurecom, Sophia Antipolis, France, e-mail: kirda@eurecom.fr

91

92 Dacier et al.

5.2 Introduction

Understanding the existing and emerging threats on the Internet should help to effectively protect
the Internet economy, our information systems and the Internet users. To reach this goal, it is neces-
sary to collect sound measurements about the ongoing attack processes observed worldwide on the
Internet. In the last years, the experimental study of Internet threats has gained much attention and
many valuable initiatives now exist for monitoring malicious activities or for capturing malware
binaries. Important contributions have been made in the field such as: i) the so-called Darknets
and Internet telescopes [23, 30, 35], ii) various projects based on the development of low- or high-
interaction honeypots [2, 13, 31, 34, 41], and iii) other initiatives aiming at collecting and sharing
firewall and IDS logs [14].

The Leurré.com project was initially launched in 2003 and has since then been integrated and
further developed within the WOMBAT project. It is based on a worldwide distributed system
of honeypots running in more than 30 different countries covering the five continents. The main
objective with this infrastructure is to get a more realistic picture of certain classes of threats hap-
pening on the Internet by collecting unbiased quantitative data in a long-term perspective. We have
decided to keep in one centralized database very precise information concerning a limited number
of nodes under close scrutiny. Concretely speaking, we initially deployed identically configured
honeypots based on Honeyd [31] on the premises of several partners around the globe. Within
WOMBAT, we have improved the infrastructure in a major way by building and deploying new
honeypot sensors based on the ScriptGen technology [17, 18, 20]. These new sensors dramatically
improve the interaction with the attackers and, hence, enrich our data collection. We record all
packets sent to or from these machines, on all platforms, and we store the whole traffic into a
database, enriched with some contextual information and with meta-data describing the observed
attack sessions. In the next Sections, we present these two data collection infrastructures and, then,
offer a synthesis of some of the results obtained by the WOMBAT partners when analyzing the
data at their disposal.

This chapter begins with the presentation of the initial data collection infrastructure that is based
on the deployment of low-interaction honeypots, for which we give a series of simple examples
that reveal the kind of information that such low level traces can provide. Then, we present how we
have extended our infrastructure with the SGNET deployment, which has recently been opened to
anybody willing to host one of its sensors. Section 5.5 presents how the identification of so-called
attack events (representing specific activities over limited period of times) enables us to observe the
evolution of what we hypothesize to be armies of zombies, some of them remaining visible for more
than 700 days. Section 5.6 gets deeper into the analysis of the traces, highlighting the usefulness
of applying what we call a multidimensional analysis to the honeypot events. Section 5.7 provides
some insights into the kind of contextual information that SGNET can offer whenever collecting
malware. Concrete examples are given that demonstrate the usefulness of such information in
discovering new threats and in better understanding the links between the code injection phase, the
shellcode injected and the uploaded malware itself.

5.3 Leurre.com v1.0 Honeyd

5.3.1 Historical background

The Institut Eurécom has started collecting attack traces on the Internet in 2003 by means of hon-
eypot responders. The first platform consisted of three high interaction honeypots built on top of
the VMware technology (the interested readers in the platform configuration are invited to read

5 Assessing Cybercrime Through the Eyes of the WOMBAT 93

[12] for more information). As shown in [11, 12], these first experiments allowed us to detect
some locality in Internet attacks: activities seen in some networks were not observed in others.
To validate this assumption, we decided to deploy multiple honeypots in diverse locations. With
diversity, we refer both to the geographical location and to the sensor environment (education, gov-
ernment, private sectors, etc). However, the VMware-based solution did not seem to be scalable.
First, this solution had a high cost in terms of security maintenance. Second, it required signifi-
cant hardware resources. In fact, to avoid legal issues we would have needed to ensure that these
systems could not be compromised and could not be exploited by attackers as stepping stones to
attack other hosts. For those reasons, we have chosen a low-interaction honeypot solution, hon-
eyd [31]. This solution allowed us to deploy low-cost platforms, easy to maintain and with low
security risk, hosted by partners on a voluntary basis. The low-cost of the solution allowed us
to build a distributed honeynet consisting now of more than 50 sensors distributed all over the
world, collecting data on network attacks and representing this information under the form of a
relational database accessible to all the parters. Information about the identity of the partners and
the observed attackers is protected by a Non-Disclosure Agreement signed by each entity partici-
pating to the project. We have developed all the required software to automate the various regular
maintenance tasks (new installation, reconfiguration, log collection, backups, etc.) to reduce the
maintenance overhead related to the management of such a complex system.

5.3.2 Some technical aspects

We describe here some important technical aspects, including the platform architecture, the logs
collection mechanism, the DB uploading mechanism, and the data enrichment mechanism.

Platform architecture: As mentioned before, the main objective is to compare unsolicited
network traffic in diverse locations. To make sound comparisons, the platform architecture must
be the same everywhere. We tried to make our Honeyd-based solution as similar as possible to the
initial VMware setup. We configured Honeyd to simulate 3 virtual hosts running on three different
(consecutive) IP addresses. We configured Honeyd’s personality engine to emulate the presence of
two different configurations, namely two identical virtual machines emulating Windows 2000 SP3,
and one machine emulating a Linux Kernel 2.4.20. To the first two configurations (resp. the last)
correspond a number of open ports: FTP, Telnet, Web server, Netbios name service, Netbios ses-
sion service, and Service Message Block (resp. FTP server, SSH server, Web server on ports (80),
Proxy (port 8080,8081), remote shell (port 514), LPD Printer service (port 515) and portmapper).
We require from each partner hosting the platform a fourth IP address used to access the physical
host running Honeyd and perform maintenance tasks. We run tcpdump [36] to capture the com-
plete network traces on each platform. As a security measure, a reverse firewall is set up to protect
our system. That is, we accept only incoming connections and drop all the connections that could
eventually be initiated from our system (in theory, this should never happen). The access to the
host machine is very limited: SSH connections are only allowed in a two-hour daily timeframe and
only if it is initiated by our maintenance servers.

Data collection mechanism: An automatized mechanism allows us, on a daily basis, to con-
nect to the platforms through an encrypted connection to collect the tcpdump traces. The script
downloads not only the last day’s log file but also the eventual older ones that could not have been
collected in the previous days due to, for example, a connectivity problem. All the log files are
stored on a central server.

Data uploading mechanism: Just after the data retrieval, the log files are then uploaded into
a large Oracle database by a set of Perl programs. These programs take tcpdump files as input and
parse them in order to create different abstraction levels. The lowest one corresponds to the raw

94 Dacier et al.

tcpdump traffic. The higher level is built on the lower ones and has richer semantics. Due to space
constraints, we do not present here all the concepts, but instead we will focus only on the most
important notions.

1. Source: A source corresponds to an IP address that has sent at least one packet to, at least, one
platform. Note that, in our Source model, a given IP address can correspond to several distinct
sources. That is, an IP remains associated to a given source as long as there is no more than 25
hours between 2 consecutive packets received from that IP. After such a delay, a new source
will be assigned to the IP. By grouping packets by sources instead of by IPs, we minimize the
risk of gathering packets sent by distinct physical machines that have been assigned the same
IP dynamically after 25 hours.

2. Large Session: it’s the set of packets which have been exchanged between one Source and a
particular honeypot sensor. A Large Session is characterized by the duration of the attack, the
number of packets sent by the Source, the number of virtual machines targeted by the source
on that specific platform, ...

3. Ports sequence: A ports sequence is a time ordered sequence of ports (without duplicates) a
source has contacted on a given virtual machine. For example, if an attacker sends the following
packets: ICMP, 135 TCP, 135 TCP, 139 TCP to a given virtual machine, the associated ports
sequence will be represented by the string I|135T |139T . Each large session can have, at most,
three distinct clusters associated to it.
This is an important feature that allows us to classify the attacks into different classes. In fact,
as mentioned in [12], most attack tools are automatized, it is as likely that the same attack tools
will leave the same port sequences on different platforms.

4. Tiny Session: A Tiny Session groups the packets exchanged between one source and one vir-
tual host. A Large Session is thus composed of up to three Tiny Sessions, ordered according to
the virtual hosts IP addresses.

5. (Attack) Cluster: A Cluster is a set of Sources having exhibited the same network fingerprint
on a honeypot sensor. We apply a clustering algorithm on the traffic generated by the sources.
The first step of this clustering algorithm consists in grouping large sessions into bags. This
grouping aims at differentiating between various classes of activity taking into consideration a
set of preliminary discriminators, namely the number of targeted virtual hosts and the unsorted
list of port sequences hitting them. In order to further refine the bags, a set of continuous
parameters is taken into consideration for each large session, namely: its duration, the total
number of packets, the average inter arrival time of packets, and the number of packets per tiny
session. These parameters can assume any value in the range [0,∞], but some ranges of their
values may be used to define bag subclasses. This is done through a peak picking algorithm
that identifies ranges of values considered discriminating for the bag refinement. Large sessions
belonging to a bag and sharing the same matching intervals are grouped together in a cluster.
A very last refinement step is the payload validation. The algorithm considers the concatenation
of all the payloads sent by the attacker within a large session ordered according to the arrival
time. If it identifies within a cluster multiple groups of large sessions sharing similar payloads,
it further refines the cluster according to these groups. In summary, a cluster is by design a set
of large sessions that seem to be originating from a similar attack tool.

6. A Cluster time series ΦT,c is a function defined over a period of time T , T being defined as
a time interval (in days). That function returns the amount of sources per day associated to a
cluster c.

7. An Observed cluster time series ΦT,c,op is a function defined over a period of time T , T
being defined as a time interval (in days). That function returns the amount of sources per
day associated to a cluster c that can be seen from a given observation view point op. The
observation view point can either be a specific platform or a specific country of origin. In the
first case, ΦT,c,plat f ormX returns, per day, the amount of sources belonging to cluster c that
have hit plat f ormX . Similarly, in the second case, ΦT,c,countryX returns, per day, the amount of
sources belonging to cluster c that are geographically located in countryX . Clearly, we always
have: ΦT,c = ∑∀i∈countries ΦT,c,i = ∑∀x∈plat f orms ΦT,c,x

5 Assessing Cybercrime Through the Eyes of the WOMBAT 95

Information enrichment

Finally, to enrich the information about each source, we add to it three other dimensions:

1. Geographical information: To obtain geographical location such as: organization, ISP, coun-
try of a given IP address, we have initially used Netgeo [25], developed in the context of CAIDA
Project. It provided a very surprising result which considered Netherlands and Australia as two
of the most attacking countries. As a sanity check, we have used Maxmind [22] and we have de-
tected problems with the Netgeo classification. [29] provides a comparison of these two tools.
It comes out from this analysis that Netherlands and Australia were not among the top attacking
countries anymore when using different sources of information for the geographical location of
attacking IP addresses.

2. OS fingerprint: To figure out the OS of attacking hosts, we have used passive OS fingerprinting
techniques. We take advantage of disco [1] and p0f [42]. It has been shown that p0f is more
accurate than disco. Active fingerprinting techniques such as Nmap, Quezo, or Xprobe have
not been considered to minimize the risk of alerting the attacker of our investigations.

3. Domain name: We also do the reverse DNS lookup to get the domain name of the attacking
machine if it is available.

5.3.3 Generic picture

Jan03 Jan04 Jan05 Jan06 Jan07 Jan08 Jan09
0

10

20

30

40

50

60

70

P
la

tfo
rm

 id
en

tif
ie

r

Jan03 Jan04 Jan05 Jan06 Jan07 Jan08
0

0.5

1

1.5

2

2.5

3
x 105

Time

N
um

be
r o

f s
ou

rc
es

Fig. 5.1 Left: Evolution of platforms, Right: number of sources

Figure 5.1 (left) shows the evolution of platforms. Each curve corresponds to the time life of a
platform. As we can see, we started our data collection in January 2003 with one VMware honeypot
and we have started to deploy the distributed low interaction honeypots in April 2004. Since then,
the number of partners joining us has kept increasing. In total, we have around 50 offical partners
and around 20 former partners. These platforms have, in total, covered 37 different /8 networks,
locating in 28 different countries in five continents. In total, we have observed 5173624 sources
corresponding to 3461745 different IP addresses. Figure 5.1 (right) shows the evolution of the
number of sources over time. The variation of the curve is of course influenced by the number of
platforms. Note that up to April 2004, the traffic is negligible. After that, the number of sources has
increased. It is interesting to observe that the number of sources on the last six months of 2004 is
much higher than that of the last six months of 2005 even through, in the second case, we have more
platforms. In total, there are 155041 different clusters. Figure 5.2 (left) represents the cumulative
distribution function of number of sources per number of cluster. Point (X,Y) on the curve means

96 Dacier et al.

that Y*100% of the total amount of clusters contain less than X sources. As we can see, most of
clusters are very small. There are, in fact, only 15521 clusters containing more than 10 sources
each. Interestingly enough, by querying the database one can find that these clusters, ie. around
10% of the total number of clusters, contain in fact 95% of the observed attacks! In other words, the
bulk of the attacks is found in a limited number of clusters whereas a very large number of diverse
activities originate from a very limited number of sources. In term of attacking machines’ OS,
according to p0f, almost all attacking machines are Windows ones. This confirms again the results
in [11, 12]. Figure 5.3 shows the top ten attacking countries with US in the head, followed by China
and Canada. But the surprising thing is that CS (corresponding to former Serbia and Montenegro)
is at the fifth position. The reason is that there is one (and only one!) platform which is heavily
attacked by this country. In total, it shows up as one of the most attacking countries. Finally, as an
example to show the diversity of the attacks over different platforms, Figure 5.2 (right) shows the
distribution of the number of different clusters per platform. Each column represents the number
of distinct clusters observed on a platform. We have as many columns as number of platforms. As
we can see, the attacks are highly diverse. On some platforms, we observe just small number of
clusters, but it is not the case for others.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of sources−X

F(
x)

CDF of cluster per number of sources

0

1

2

3

4

5

6
x 104

Fig. 5.2 Left:Cumulative distribution function of number of source per cluster; Right:Distribution
of number of clusters per platform.

5.3.4 Some illustrative examples

The diversified aspect of real-world datasets, such as honeynet data, makes the task of an analyst
rather difficult in selecting and analyzing some appropriate attack characteristics, which may help
eventually to make meaningful conclusions about the attack root causes. To illustrate this point, we
provide here a series of basic examples of how to analyze various facets of the observed network
threats. At this stage, the main ideas we want to convey are: i) that several aspects of an attack
dataset can potentially deliver meaningful pieces of evidence about attack root causes, and ii) that
large-scale attack processes manifest themselves through so-called “attack events” on different
sensors, which are the basis for the analysis of the underlying root causes.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 97

US (21%)

CN (18%)

CA (16%)

KR (14%)

CS (7%)

DE (7%)

JP (5%)

FR (4%)
TW (4%)GB (4%)

Fig. 5.3 Top ten attacking countries

5.3.4.1 Temporal Evolution of Attack Clusters

Time series analysis can provide valuable information (e.g., trends, abrupt changes, and emerging
phenomena) to security practitioners in charge of detecting anomalous behaviors or intrusions in
the collected traffic. This first illustration shows a temporal evolution of a given attack cluster,
i.e.an aggregated source count of the number of sources belonging to that cluster on a chosen time
scale, in this case grouped by day. On Fig 5.4, we can see the evolution of the attack cluster with
ID. 17718 in a time period ranging from 1-Dec-06 until 01-Mar-07, either for all platforms together
(left plot), or by splitting the time series for each platform separately, so as to analyze the impact
of this attack cluster on different platforms.

01/12 21/12 10/01 30/01 19/02
0

50

100

150

200

250

300

Time (by day)

N
r

o
f

S
o

u
rc

es

Cluster 17718 � Ports seq. I�445T

01/12 21/12 10/01 30/01 19/02
0

50

100

150

Time (by day)

N
r

o
f

S
o

u
rc

es

Cluster 17718 on sensors 14 and 42

17718.14
17718.42

Fig. 5.4 Left: global time evolution of attack cluster 17718, with the sources aggregated by day.
Right: time evolution of the same attack cluster for the platforms 14 and 42 separately.

98 Dacier et al.

5.3.4.2 Geographical Location of Attackers

Taking back the previous example, we could wonder from which countries the sources belong-
ing to attack cluster 17718 are coming from during the activity period of this attack process. The
geographical origins of attackers can be used indeed to identify attack activities having specific
patterns in terms of originating countries. Such information can be important to identify, for in-
stance, botnets that are located in a limited number of countries. It is also a way to confirm the
existence, or not, of so-called safe harbors for the hackers.

Table 5.1 Geographical distribution for attack cluster 17718 in the time window spanning from
1-Dec-06 until 01-Mar-07.

Country of origin Nr of Sources Relative %

CN 1150 35.3
US 378 11.6
CA 255 7.8
FR 236 7.2

unknown 215 6.6
TW 137 4.2
JP 128 3.9
IT 120 3.6
DE 107 3.3

Others 524 16.1

The result of extracting the geographical distribution of cluster 17718 is represented in Ta-
ble 5.1: the first column indicates the country of origin (represented with its ISO code) and the
second column gives the number of sources belonging to that country. The third column indicates
the corresponding relative percentage for each country with respect to the total number of sources
for this attack process (i.e., 3250 sources in total). With this simple example, we want to show that
this kind of aggregated information can in turn be used as input of a correlation process, as it will
be demonstrated in Section 5.6.

5.3.4.3 Attackers Subnets Information

The source IP network blocks is a property that nicely complements the geolocation as described
before. Instead of giving insight into possible geostrategic decisions made by the attackers, they
can typically reveal some strategies in the propagation model of the malware. Indeed, attackers’ IP
subnets can provide a good indication of the spatial “uncleanliness” of certain networks, i.e., the
tendency for compromised hosts to stay clustered within unclean networks, especially for zombie
machines belonging to botnets as demonstrated in [8]. Previous studies have also demonstrated
that some worms show a clear bias in their propagation scheme, such as a tendency for scanning
machines of the same (or nearby) network so as to optimize their propagation [7].

The results of such analysis are presented in Table 5.21 in the case of an aggregation of the
sources by Class A network blocks, but similar analyses could be performed for other groupings
(Class B, C, ...). Again, this kind of feature vector can be used as input for a global correlation
process in order to identify attack processes that exhibit similar IP subnets distributions.

1 To preserve the confidentiality related to the IPs of the attackers, the first byte values have been
somehow obfuscated in the table. So these are not the real subnet prefixes, but the eventual prox-
imities among them have been preserved.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 99

Table 5.2 Anonymized distribution of Class A-subnets for attack cluster 17718 in the time window
spanning from 1-Dec-06 until 01-Mar-07.

Subnet of Origin (Class A) Nr of Sources

220.x.x.x 451
56.x.x.x 193
80.x.x.x 168
22.x.x.x 160
217.x.x.x 159
86.x.x.x 123
218.x.x.x 113
69.x.x.x 100
66.x.x.x 91
216.x.x.x 90

Others 1602

5.3.4.4 Targeted Platforms or Subnets

Apparently, some recent crimeware toolkits are now able to deliver a specific type of malware
to different geographical regions [5]. By using this new feature, cybercriminals can thus set up
well targeted campaigns by delivering specialized crimeware in specific regions, being specific
countries or its corresponding IP blocks. Therefore, it seems important to look at the relationships
that may exist between attack events and the platforms or subnets they have been observed on.
Table 5.3 illustrates this kind of information, where the first column gives the Id. of the platform,
and each row of the second column indicates the number of sources belonging to attack cluster
17718 that have targeted the corresponding platform. In the last column, the Class A-subnet of
each platform is also given. This last illustration gives yet another example of “viewpoint” that
could be used in a global correlation process of attack events.

Table 5.3 Distribution of targeted platforms for attack cluster 17718

Targ.Platform Nr of Sources Subnet(A)

14 1552 139
76 871 134
42 431 150
57 70 24
71 67 58
53 42 88
55 42 83

Others 175 -

100 Dacier et al.

5.4 Leurre.com v2.0: SGNET

5.4.1 Increasing the level of interaction

We have seen in the previous Section how we have been able to generate valuable dataset with
quantitative information on the localization and the evolution of Internet unsolicited traffic. We are
able to observe interesting behaviors, most of which are very difficult to justify or to attribute to
a specific root cause. It is, indeed, very difficult to link a given observation to a class of activities,
and our search for answers in this direction had to deal with a limited amount of information about
the final intention of the attacker. The low level of interaction of the Leurré.com honeypots is a
limiting factor: when a honeypot receives a client request, it is not able to carry on the network
conversation with the attacker, nor to “understand” it.

For instance, in our experience within the Leurré.com project, due to the lack of emulation
scripts we have been able to observe only the first request of many interesting activities such as
the spread of the Blaster worm [6]. But since Blaster sends its exploit in the second request of its
dialog on port 135, we have never been able to observe such a payload. Therefore it becomes very
difficult to distinguish Blaster’s activity from other activities targeting the same port using solely
the payload as a discriminating factor.

Fortunately, experience shows that, even such limited amount of information, a large variety of
analyses remain applicable and deliver useful results. In order to increase the amount of available
information on attackers, we need to increase the level of interaction with the honeypots. However,
in order to keep carrying on our deployment of sensors on a voluntary basis, we need to achieve
this objective at the lowest possible cost. This led to the development of the ScriptGen approach.

5.4.2 ScriptGen

The ScriptGen technology [19, 20] was created with the purpose of generating honeypots with a
high level of interaction having a limited resource consumption. This is possible by learning the
behavior of a given network protocol when facing deterministic attack tools. The learnt behavior
is represented under the form of a Finite State Machine representing the protocol language. The
generated FSM can then be used to respond to clients, emulating the behavior of the real service
implementation at a very low cost.

The ScriptGen learning phase is completely protocol agnostic: no knowledge is assumed nei-
ther about the structure of the protocol, nor on its semantics. ScriptGen is thus able to replay any
deterministic run of a protocol as long as its payload is not encrypted. The ScriptGen learning
takes as input a set of samples of network interaction between a client and the real implementation
of a server. The core of the learning phase is the Region Analysis algorithm introduced in [20]:
taking advantage of bioinformatics alignment algorithms [24], the algorithm exploits the statisti-
cal variability of the samples to identify portions of the protocol stream likely to carry a strong
semantic meaning and discard the others. In order to build reliable representations of the protocol
interaction, it is thus necessary to collect a clean set of samples with enough statistical variabil-
ity to correctly identify semantically important regions. Figure 5.5 shows an example of semantic
abstraction for an excerpt of SMTP FSM.

The properties of the ScriptGen approach allow to perform a completely automated incremental
learning of the activities as shown in [19]. ScriptGen-based honeypots are able to detect when a
client request falls out of the current FSM knowledge (a 0-day attack or, more exactly, a yet unseen
attack) by simply detecting the absence of a matching transition. In such case, the honeypot is thus
unable to provide a valid answer to the attacker. We showed in [19] how the honeypot can react to
this situation relying on a real host (an oracle) and acting as a proxy between the attacker and the

5 Assessing Cybercrime Through the Eyes of the WOMBAT 101

250 OK

250 OK

250 OK

MAIL FROM: <alice@eurecom.fr>

MAIL FROM: <bob.eurecom.fr>

MAIL FROM: <carl@eurecom.fr>

250 OK

MAIL FROM: <*@eurecom.fr>

Fig. 5.5 ScriptGen FSM generalization

real host. This allows the honeypot to continue the conversation with the attacker, and to collect a
new sample of protocol interaction that can be used to automatically refine the protocol knowledge.

ScriptGen is able to correctly learn and emulate the exploit phase for protocols as complex
as NetBIOS [19]. ScriptGen thus allows to build highly interactive honeypots at low cost. The
oracles needed to learn new activities can be hosted in a single virtualization farm and contacted by
the honeypots through a tunneling system, in a structure similar to Spitzner’s honeyfarm concept.
Differently from classical honeyfarms, access to the real hosts is a rare event resulting from the
occurrence of a new kind of attack. As a consequence, systems based on the ScriptGen honeypots
potentially have a high degree of scalability.

5.4.3 SGNET: a ScriptGen-based honeypot deployment

We took advantage of this technology to build an experimental honeypot deployment, called
SGNET, meant to follow the lines of the Leurré.com deployment but providing a significant im-
provement in the richness of the collected data.

SGNET and code injections. SGNET is a scalable framework that offers almost the same
amount of information than real high interaction systems for a specific class of attacks, namely
server-based code injection attacks generated by deterministic scripts. We are aware of the fact
that they correspond only to a subset of the possible attack scenarios. However, as of today, they

102 Dacier et al.

are considered to be responsible for the creation of large botnets [32] and the preferred propagation
mechanisms of a large number of different malware.

The final objective of a code injection attack consists in forcing the execution of executable code
on a victim machine exploiting a vulnerable network service. Crandall et al. introduced in [10] the
epsilon-gamma-pi model, to describe the content of a code-injection attack as being made of three
parts.

Exploit (ε). A set of network bytes being mapped onto data which is used for conditional con-
trol flow decisions. This consists in the set of client requests that the attacker needs to perform to
lead the vulnerable service to the control flow hijacking step.

Bogus control data (γ). A set of network bytes being mapped onto control data which hijacks
the control flow trace and redirects it to someplace else.

Payload (π). A set of network bytes to which the attacker redirects the vulnerable application
control flow through the usage of ε and γ .

The payload that can be embedded directly in the network conversation with the vulnerable
service (commonly called shellcode) is usually limited to some hundreds of bytes, or even less. It
is often difficult to code in this limited amount of space complex behaviors. For this reason it is
normally used to force the victim to download from a remote location a larger amount of data: the
malware. We extend the original epsilon-gamma-pi model in order to differentiate the shellcode π
from the downloaded malware μ .

An attack can be characterized as a tuple (ε,γ,π,μ). In the case of, old, classical worms,
it is possible to identify a correlation between the observed exploit, the corresponding injected
payload and the uploaded malware (the self-replicating worm itself). Thanks to the correlation
between the 4 parameters, retrieving information about a subset of them was enough to characterize
and uniquely identify the attack. This situation is changing. Taking advantage of the many freely
available tools such as Metasploit [33, 37], even unexperienced users can easily generate shellcodes
with personalized behavior and reuse existing exploit code. This allows them to generate new
combinations along all the four dimensions, weakening the correlation between them. It is thus
important to try to retrieve as much information as possible on all the 4 dimensions of the code
injection. We designed SGNET in such a way to delegate to different functional components the 4
dimensions, and combine the information retrieved by these components to have an exact picture
of the relationships among them.

The ScriptGen approach is suitable for the learning of the exploit network interaction ε , offering
the required level of interactivity with the client required to lead the attacker into sending code
injection attacks. For the previously stated reasons, in SGNET we extend this capability with the
information provided by other tools in order to retrieve information on the other dimensions of
the epsilon-gamma-pi-mu (EGPM) model. We take advantage of the control flow hijack detection
capabilities of Argos [28] to detect successful code injection attacks, understand the bogus control
data γ and retrieve information about the location of the injected payload π . We take advantage
of the shellcode emulation and malware download capabilities of Nepenthes [2] to understand the
payload π , emulate its behavior and download the malware sample μ .

When facing an attacker, the SGNET activity evolves through different stages, corresponding to
the main phases of a network attack. SGNET distributes these phases to three different functional
entities: sensor, sample factory and shellcode handler.

The SGNET sensor corresponds to the interface of the SGNET towards the network. The
SGNET deployment aims at monitoring small sets of IPs deployed in multiple locations of the
IP space, in order to characterize the heterogeneity of the activities along the Internet as observed
in [9, 12]. SGNET sensors are thus low-end hosts meant to be deployed at low cost by different
partners willing to join the project and bound to a limited number of IPs. The deployment of the
sensors follows the same win-win partnership schema explained before. Taking advantage of the

5 Assessing Cybercrime Through the Eyes of the WOMBAT 103

ScriptGen technology, the sensors are able to handle autonomously the exploit phase ε of attacks
falling inside the FSM knowledge with minimal resource requirements on the host.

The SGNET sample factory is the oracle entity meant to provide samples of network interaction
to refine the knowledge of the exploit phase when facing unknown activities. The sample factory
takes advantage of a real host running on a virtual machine and monitors the host state through
memory tainting. This is implemented taking advantage of Argos, presented by Portokalidis et al.
in [28]. Keeping track of the memory locations whose content derives from packets coming from
the network, Argos is able to detect the moment in which this data is used in an illegal way. Argos
was modified in order to allow the integration in the SGNET and load on demand a given honeypot
profile with a suitable network configuration (same IP address, gateway, DNS servers, ... as of the
sensor sending the request). The profile loading and configuration is fast enough to be instantiated
on the fly upon request of a sensor.

The Argos-based sample factories provide information about the presence of code injections
(γ) and are able to track down the position in the network stream of the first byte being executed by
the guest host, corresponding to the byte Bi of the payload π . We have developed a simple heuristic
to identify the injected payload π in the network stream starting from the hint given by the sample
factory [17]. This allows to embed in the ScriptGen learning additional knowledge, namely the a
tag identifying the final state of a successful code injection and information within the preceding
transitions that allows to extract from the attacker’s protocol stream the payload π .

The final steps of the code injection attack trace are delegated to the SGNET shellcode han-
dler. Every payload π identified by the SGNET interaction is submitted to a shellcode handler. The
shellcode handler is implemented reusing part of the functionality of the Nepenthes [2] honeypots.
We take advantage of Nepenthes shellcode analyzer to “understand” the payload π and emulate
its behavior using Nepenthes download modules. In the context of the SGNET, Nepenthes is thus
used as an oracle for the payload emulation. Differently from the exploit phase, we do not try to
learn the Nepenthes behavior in terms of FSM. We consider the payload emulation a too complex
interaction to be represented in terms of a FSM.

SGNET Architecture.

������	

��

������	

������	�

������	�

������
�������	�

������
�������	�

���������
�������

Fig. 5.6 SGNET architecture

The general architecture of the SGNET is presented in Figure 5.6. All the SGNET entities
communicate through an ad-hoc HTTP like protocol called Peiros [18]. The Peiros protocol allows

104 Dacier et al.

communication under the form of a set of service requests, allowing for instance a sensor to require
the instantiation of a sample factory. The sensors, distributed over the IP space and hosted by
partners of the project, are connected to a central entity called SGNET gateway, that acts as an
application-level proxy for the Peiros protocol. The gateway receives service requests from the
sensors and dispatches them to a free internal entity, performing a very simple load balancing.
The architecture offers a clean separation between the sensors, relatively simple daemons running
over inexpensive hosts, and the internal entities, having a higher complexity and higher resource
requirement.

We saw how the ScriptGen learning exploits the variability of the samples to produce “good”
refinements of the FSM knowledge. The architecture of Figure 5.6 shows how the SGNET gateway
offers a unique standpoint to collect interaction samples: all the tunneled conversations between
any sensor and any sample factory flow through the gateway. The gateway becomes thus the best
candidate to perform ScriptGen refinements to the current FSM knowledge. Once a new refinement
is produced, the gateway takes care of updating the knowledge of all the sensors pushing them the
FSM updates. This makes sure that all the sensors online at a given moment share exactly the same
knowledge of the protocols.

An important aspect related to the ScriptGen learning is the strict relation between the Script-
Gen ability to learn exploits and the configuration of the sample factories. If a service is not in-
stalled or activated in the configuration of the virtualized host handled by the sample factory, the
SGNET architecture will not be able to observe activities targeting it. It is thus important to care-
fully configure the sample factories in order to maximize the visibility of malicious activities.
We chose to address this problem supporting the assignment of different profiles for the IPs of
the SGNET sensors, similarly to what was done on the Leurré.com deployment. Each profile is as-
signed to a different sample factory configuration, with different services and different OS versions
to maximize the visibility on network attacks of our deployment.

The description of the SGNET deployment clearly shows a difference with respect to the orig-
inal Leurré.com deployment. SGNET is a more complex architecture, that succeeds in raising the
level of interaction of the honeypots without raising the resource requirements for the partners
hosting the sensors. Taking advantage of the ScriptGen learning, the deployment also allows to
minimize the usage of expensive resources such as the sample factories, that are needed only to
handle those activities that do not fall yet in the FSM knowledge. An important concern for the
partner taking advantage of this deployment is the security of the solution. SGNET raises the level
of interaction of the honeypots; it is thus important to guarantee that the increased interactivity
does not impact the safety of hosting a honeypot platform. The network interaction driven by FSM
knowledge is virtually as safe as any low-interaction honeypots: the attacker interacts with a sim-
ple daemon performing state machine traversals to provide answers to client requests. When a new
activity is handled, the sensor acts as a proxy and the attacker is allowed to interact with a real (and
thus vulnerable) host. Two measures are in place to ensure the safety of this process. Firstly, the
tunneling system ensures that any outbound packet generated by the sample factory is directed only
towards the attacking source (blocking any attempt of exploiting the honeypot as a stepping stone
to attack others). Secondly, the memory tainting capabilities of Argos allow us to stop execution as
soon as the attacker successfully hijacks the host control flow. This does not include for instance
successful password brute-forcing attacks, but this class of attacks can be prevented by a careful
configuration of the virtualized host.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 105

5.5 Analysis of Attack Events

5.5.1 Identification of Attack Events

5.5.1.1 Attack Event Definition

An attack event is defined as a set of observed cluster time series exhibiting a particular shape
during a limited time interval. This time interval typically lasts a couple of days, but it can also be
as short as a single day.

The existence of attack events highlights the coordinated activities of several attacking ma-
chines. Note that the set can be a singleton. This is typically the case when the set is a peak of
activities on a single day. For illustrative purposes, the top plot of Figure 5.7 represents the attack
event 225 which consists of cluster 60332 (targeting port 5900 TCP) attacking seven platforms
5,8, 11, ...,31 from day 393 to day 400. Whereas the bottom plot of Figure 5.7 represents the attack
event 14 which consists of activities of cluster 0 on day 307 coming almost only from Spain.

380 385 390 395 400 405 410
0

20

40

60

nu
m

be
r o

f s
ou

rc
es

time(day)

295 300 305 310 315 320
0

100

200

300

time(day)

nu
m

be
r o

f s
ou

rc
es Cluster 0 coming from Spain

Cluster 60322 attacks on 7 platforms 5,8,11,...,21

Fig. 5.7 On the top plot, cluster 60232 attacks seven platforms from day 393 to day 400. On the
bottom plot, peak of activities of cluster 0 from Spain on day 307.

5.5.1.2 Dataset Description

In order to have a clean dataset for our experiments, we have selected the traces observed on 40
platforms out of the 50 that we had at our disposal. All these 40 platforms have been running for
more than 800 days. During this period, note of the platforms has been down for more than 10
times. Furthermore, each one has been up continuously for at least 100 days. All platforms have
been up for a minimum of 400 days over that period.

The total amount of sources observed, day by day, on all these 40 platforms can be denoted by
the initial time series T S over a period of 800 days.

106 Dacier et al.

We can split that time series per country2 of origin of the sources. This gives us 231 time
series T SX where the ith point of such time series indicates the amount of sources, observed on all
platforms, located in country X . We represent by T S L1 the set of all these Level 1 time series.
To reduce the computational cost, we keep only the countries from which we have seen at least
10 sources on at least one day. This enables us to focus on 85 (the set of corresponding countries
is called bigcountries), instead of 231, time series. We represent by T S L1′ this refined set of Level
1 time series. Then, we split each of these time series by cluster to produce the final set of time
series Φ[0−800),ci,country j∀ci and ∀country j ∈ bigcountries. The ith point of the time series Φ[0−800),X ,Y
indicates the amount of sources originating from country Y that have been observed on day i
attacking any of our platforms thanks to the attack defined by means of the cluster X . We represent
by T S L2 the set of all these Level 2 time series. In this case |T S L2| is equal to 436,756 which
corresponds to 3,284,551 sources. As explained in [27], time series that barely vary in amplitude
over the 800 days are meaningless to identify attack events and we can get rid of them. Therefore,
we only keep the time series that highlight important variations during the 800 days period. We
represent by T S L2′ this refined set of Level 2 time series. In this case |T S L2′| is equal to 2,420
which corresponds to 2,330,244 sources. We have done the very same splitting and filtering by
looking at the traces on a per platform basis instead of on a per country of origin basis. The
corresponding results are given in Table 5.4.

Table 5.4 dataset description: T S: all sources observed on the period under study, OV P: observa-
tion view point, T S L1: set of time series at country/platform level, T S L1′: set of significant time
series in T S L1, T S L2 : set of all cluster time series, T S L2′ set of strongly varying cluster time
series

T S consists of 3,477,976 sources

OVP country platform

|T S L1| 231 40

|T S L1′| 85 40
(94,4% TS) (100% TS)

|T S L2| 436,756 395,712

|T S L2′| 2,420 2,127
sources 2,330,244 2,538,922

(67% of T S) (73% of T S)

5.5.1.3 Results on Attack Event Detection

We have applied the techniques presented in [26] to identify the attack events existing in our 2
distinct datasets, namely T Scountry and T Splat f orm. For the time series in T Scountry (resp. T Splat f orm),
we have found 592 (resp. 690) attack events which correspond to 574,125 (resp. 578,372) sources.
The results are given in Table 5.5

2 The geographical location is given to us thanks to the Maxmind product, based on the IP ad-
dress. However, some IPs can not be mapped to any real country and are attached to labels not
corresponding to any country, e.g. EU,A1,..

5 Assessing Cybercrime Through the Eyes of the WOMBAT 107

Table 5.5 Result on Attack Event Detection

AE-set-I(T Scountry) AE-set-II(T Splat f orm)

No.AEs No.sources No.AEs No.sources

592 574,125 690 578,372

No.AEs: amount of attack events

5.5.2 Armies of Zombies

So far, we have identified what we have called attack events which highlight the existence of
coordinated attacks launched by a group of compromised machines, i.e. a zombie army. It would
be interesting to see if the very same army manifests itself in more than one attack event. To do
this, we propose to compute what we call the action sets. An action set is a set of attack events
that are likely due to same army. In this Section, we show how to build these action sets and what
information we can derive from them regarding the size and the lifetime of the zombie armies.

5.5.2.1 Identification of the armies

Similarity Measures: In its simplest form, a zombie army is a classical botnet. It can also be made
of several botnets. That is, several groups of machines listening to a distinct C&C. This is invisible
to us and irrelevant. All that matters is that all the machines do act in a coordinated way. As time
passes, it is reasonable to expect members of an army to be cured while others join. Hence, if
the same army attacks our honeypots twice over distinct periods of time, one simple way to link
the two attack events together is by observing that they have a large amount of IP addresses in
common. More formally, we measure the likelihood of two attacks events e1 and e2 to be linked to
the same zombie army by means of their similarity defined as follows:

sim(e1,e2) =

{
max(|e1∩e2|

|e1| , |e1∩e2|
|e2|) if |e1∩ e2|< 200

1 otherwise

In which, |e1| (resp. |e2|) represents the number of distinct IP addresses of attack event e1 (resp.
e2) and |e1 ∩ e2| represents the number of IP addresses in common of attack events e1 and e2. We
conclude that e1 and e2 are caused by the same zombie army if and only if sim(e1,e2) > 10%.
Called Pe1,e2

is the probability that two attack events e1 and e2 share n IP addresses in common by
chance. We also verify that |e1∩ e2|> n, in which the corresponding Pe1,e2

<= 10−9.

Action Sets: We now use the sim() function to group together attack events into action sets. To
do so, we build a simple graph where the nodes are the attack events. There is an arc between two
nodes e1 and e2 if and only if sim(e1,e2) > δ . All nodes that are connected by at least one path end
up in the same action set. In other words, we have as many action sets as we have disconnected
graphs made of at least two nodes; singleton sets are not counted as action sets.

We note that our approach is such that we can have an action set made of three attack events e1,
e2 and e3 where sim(e1,e2) > δ and sim(e2,e3) > δ but where sim(e1,e3) < δ . This is consistent
with our intuition that armies can evolve over time in such a way that the machines present in the
army can, eventually, be very different from the ones found the first time we have seen the same
army in action.
Results: we have identified 40 (resp. 33) zombie armies from AE-set-I (resp. AE-set-II) which
have issued a total of 193 (resp. 247) attack events. Figure 5.8 (Left) represents the distribution of
attack events per zombie army. Its top (resp. bottom) plot represents the distribution obtained from
AE-set-I(resp. AE-set-II). We can see that the largest amount of attack events for an army is 53
(resp. 47) whereas 28 (resp. 20) armies have been observed only two times.

108 Dacier et al.

5.5.2.2 Main Characteristics of the Zombie armies

Lifetime of Zombie Army.

0 10 20 30 40 50 60 70
0

10

20

30

amount of attack events

of

 z
om

bi
e

ar
m

ie
s

0 10 20 30 40 50 60 70
0

10

20

of

 z
om

bi
e

ar
m

ie
s

amount of attack events 0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

duration (day)

C
D

F

country
platform

Fig. 5.8 Left: Zombie Army Size. Right: Cumulative Distribution Function (CDF) of the durations
of zombie armies.

Figure 5.8 (Right) represents the cumulative distribution of minimum lifetime of zombie armies
obtained from T Splat f orm and T Scountry (see Section 5.5.1). According to the plot, around 20% of
zombie armies have existed for more than 200 days. In the extreme case, two armies seems to
have survived for 700 days! Such result seems to indicate that either i) it takes a long time to cure
compromised machines or that ii) armies are able to stay active for long periods of time, despite
the fact that some of their members disappear, by continuously compromising new ones.

Lifetime of Infected Host in Zombie Armies
We can classify the armies into two classes as mentioned in the previous Section. For instance,

Figure 5.9a represents the similarity matrix of zombie army 33, ZA33. To build this matrix, we
first order its 42 attack events according to their occurred time. Then, we represent their similarity
relation under an 42× 42 similarity matrix M . The cell (i,j) represents the value of sim() of the
ordered attack event ith and jth. Since, M is a symmetric matrix, for the visibility, we represent
only half of it.

As one can see, we have a very high similarity measure between almost all the attacks events
(i.e., around 60%). This is also true between the very first and the very last attack events. It is
important to notice the time interval between the first and the last activities observed from this
army is 753 days!

Figure 5.9b represents an opposite case, the zombie army 31, ZA31, consisting of 46 attack
events. We proceed as above to build its similarity matrix. One can see that the important values
are surrounded around the main diagonal of M . It means that the attack event ith has the same
subset of infected machines with only few attack events happening not far from it in terms of time.
Another important point to be noticed is that this army changes its attack vectors over time. In
fact, it moves from attack against 4662 TCP, to 1025 TCP, then 5900 TCP, 1443 TCP, 2967 TCP,
445 TCP,...And the lifetime of this army is 563 days! It is clear, from these two cases, that the
composition of armies evolves over time in different ways. More work remains to be done in order
to understand the reasons behind these various strategies.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 109

(a)

(b)

Fig. 5.9 Renewal rate of zombie armies

110 Dacier et al.

5.5.3 Impact of Observation View Point

5.5.3.1 Analysis

Table 5.5 highlights the fact that depending on how we decompose the initial set of traces of attacks
(i.e the initial time series T S), namely by splitting it by countries of origin of the attackers or by
platforms attacked, different attacks events show up. To assess the overlap between attack events
detected from different observation view points, we use the common source ratio, namely csr,
measure as follows:

csr(e,AEop′) =
∑∀e′∈AEop′ |e∩ e′|

|e|
in which e ∈ AEop and |e| is the amount of sources in attack event e, AEop is AE-set-I and AEop′ is
AE-set-II (or vice versa).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

common source ratio

C
D

F

Empirical CDF

TPlatform

TCountry

Fig. 5.10 CDF common source ratio.

Figure 5.10 represents the two cumulative distribution functions corresponding to this mea-
sure. The point (x,y) on the curve means that there are y∗100% of attack events obtained thanks to
Tcountry (resp Tplat f orms) that have less than x ∗ 100% of sources in common with all attack events
obtained thanks to Tplat f orms (resp Tcountry). The Tcountry curve represents the cumulative distribu-
tion obtained in this first case and the Tplat f orms one represents the CDF obtained when starting
from the attacks events obtained with the intial Tplat f orms set of time series. As we can notice,
around 23% (resp. 25%) of attack events obtained by starting from the Tcountry (resp. Tplat f orm) set
of time series do not share any sources in common with any attack events obtained when starting
the attack even identification process from the Tplat f orm (resp. Tcountry) set of time series. This
corresponds to 136 (16,919 sources) and 171 (75,920 sources) attack events not being detected. In
total, there are 288,825 (resp. 293,132) sources present in AE-Set-I (resp. AE-Set-II), but not in
AE-Set-II (resp. AE-Set-I).

5 Assessing Cybercrime Through the Eyes of the WOMBAT 111

5.5.3.2 Explanation

There are good reasons why we can not rely on a single viewpoint to detect all attacks events. We
elaborate on these reasons in the following discussion.

Split by country: Suppose we have one botnet B made of machines that are located within the
set of countries {X ,Y,Z}. Suppose that, from time to time, these machines attack our platforms
leaving traces that are also assigned to a cluster C. Suppose also that this cluster C is a very pop-
ular one, that is, many other machines from all over the world continuously leave traces on our
platforms that are assigned to this cluster. As a result, the activities specifically linked to the botnet
B are lost in the noise of all other machines leaving traces belonging to C. This is certainly true for
the cluster time series (as defined earlier) related to C and this can also be true for the time series
obtained by splitting it by platform, Φ[0−800),C,plat f ormi∀plat f ormi ∈ 1..40.However, by splitting
the time series corresponding to cluster C by countries of origins of the sources, then it is quite
likely that the time series Φ[0−800),C,countryi∀countryi ∈ {X ,Y,Z} will be highly correlated during
the periods in which the botnet present in these countries will be active against our platforms. This
will lead to the identification of one or several attack events.
Split by platform: Similarly, suppose we have a botnet B′ made of machines located all over the
world. Suppose that, from time to time, these machines attack a specific set of platforms {X ,Y,Z}
leaving traces that are assigned to a cluster C. Suppose also that this cluster C is a very popular one,
that is, many other machines from all over the world continuously leave traces on all our platforms
that are assigned to this cluster. As a result, the activities specifically linked to the botnet B′ are lost
in the noise of all other machines leaving traces belonging to C. This is certainly true for the cluster
time series (as defined earlier) related to C and this can also be true for the time series obtained by
splitting it by countries, Φ[0−800),C,countryi∀countryi ∈ bigcountries. However, by splitting the time
series corresponding to cluster C by platforms attacked, then it is quite likely that the time series
Φ[0−800),C,plat f ormi∀plat f ormi ∈ {X ,Y,Z} will be highly correlated during the periods in which
the botnet influences the traces left on the sole platforms concerned by its attack. This will lead to
the identification of one or several attack events.

The top plot of Figure 5.11 represents the attack event 79. In this case, we see that the traces
due to the cluster 175309 are highly correlated when we group them by platform attacked. In fact,
there are 9 platforms involved in this case, accounting for a total of 870 sources. If we group the
same set of traces by country of origin of the sources, we end up with the bottom curves of Figure
5.11 where the specific attack event identified previously can barely be seen. This highlights the
existence of a botnet made of machines located all over the world that target a specific subset of
the Internet.

5.6 Multi-Dimensional Analysis of Attack Events

5.6.1 Methodology

Analogous to criminal forensics, the security analyst needs to synthesize different pieces of evi-
dence in order to investigate the root causes of global attack phenomena on the Internet. This task
can be a tedious, lengthy and informal process mostly relying on the analyst’s expertise, and in-
volving many different dimensions characteristics of attack events. For those reasons, we seek to
develop a multi-dimensional knowledge discovery and data mining methodology that should help
us to improve, in a more systematic way, our understandings of emerging Internet threats, so as to
achieve a better cyber situational awareness.

Our idea consists of i) extracting relevant nuggets of knowledge by mining a dataset of attack
events according to different relevant characteristics; and in ii) combining systematically those
pieces of knowledge so as to create higher-level concepts able to explain more clearly the underly-

112 Dacier et al.

0 2 4 6 8 10 12 14
0

10

20

30

40

0 2 4 6 8 10 12 14
0

50

100

150

Fig. 5.11 Top plot represents the attack event 79 related to cluster 17309 on 9 platforms. The bot-
tom plot represents the evolution of this cluster by country. Noise of the attacks to other platforms
decrease significantly the correlation of observed cluster time series when split by country.

ing phenomena that might be the root cause of the suspicious traffic. Each step is further explained
in the next sections.

5.6.2 Clique-based Clustering

5.6.2.1 Principles

The first component of our knowledge mining methodology involves an unsupervised graph-
theoretic correlation process which aims at grouping similar “events” (through their corresponding
feature vectors) in a reliable and consistent manner.

Typical clustering tasks involve the following steps [16]: i) feature selection and/or extraction,
and pattern representation; ii) definition of a similarity measure between pairs of patterns; iii)
grouping similar patterns; iv) data abstraction (if needed), to provide a compact representation of
each cluster; and v) the assessment of the clusters quality and coherence (also when needed).

In any clustering, we must select salient features that may provide meaningful patterns from
the data (e.g., from attack events in our case). Those patterns are represented with feature vectors,
which are for instance the geographical distributions, subnet distributions, attack time series, etc.

In the second step, we need to measure the similarity between two such defined patterns or
input vectors. For that purpose, several types of similarity distances are available (e.g., Pearson
correlations, Minkowski, Jackknife, etc.). Clearly, the choice of a similarity metric has an impact
on the properties of the clusters, such as their size, quality, or consistency. To reliably compare
the empirical distributions mentioned here above, we rely on strong statistical distances that are
based on non-parametric statistical tests, such as Pearson’s χ2 and Kolmogorov-Smirnov, whose
resulting p-value is then validated against the Kullback-Leibler divergence. Those methods are
amongst the most commonly used ones to determine whether two underlying one-dimensional
probability distributions differ in a significant way.

Finally, we take advantage of those similarity measures to group all pattack events whose pat-
terns look very similar. We simply use an unsupervised graph-theoretic approach to formulate the
problem: the vertices of the graph represent the patterns (or feature vectors) of each attack event,

5 Assessing Cybercrime Through the Eyes of the WOMBAT 113

and the edges (or the arcs) express the similarity relationships between those vertices. Then, the
clustering is performed by extracting so-called maximal weighted cliques (MWC) from the graph,
where a maximal clique is defined as an induced sub-graph in which the vertices are fully con-
nected and it is not contained within any other clique. Since it is a NP-hard problem [4], several
approximate algorithms for solving the MWC problem have been developed. We refer the inter-
ested reader to [38, 39] for a more detailed description of this clique-based clustering technique
applied to honeynet traces.

5.6.2.2 Some Experimental Results.

We applied our clique-based clustering on a honeynet dataset made of 351 attack events comprising
282,363 IP sources, which were collected on the Internet in a period spanning from Sep 2006
until June 2008. These events were observed on 36 platforms located in 20 different subnets, and
belonging to 18 different class A-subnets. In terms of network activities, all sources could be
classified in no more than 136 attack clusters

Table 5.6 presents a high-level overview of the cliques obtained for each attack dimension
separately. As one can see, a relatively high volume of sources could be classified into cliques in
each dimension. The high proportion of correlated sources with respect to the attack time series
suggests that a majority of the attack events collected in this dataset were actually coordinated, or
at least synchronized, on different honeypots. Among the targeted port sequences, we can observe
some commonly targeted ports (e.g., Windows ports used for SMB or RPC, or SQL and VNC
ports), but also a large number of uncommon high TCP ports that are normally unused on standard
(and clean) machines. A non-negligeable volume of sources is also due to UDP spammers targeting
Windows Messenger popup service (ports 1026-1028 UDP).

Table 5.6 Some experimental clique results obtained from a one year-honeynet dataset

Attack Dimension Nr of Cliques Volume of Most targeted port sequences
sources (%)

Geolocation 45 66.4 1027U, I, 1433T, 1026U, I445T, 5900T, 1028U, 9763T, I445T80T,
15264T, 29188T, 6134T, 6769T, 1755T, 64264T, 1028U1027U1026U, 32878T, 64783T, 4152T,
25083T, 9661T, 25618T, ...

IP Subnets (Class A) 30 56.0 1027U, I, 1433T, 1026U, I445T, 5900T, 1028U, 9763T,
15264T, 29188T, 6134T, 6769T, 1755T, 50656T, 64264T, 1028U1027U1026U, 32878T, 64783T,
18462T, 4152T, 25083T, 9661T, 25618T, 7690T, ...

Targeted platforms 17 70.1 I, 1433T, I445T, 1025T, 5900T, 1026U,
I445T139T445T139T445T, 4662T, 9763T, 1008T, 6211T, I445T80T, 15264T, 29188T, 12293T,
33018T, 6134T, 6769T, 1755T, 2968T, 26912T, 50656T, 64264T, 32878T, ...

Attack time series 82 92.2 135T, I, 1433T, I445T, 5900T, 1026U,
I445T139T445T139T445T, I445T80T, 6769T, 1028U1027U1026U, 50286T, 2967T, ...

5.6.2.3 Visualizing Cliques of Attackers.

In order to assess the consistency of the resulting cliques of attack events, it can be useful to see
them charted on a two-dimensional map so as to i) verify the proximities among clique members
(intra-clique consistency), and ii) to understand potential relationships between different cliques
that are somehow related (i.e. inter-clique relationships). Note that a clique can be considered as
a stricter definition of a cluster. Moreover, the statistical distances used to compute those cliques
make them intrinsically coherent, which means that certain cliques of events may be somehow
related to each other, although they were separated by the clique algorithm.

114 Dacier et al.

Since most of the feature vectors we are dealing with have a high number of variables (e.g.,
a geographical vector has more than 200 country variables), obviously the structure of such high-
dimensional data set cannot be displayed directly on a 2D map. Multidimensional scaling (MDS)
is a set of methods that can help to address this type of problem. MDS is based on dimensionality
reduction techniques, which aim at converting a high-dimensional dataset into a two or three-
dimensional representation that can be displayed, for example, in a scatter plot. As a result, MDS
allows an analyst to visualize how near observations are to each other for many kinds of distance
or dissimilarity measures, which in turn can deliver insights into the underlying structure of the
high-dimensional dataset.

�80 �60 �40 �20 0 20 40 60
�60

�40

�20

0

20

40

60

PK,IN

CN,JP

CN,KR

US,CN

CA,US

CN,US
CN,KR

CN,US

CN,US
CN,null

IT,null

IT,ES

IT,IL

IT,IL
IT,ES

PL,US

PL,DE
HU,PL

DE,TR

DE,AT

CA US,KR

US,JP

US,CN

US,CA

US,GB TW,KR

KR,CA

KR,US

KR,US

FR,IT FR,DE

US,PL

US,FR

FR,CN

US,CN

TW,IT

KR,US

CN,US

ES,IT

0

5

10

15

20

25

30

35

40

45

Fig. 5.12 Visualization of geographical cliques of attackers. The coloring refers to the different
clique Id’s. The superposed text labels show the two top attacking countries for some of the data
points.

Because of the intrinsic non-linearity of real-world datasets, and the induced feature vectors,
we applied a recent MDS technique called t-SNE to visualize each dimension of the dataset and
to assess the consistency of the cliques results. t-SNE [40] is a variation of Stochastic Neighbour
Embedding (SNE); it produces significantly better visualizations than other MDS techniques by re-
ducing the tendency to crowd points together in the centre of the map. Moreover, this technique has
proven to perform better in retaining both the local and global structure of real, high-dimensional
data in a single map, in comparison to other non linear dimensionality reduction techniques such
as Sammon mapping, Isomaps or Laplacian Eigenmaps.

Figure 5.12 shows the resulting two-dimensional plot obtained by mapping the geographical
vectors on a 2D map using t-SNE. Each datapoint on the map represents the geographical vector
of given attack event, and its coloring refers to its clique membership as obtained previously by
applying the clique-based clustering. It can be easily verified that two adjacent events on this map
have highly similar geographical distributions (even from a statistical viewpoint), while two distant
events have clearly nothing in common in terms of originating countries. Quite surprisingly, the
resulting mapping is far from being chaotic; it presents a relatively sparse structure with clear data-
point groupings, which means also that most of those attack events present very tight relationships

5 Assessing Cybercrime Through the Eyes of the WOMBAT 115

regarding their origins. Due to the strict statistical distances used to calculate cliques, this kind of
correlation can hardly be obtained by chance only.

Similar “semantic mapping” can naturally be obtained for other dimensions considered (e.g.,
subnets, platforms, etc), so as to help assessing the quality of other cliques of attackers. To conclude
this illustration, on Figure 5.13 we have indicated also some of the port sequences for several geo-
graphical cliques of attackers. This can help to visualize unobvious relationships among different
types of activities and their origins.

�80 �60 �40 �20 0 20 40 60
�60

�40

�20

0

20

40

60

I I I

1026U

1026U1028U1027U
135T 135T 5900T

5900T

4662T
28238T

6769T

7690T

50656T

6769T

46030T

46030T

4152T

9661T

6342T

50286T

4662T

6342T

5900T

35964T

4662T

I
I

I
I I I I

4662T

I445T80T

5168T

5900T
1433T

1025T 139T

I

I I I
I I

I

1433T
5900T

2967T

2967T
1433T

I I

I
I

I445T

6644T
5900T

5900T

2967T

5900T

1026U

1026U
2968T

2967T

2967T

445T

I445T139T445T139T445T
445T

135T
2968T

5900T

12293T

445T5000T445T5000T
I445T139T445T139T445T

5900T

1755T
1433T

0

5

10

15

20

25

30

35

40

45

Fig. 5.13 Same visualization of the geographical cliques of attackers as Fig 5.12, but here the
superposed text labels indicate the port sequences made by the attackers.

5.6.3 Combining Cliques of Attackers

The second component of our methodology is similar to a dynamic data fusion process. Start-
ing from all sets of cliques, the idea is to combine k sets out of the N attack dimensions, with
k = 2, ...,N, in order to discover higher-level knowledge about certain phenomena and their root
cause (e.g., a set of attack events belonging to a same botnet or worm family, the evolution of a bot-
net IP location, etc). As such, each clique pattern can hold a piece of interesting knowledge about
an attack phenomenon; but in many cases the security analyst will have to synthesize different
pieces of evidence in order to perform a root cause analysis, and to really understand what hap-
pened. Therefore, we can take advantage of all one-dimensional cliques to construct higher-level
concepts by simply combining different sets of cliques. Based on the phenomenon under scrutiny,
the practitioner may include any number of dimensions in order to create “concepts” containing
more or less semantics. In practice, we observe that the number of concepts obtained by combining
any number of dimensions is not excessive. So, while the analysis of raw network traces (composed
of thousands of packets) on each sensor would definitively be impractical, now the analysis of a

116 Dacier et al.

limited number of combined concepts can provide a better insight into the real-world phenomena
that have caused the attack traffic.

Fig. 5.14 Time series (i.e., nr of distinct sources by day) of a large scale phenomenon related to a
botnet activity, made of 67 attack events observed from Dec 06 until April 07.

Illustration of Multi-dimensional analysis.
When we apply the multi-dimensional analysis on the examples given in 5.3.4, now we find out that
those attack events were actually involved in a large-scale phenomenon assumed to be related to a
botnet activity. This phenomenon has been active in a time period spanning from 1-Dec-06 until 31-
Mar-07, during which we observed about 67 attack events that can be grouped into 4 distinct waves
(see Fig 5.14) thanks to the temporal dimension. The platform correlations indicate that all attack
events have hit exactly the same set of platforms (mostly in Belgium and in UK). Regarding the
origins of the attacks (e.g., countries and subnets of origin), our method can clearly highlight two
communities of attackers: one large group of “scanners” (performing almost only ICMP scanning
on all honeypot IP’s), and one smaller group of “attackers” (performing ICMP followed by attacks
on Windows ports 445T or 139T). Interestingly, the attackers seem to “know” which honeypots are
emulating a Windows machine, as they hit almost exclusively those IP addresses. The last finding
deals with the dynamic evolution of the botnet population (in terms of IP blocks) between each
botnet attack wave, which can be observed from the mapping of the different cliques of attackers.
The scanner community has indeed been split into a few different cliques; but when looking at
the geographical mapping (Fig 5.13 - see the regions indicated by the three red crosses in the
lower-right part of the map), we can observe that those cliques appear in the same neighborhood.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 117

5.7 Beyond Events Correlation: Exploring the
epsilon-gamma-pi-mu space

In the previous Sections we took advantage of correlation techniques to analyze and correlate the
available information to infer meaningful facts on the identity and on the behavior of the clients
responsible for the observed events. We have left out until now the analysis of the effects of these
activities on the victims. Many of these activities are likely to be exploitation attempts carried on
by self propagating malware. Gathering intelligence on the nature of these activities and studying
their structure is an important step towards a better understanding of the Internet threats. As ex-
plained in Section 5.4, such analysis requires an increase of the level of interaction, requirement
that motivated our efforts in the development of the SGNET deployment.

The SGNET deployment was designed around the phase separation introduced by the epsilon-
gamma-pi-mu model: each of the phases of a generic code injection attack is handled by a different
entity of the distributed system. The emulation of these phases generates information on the char-
acteristics of the specific instance. For instance, the network interaction involved in the exploit
phase ε is associated to a traversal identifier in ScriptGen’s FSM models. All the information gen-
erated by the different components of the SGNET deployment is collected and stored in the central
database. Similarly to the Leurré.com case, this information is then enriched through different
analysis tools. For instance, all the malware collected by SGNET is submit to the Anubis sand-
box [3] to retrieve information on its behavior. The SGNET dataset puts at our disposal a variety
of information on the observed exploits (ε), shellcodes (π) and malware samples (μ).3

Following the epsilon-gamma-pi-mu model, we model an attack as a tuple (ε,π,μ), assign-
ing to each dimension a coordinate representative for a given “type” of interaction in the model.
The relationship and the correlation among the dimensions of this three-dimensional space offer
a perspective over the structure and the amount of code reuse present in nowadays exploitation
attempts.

The identification of the interaction “type” is not always a straightforward task, since it needs
to cope with the increasing usage of polymorphic techniques in malware and shellcode.

Malware families such as the Allaple one [15] take advantage of polymorphism to generate a
new variant of themselves at each propagation attempt. Such a technique ensures each malware
sample to completely mutate its binary content at every generation, making its detection much
more complex to AV vendors. From our standpoint, the employment of such techniques leads to
the proliferation of unique samples (downloaded only once) and makes the problem of attribution
of two events to the activity of the same malware type much more complicated. How to define two
completely different binaries to be similar and thus attribute two different code injections to the
activity of the same malware?

The intuition that helped us in solving the problem is that any polymorphic technique can
be used by attackers to randomize only some of the characteristics of a certain observed event.
A polymorphic technique such as that previously mentioned will indeed succeed in randomizing
the content of the injected malware (and consequently its MD5 hash), but might not succeed in
randomizing other characteristics, such as its structure or its behavior. By looking at a sufficient
amount of samples of the same activity type, it will be always possible to identify the invariant
characteristics and reduce the activity classification problem to a pattern generation process.

For each of the 29283 code injection attacks observed by the SGNET honeypots in a period
of 8 months ranging from January to August 2008, we have considered the set of characteristics
described in Table 5.7. For each dimension, we have considered the corresponding characteristics
vector, discovered frequent patterns and used these patterns to cluster them. In the rest of this work,
we will refer to the name e-clusters, p-clusters and m-clusters to refer to the clusters of activities
along the epsilon, pi and mu dimensions respectively.

3 While theoretically possible, the prototype deployment did not collect sufficient information on
the control flow hijack itself to include the dimension γ in the analysis

118 Dacier et al.

Table 5.7 Information taken into account

Exploit Destination port
Traversal identifier
Alerts generated by Snort

Shellcode Hash of the binary shellcode
Interaction with the terminal emulator, if any
Type of malware download (pushed by the attacker or pulled by the victim)
Protocol used in the malware download
Host involved in the download (the attacker itself or a central malware repository)
Port involved in the download

Malware Hash of the binary sample
Size of the sample
Number of created mutexes
Name of the created processes
Number of sections declared in the PE header
Linker version declared in the PE header
Packer name as detected by the PEiD database
Number of sections in the PE header marked as both writable and executable

5.7.1 Degrees of freedom

We tried to get a very high level view over the relationship between the three (e,p,m) dimensions
by quantifying the number of different combinations witnessed by the honeypot deployment in
the 8 months observation period. We have thus counted the number of generated clusters, and the
number of combinations over two or three dimensions. In the multi-dimensional case, we have
compared the number of combinations witnessed by the honeypots with the maximum achievable
number to have a rough estimate of the amount of variability over that combination.

As it possible to see from the table here under, most of the variability is introduced by the
combinations of exploits and payloads: 20 different exploits have been combined with 58 different
payloads in 107 different ways accounting for approximately 9% of all possible combinations.

e-clusters 20

p-clusters 58

m-clusters 74

(e,p) combinations 107 (9.22%)

(p,m) combinations 186 (4.33%)

(e,p,m) combinations 290 (0.33%)

The previous results seem to suggest a considerable reuse of exploitation code in different
malware variants and eventually combined with personalized payloads. Indeed, in the 8 months of
observation period, each e-cluster was combined in average with 5.9 different p-clusters and 21.2
different m-clusters. The same payload type was also often used by different malware families: in
average, each payload type was used to upload 6.2 different m-clusters.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 119

5.7.2 Interesting cases

It is interesting to look more in depth at different subsets of the epsilon-gamma-pi-mu space to
better evaluate the impact of this variability in some practical cases. We have thus focused our
attention on three interesting cases, associated to the usage of two specific vulnerability types and
to the propagation strategies employed by a specific malware family associated to an m-cluster.

5.7.2.1 ASN.1 vulnerability

Allaple.bAllaple.eAllaple.eAllaple.bRbot.bni

ASN.1 exploit ASN.1 exploit

Port: 139
Path: ID 458
Snort alert set: {1394,1390}

Port: 139
Path: many
Snort alert set: {1394,1390}

PUSH payload
Protocol: creceive
Port: 9988
Content: fixed

MD5:
3875b6257d4d21d51ec13247ee4c1cdb
Size: 57344
Mutexes: 1
Process name: none
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {}

MD5: random
Size: random
Mutexes: 0
Process name: {urdvxc.exe}
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {2}

MD5: random
Size: 50176
Mutexes: 1
Process name: none
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {2}

MD5: random
Size: 57856
Mutexes: 0
Process name: {urdvxc.exe}
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {}

MD5: random
Size: 50176
Mutexes: 0
Process name: {urdvxc.exe}
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {}

PULL payload
Protocol: link
Port: random
Content: random

PUSH payload
Protocol: creceive
Port: 9988
Content: fixed

PUSH payload
Protocol: creceive
Port: 9988
Content: random

E
p

silo
n

P
i

M
u

Fig. 5.15 The ASN.1 exploit (port 139)

Figure 5.15 provides an overview of all the observed code injections associated with the ex-
ploitation of the ASN.1 vulnerability (MS04-007) on TCP port 139.

In this specific case, there is a very low level of correlation between the first two dimensions.
The totality of the e2 exploits always pushes to the victim a single type of payload (p57). The
payload involved in these exploits runs a small downloader that binds itself to TCP port 9988 and
runs any content received upon connection from the attacker. Such download behavior is easy to
identify and block: it is hard to identify a legitimate case in which a host should be allowed to
accept inbound connections on a high port, and TCP port 9988 is not associated to any legitimate
service. Despite its simplicity and its potentially low success rate, this payload is responsible for
pushing to the honeypots a large number of m-clusters. For each of these clusters, we reported in
Figure 5.15 the label associated with the malware samples by Kaspersky antivirus.

Many of the m-clusters involved in this propagation strategy are related to different variants
of the Allaple worm, previously mentioned as example of polymorphic malware. These different
variants are all sharing the same propagation strategy despite differences in the overall behavior
of the worm. The same propagation strategy is also used by different malware types that are not
directly related to the Allaple worm, such as the m-cluster 732, associated to the Rbot.bni IRC bot.

120 Dacier et al.

5.7.2.2 Rbot.bni malware family

ASN.1 exploit

ASN.1 exploitASN.1 exploit

ASN.1 exploit

DCOM RPC exploit

Rbot.bni

MD5:
3875b6257d4d21d51ec13247ee4c1cdb
Size: 57344
Mutexes: 1
Process name: none
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {}

PUSH payload
Protocol: creceive
Port: 9988
Content: fixed

Port: 135
Path: ID 473
Snort alert set: {648}

Port: 139
Path: many
Snort alert set: {1394,1390}

Port: 139
Path: ID 458
Snort alert set: {1394,1390}

Port: 445
Path: ID 966
Snort alert set:
{1394,12710,1390}

Port: 445
Path: many
Snort alert set:
{1394,12710,1390}

PULL payload
Protocol: link
Port: random
Content: random

E
p

si
lo

n
P

i
M

u

Fig. 5.16 Propagation ability for mu group m732

The propagation strategy used by Rbot.bni is shown in Figure 5.15. Interestingly, while most
of the infections associated to it were witnessed through the previously analyzed ASN.1 exploit on
port 139, SGNET honeypots observed a more diversified propagation strategy. This malware family
was in fact also witnessed exploiting the ASN.1 exploit on port 445 and the DCOM RPC exploit
on port 135. While all the ASN.1 exploits took advantage of the payload p57 previously described,
the RPC DCOM exploit (e22) took advantage of a completely different download strategy. The

5 Assessing Cybercrime Through the Eyes of the WOMBAT 121

exploits on this vulnerability forced in fact the victim to actively open a connection and download
the malware from the attacker on a random port.

5.7.2.3 DCOM RPC vulnerability

DCOM RPC exploit

Pakes.DAB

Vanbot.AX Unknown

Kolabc.BSB
Vanbot.AX

Port: 135
Path: ID 473
Snort alert set: {648}

MD5:
830faa6678a70eefd9df8a41f826c221
Size: 95232
Mutexes: 0
Process name: random
PE Sections: 8
Linker: 96
Packer: unknown

MD5:
c662ba11d8f939e757c53c327727fbd7
Size: 58076
Mutexes: 3
Process name: {lssas.exe,pojnm.bat}
PE Sections: 3
Linker: 0
Packer: unknown
Self modifying sections: {2}

MD5:
e64b8798ac5e4e06ec0feacd4da8a002
Size: 55808
Mutexes: 0
Process name: none
PE Sections: 1
Linker: 96
Packer: kkrunchy 0.26 alpha
Self modifying sections: {0}Vanbot.mn

MD5:
b0d7f3f3fff40a348ebd57630c47dac5
Size: 61333
Mutexes: 3
Process name: random
PE Sections: 3
Linker: 4080
Packer: unknown
Self modifying sections: {2}

MD5:
f5d2bc2ca21ea7d1c8a58df091c407d1
Size: 63488
Mutexes: 1
Process name: random
PE Sections: 1
Linker: 96
Packer: kkrunchy 0.26 alpha
Self modifying sections: {0}

MD5:
5f85dc4d417c7aa7e49652d89cd6568a
Size: 68608
Mutexes: 0
Process name: {lssas.exe,tuts.bat}
PE Sections: 4
Linker: 92
Packer: unknown
Self modifying sections: {0,1,2}

E
p

silo
n

P
i

M
u

PULL payload
Protocol: link
Port: specific (high ports)
Content: random

PULL payload
Protocol: link
Port: random
Content: random

PUSH payload
Protocol: blink
Port: random
Content: random

PULL payload
Protocol: FTP
Port: 2755
Content: random

Fig. 5.17 The DCOM RPC exploit

We previously analyzed a case of high correlation between the exploitation type and the cor-
responding payload. Figure 5.17 takes into consideration a different vulnerability to show a com-
pletely different scenario. The vulnerability taken into consideration is the DCOM RPC vulner-
ability on port 135, used as “secondary” propagation vector by the Rbot.bni malware previously
taken into consideration. The difference with Figure 5.15 is striking: in this case, a very high level
of variability exists between the exploitation type and the payload involved.

Three different classes of payloads can be identified: a PULL payload (p24073) forces the
download of malware from the attacker on port 2755; a PUSH payload (p258) forces the victim
to accept the malware on a random port using the protocol blink; finally, there is a proliferation of
clusters related to PULL payloads taking advantage of the protocol link.

The variability in terms of payloads is also reflected by a variability in terms of malware variants
pushed through these combinations of epsilon and pi. While none of the mu clusters in Figure 5.17
correspond to polymorphic malware, all of them are associated with IRC-based C&C channels.

5.8 Conclusions

In this chapter, we have presented in detail Leurré.com, a worldwide distributed system of honey-
pots running since 2003. We have extensively described its architecture used for collecting mean-
ingful data about emerging attack processes observed at various places on the Internet.

122 Dacier et al.

Several examples have been given throughout the text to illustrate the richness of our central
data repository and the flexibility of its design, enabling a large diversity of analyses to be carried
out on it. It is not the main purpose of this chapter to report on a specific analysis. Other publi-
cations have focused on some of these issues and some more work is ongoing. Instead, we have
shown by means of simple examples that this database helps in discovering trends in the attacks
and in characterizing them quite precisely. Next to this, we have also presented the important im-
provements we made to our infrastructure by deploying high-interaction ScriptGen sensors, which
enable us to collect even more precise and valuable information about malicious activities. In the
light of those promising results, we showed that this entire data collection infrastructure holds a
great potential in augmenting our threats intelligence capability on the Internet. Being able to con-
duct in-depth analyses on this huge data collection, in a systematic way, will hopefully help us to
make some advances towards the creation of early warning information systems.

So, it is our wish to share the data contained in this database with those interested in carrying
some research on it. The authors can be reached by mail to get detailed information on how to join
the project in order to gain access to the database.

References

1. ALMODE Security. Home page of disco at at http://www.altmode.com/disco/.
2. P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling. The Nepenthes Platform: An

Efficient Approach to Collect Malware. Proceedings of the 9th International Symposium on
Recent Advances in Intrusion Detection (RAID), September 2006.

3. U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for Analyzing Malware. PhD thesis,
Master’s Thesis, Technical University of Vienna, 2005.

4. I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum clique problem. In
Handbook of Combinatorial Optimization, volume 4. Kluwer Academic Publishers, Boston,
MA, 1999.

5. F. M. C. R. Center. Web security trends report q1/2008,
http://www.finjan.com/content.aspx?id=827, sep 2008.

6. CERT. Advisory CA-2003-20 W32/Blaster worm, August 2003.
7. Z. Chen, L. Gao, and K. Kwiat. Modeling the spread of active worms. In Proceedings of

IEEE INFOCOM, 2003.
8. M. P. Collins, T. J. Shimeall, S. Faber, J. Janies, R. Weaver, M. D. Shon, and J. Kadane.

Using uncleanliness to predict future botnet addresses. In IMC ’07: Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement, pages 93–104, New York, NY, USA,
2007. ACM.

9. E. Cooke, M. Bailey, Z. M. Mao, D. Watson, F. Jahanian, and D. McPherson. Toward un-
derstanding distributed blackhole placement. In WORM ’04: Proceedings of the 2004 ACM
workshop on Rapid malcode, pages 54–64, New York, NY, USA, 2004. ACM Press.

10. J. Crandall, S. Wu, and F. Chong. Experiences using Minos as a tool for capturing and ana-
lyzing novel worms for unknown vulnerabilities. Proceedings of GI SIG SIDAR Conference
on Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA), 2005.

11. M. Dacier, F. Pouget, and H. Debar. Attack processes found on the internet. In NATO Sym-
posium IST-041/RSY-013, Toulouse, France, April 2004.

12. M. Dacier, F. Pouget, and H. Debar. Honeypots, a practical mean to validate malicious fault
assumptions. In Proceedings of the 10th Pacific Ream Dependable Computing Conference
(PRDC04), Tahiti, February 2004.

13. M. Dacier, F. Pouget, and H. Debar. Leurre.com: On the advantages of deploying a large scale
distributed honeypot platform. In Proceedings of the E-Crime and Computer Conference
2005 (ECCE’05), Monaco, March 2005.

14. DShield. Distributed Intrusion Detection System, www.dshield.org, 2007.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 123

15. F-Secure. Malware information pages: Allaple.a, http://www.f-secure.com/v-
descs/allaplea.shtml, December 2006.

16. A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice-Hall advanced reference
series, 1988.

17. C. Leita and M. Dacier. Sgnet: a worldwide deployable framework to support the analy-
sis of malware threat models. In Proceedings of the 7th European Dependable Computing
Conference (EDCC 2008), May 2008.

18. C. Leita and M. Dacier. SGNET: Implementation Insights. In IEEE/IFIP Network Operations
and Management Symposium, April 2008.

19. C. Leita, M. Dacier, and F. Massicotte. Automatic handling of protocol dependencies and
reaction to 0-day attacks with ScriptGen based honeypots. In RAID 2006, 9th International
Symposium on Recent Advances in Intrusion Detection, September 20-22, 2006, Hamburg,
Germany - Also published as Lecture Notes in Computer Science Volume 4219/2006, Sep
2006.

20. C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an automated script generation tool for
honeyd. In Proceedings of the 21st Annual Computer Security Applications Conference,
December 2005.

21. C. Leita, V. Pham, . Thonnard, E. Ramirez-Silva, F. Pouget, E. Kirda, and M. Dacier. The
Leurre.com Project: Collecting Internet Threats Information using a Worldwide Distributed
Honeynet. In 1st WOMBAT open workshop, April 2008.

22. Maxmind Product. Home page ot the maxmind company at http://www.maxmind.com.
23. D. Moore, C. Shannon, G. Voelker, and S. Savage. Network telescopes: Technical report.

CAIDA, April, 2004.
24. S. Needleman and C. Wunsch. A general method applicable to the search for similarities in

the amino acid sequence of two proteins. J Mol Biol. 48(3):443-53, 1970.
25. Netgeo Product. Home page of the netgeo company at http://www.netgeo.com/.
26. V.-H. Pham and M. Dacier. Honeypot traces forensics: The observation view point matters.

Technical report, EURECOM, 2009.
27. V.-H. Pham, M. Dacier, G. Urvoy Keller, and T. En Najjary. The quest for multi-headed

worms. In DIMVA 2008, 5th Conference on Detection of Intrusions and Malware & Vulner-
ability Assessment, July 10-11th, 2008, Paris, France, Jul 2008.

28. G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for fingerprinting zero-day
attacks. Proc. ACM SIGOPS EUROSYS, 2006.

29. F. Pouget, M. Dacier, and V. H. Pham. Understanding threats: a prerequisite to enhance sur-
vivability of computing systems. In IISW’04, International Infrastructure Survivability Work-
shop 2004, in conjunction with the 25th IEEE International Real-Time Systems Symposium
(RTSS 04) December 5-8, 2004 Lisbonne, Portugal, Dec 2004.

30. T. C. D. Project. http://www.cymru.com/darknet/.
31. N. Provos. A virtual honeypot framework. In Proceedings of the 12th USENIX Security

Symposium, pages 1–14, August 2004.
32. M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted approach to understanding

the botnet phenomenon. In ACM SIGCOMM/USENIX Internet Measurement Conference,
October 2006.

33. E. Ramirez-Silva and M. Dacier. Empirical study of the impact of metasploit-related attacks
in 4 years of attack traces. In 12th Annual Asian Computing Conference focusing on computer
and network security (ASIAN07), December 2007.

34. J. Riordan, D. Zamboni, and Y. Duponchel. Building and deploying billy goat, a worm de-
tection system. In Proceedings of the 18th Annual FIRST Conference, 2006.

35. I. M. Sensor. http://ims.eecs.umich.edu/.
36. TCPDUMP Project. Home page of the tcpdump project at http://www.tcpdump.org/.
37. The Metasploit Project. www.metasploit.org, 2007.
38. O. Thonnard and M. Dacier. A framework for attack patterns’ discovery in honeynet data.

DFRWS 2008, 8th Digital Forensics Research Conference, August 11- 13, 2008, Baltimore,
USA, 2008.

124 Dacier et al.

39. O. Thonnard and M. Dacier. Actionable knowledge discovery for threats intelligence support
using a multi-dimensional data mining methodology. In ICDM’08, 8th IEEE International
Conference on Data Mining series, December 15-19, 2008, Pisa, Italy, Dec 2008.

40. L. van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9:2579–2605, November 2008.

41. T. Werner. Honeytrap. http://honeytrap.mwcollect.org/.
42. M. Zalewski. Home page of p0f at http://lcamtuf.coredump.cx/p0f.shtml.

Institut Eurécom

Research Report RR-09-226

HONEYPOT TRACES FORENSICS: THE
OBSERVATION VIEW POINT MATTERS

February 12th, 2009

Van-Hau Pham∗ and Marc Dacier∗∗
∗Institute Eurécom, Sophia Antipolis, France

∗∗Symantec Research Labs, Sophia Antipolis, France

Tel : (+33) 4 93 00 81 00
Fax : (+33) 4 93 00 82 00

Email : Van-Hau.Pham@eurecom.fr, MarcDacier@symantec.com

1Institut Eurécom’s research is partially supported by itsindustrial members: BMW Group Re-
search & Technology - BMW Group Company, Bouygues Télécom, Cisco Systems, France Télécom,
Hitachi Europe, SFR, Sharp, STMicroelectronics, Swisscom, Thales.

HONEYPOT TRACES FORENSICS: THE
OBSERVATION VIEW POINT MATTERS

Van-Hau Pham and Marc Dacier

Abstract

In this paper, we propose a method to identify and group together traces
left on low interaction honeypots by machines belonging to the same bot-
net(s) without having any a priori information at our disposal regarding these
botnets. In other terms, we offer a solution to detect new botnets thanks
to very cheap and easily deployable solutions. The approachis validated
thanks to several months of data collected with the worldwide distributed
Leurré.com system. To distinguish the relevant traces from the other ones,
we group them according to either the platforms, i.e. targets hit or the coun-
tries of origin of the attackers. We show that the choice of one of these two
observations view points dramatically influences the results obtained. Each
one reveals unique botnets. We explain why. Last but not least, we show
that these botnets remain active during very long periods oftimes, up to 700
days, even if the traces they left are only visible from time to time.

Contents

1 Introduction 1

2 Terminology 2

3 IMPACT OF OBSERVATION VIEW POINT 4
3.1 Dataset Description . 4
3.2 Attack Event Detection . 5
3.3 Impact of Observation View Point 6

3.3.1 Results on Attack Event Detection 6
3.3.2 Analysis . 6
3.3.3 Explanation . 7

4 On the armies of Zombies 8
4.1 Identification of the armies . 9

4.1.1 Similarity Measures . 9
4.1.2 Action Sets . 10
4.1.3 Results . 10

4.2 Main Characteristics of the Zombie armies 11
4.3 Illustrated Examples . 13

4.3.1 Example 1 . 14
4.3.2 Example 2 . 14

5 Conclusion 15

v

List of Figures

1 on the top plot, cluster 60232 attacks seven platforms fromday 393
to day 400. On the bottom plot, peak of activities of cluster 0from
Spain on day 307 . 4

2 CDF common source ratio . 7
3 top plot represents the attack event 79 related to cluster 17309 on 9

platforms. The bottom plot represents the evolution of thiscluster
by country. Noise of the attacks to other platforms decreasesignif-
icantly the correlation of observed cluster time series when split by
country . 9

4 sensitivity check of thresholdδ 10
5 Zombie Army Size . 11
6 CDF duration . 11
7 Renewal rate of zombie armies 12
8 Zombie Army Attack Capacity 13
9 attack events of ZA29 . 14
10 6 attack events from zombie army 33 15

vi

1 Introduction

There is a consensus in the security community to say that botnets are today’s
plague of the Internet. A lot of attention has been paid to detect and eradicate
them. Several approaches have been proposed for this purpose. By identifying the
so calledCommand and Control (C&C)channels, one can keep track of all IPs
connecting to it. The task is more or less complicated, depending on the type of
C&C (IRC [2, 4, 6, 7, 14, 20], HTTP [3, 5, 23], fast-flux based or not[12, 16, 21],
P2P [8, 13, 24, 26], etc.) but, in any case, one needs to have some insight about
the channels and the capability to observe all communications on them. Another
approach consists in sniffing packets on a network and in recognizing patterns of
bot-like traffic. This is, for instance, the approach pursued by [9–11] and [22, 25].
The solutions mostly aim at detecting compromised machinesin a given network
rather than to study the botnets themselves as they only see the bots that exist within
the network under study.

In this work, we are interested in finding a very general technique that would
enable us to count the amount of various botnets that exist, their size and their life-
time. As opposed to previous work, we are not interested in studying a particular
botnet in details or in detecting compromised nodes in a given network. We also
do not want to learn the various protocols used by bots to communicate in order to
infiltrate the botnets and obtain more precise information about them [20]. By do-
ing so, we certainly will not be able to get as much in depth information about this
or that botnet but our hope is to provide insights into the bigger picture of today’s
(and yesterday’s) botnets activities.

Before describing our approach, it is crucial to understandthe subtle difference
that exists between counting the amount of machines launching a given attack and
the amount of machines members of a given botnet. It is very misleading to be-
lieve that one can derive the latter from the former. Indeed,it is quite common to
see several distinct botnets relying on the same attack vector to compromise more
hosts. In such case, the total amount of machines observed using a given attack
vector will be greater or equal to the sum of all members of allthese botnets (it can
be greater as machines not belonging to any botnet may also launch this attack).
Clearly, any approach relying on simply summing up countersbased on attack
vectors characteristics (e.g. ID alerts, firewall logs, AV detection, etc.) is likely to
grossly overestimate the size of botnets.

The solution described in the following is generic and simple to deploy widely.
It relies on a distributed system of low interaction honeypots. Based on the traces
left on these honeypots, we provide a technique that groups together the traces that
are likely to have been generated by groups of machines controlled by a similar
authority. Since we have no information regarding theC&C they obey to, we do
not know if these machines are part of a single botnet or if they belong to several
botnets that are coordinated. Therefore, to avoid any ambiguity, we write in the
following that they are part of aarmy of zombies. An army of zombiescan be a

1

single botnet or a group of botnets the actions of which are coordinated during a
given time interval.

In this paper, we propose a technique to identify and study the size as well
as the lifetime of sucharmies of zombies. We show that armies can stay active
for very long periods of time, up to 700 days, even if they manifest themselves
only from time to time. The approach does not pretend to be able to identify all
armies of zombiesthat could be found in our dataset. At the contrary, we show that,
depending on how the dataset is preprocessed, i.e. depending on the observation
viewpoint, different armies can be found. Exhaustiveness is not our concern at this
stage but, instead, we are interested in offering an approach that could easily be
widely adopted and that offers a much better picture of the reality of the problem.

The idea exposed here is similar, in its spirit, to the one presented in the paper
coauthored by Allmann et al. [1]. However, instead of ”[...] leveraging the deep
understanding of network detectives and the broad understanding of a large num-
ber of network witnesses to form a richer understanding of large-scale coordinated
attackers”, our approach relies on a diverse yet limited number of low interaction
honeypots. They do not need to be neither as smart as the network detectives nor
as numerous as the network witnesses proposed in that work. Both approaches are
quite complementary.

The reminder of the paper is organised as follows. Section 2 defines the terms
used in the paper. Section 3 describes the dataset we have used and what we
mean when we refer to the notion ofobservation viewpoint. It also explains why
it matters when trying to identifyarmies of zombies. In Section 4, we describe the
method itself that we have applied to find these armies, we provide the main char-
acteristics of the results obtained as well as two precise, yet anecdotal, examples
of armies detected thanks to our method. Finally, Section 5 concludes the paper.

2 Terminology

In order to avoid any ambiguity, we introduce a few terms thatwill be used
throughout the text.

• Platform : A physical machine simulating, thanks to honeyd [19], the pres-
ence of three distinct machines. A platform is connected directly to the
Internet and collects tcpdump traces that are fed on a daily basis into the
centralized Leurré.com’s database.

• Leurr é.com: The Leurré.com project is a distributed system of platforms as
defined earlier, deployed in more than 50 different locations in 30 different
countries. More detailed information about it can be found in [15]

• A Sourcecorresponds to an IP address that has sent at least one packetto, at
least, one platform. It is important to understand that a given IP address can
correspond to several distinct sources. Indeed, a given IP remains associated

2

to a given source as long as there is no more than 25 hours between 2 packets
received from that IP. After such a delay, a new source identifier will be
assigned to the IP. By grouping packets by sources instead ofby IPs, we
minimize the risk of gathering packets sent by distinct physical machines
that have been assigned the same IP dynamically after 25 hours.

• A Cluster is made of a group of sources that have left highly similar net-
work traces on all platforms they have been seen on. Clustershave been
precisely defined in [18]. They aim at grouping together attackers that are
likely launching attacks with the very same attack tool.

• A Cluster time seriesΦT,c is a function defined over a period of timeT , T

being defined as a time interval (in days). That function returns the amount
of sources per day associated to a clusterc.

• An Observed cluster time seriesΦT,c,op is a function defined over a pe-
riod of time T , T being defined as a time interval (in days). That function
returns the amount of sources per day associated to a clusterc that can be
seen from a givenobservation view pointop. The observation view point
can either be a specific platform or a specific country of origin. In the
first case,ΦT,c,platformX

returns, per day, the amount of sources belong-
ing to clusterc that have hitplatformX . Similarly, in the second case,
ΦT,c,countryX

returns, per day, the amount of sources belonging to cluster
c that are geographically located incountryX . Clearly, we always have:
ΦT,c =

∑∀i∈countries ΦT,c,i =
∑∀x∈platforms ΦT,c,x

• An attack event is defined as a set of observed cluster time series exhibiting
a particular shape during a limited time interval. This timeinterval typically
lasts a couple of days but it can be as short as a single day in the case of ob-
served cluster time series having a one day peak of activities. The existence
of attack events highlights the coordinated activities of several attacking ma-
chines. It is important to notice that the set can be singleton. This is typically
the case when the set is a peak of activities on a single day.

We denote the attack eventi asei = (Tstart, Tend, Si) where the attack event
starts atTstart, ends atTend andSi contains a set of observed cluster time
series identifiers(ci, opi) such that allΦ[Tstar−Tend),ci,opi

are strongly corre-
lated to each other∀(ci, opi) ∈ Si. As an example, the top plot of Figure 1
represents the attack event 225 which consists of cluster 60332 (targeting
port 5900 TCP) attacking seven platforms 5,8, 11, ...,31. Each curve repre-
sents the amount of sources of that cluster observed from oneof these plat-
forms. As we can observe, the attack event start at day 393 andends at day
400. According to our convention, we havee225 = (393, 400, {(60232, 5), (60232, 8), ..., (60232, 31)}).

Similarly, the bottom plot of Figure 1 represents the attackevent 14 which
consists of activities of cluster 0 on day 307 coming almost only from Spain.
So,e14 = (307, 307, {(0, ES)})

3

380 385 390 395 400 405 410
0

20

40

60

n
u

m
b

e
r

o
f

s
o

u
rc

e
s

time(day)

295 300 305 310 315 320
0

100

200

300

time(day)

n
u

m
b

e
r

o
f

s
o

u
rc

e
s

Cluster 0 coming from Spain

Cluster 60322 attacks on 7 platforms 5,8,11,...,21

Figure 1: on the top plot, cluster 60232 attacks seven platforms from day 393 to
day 400. On the bottom plot, peak of activities of cluster 0 from Spain on day 307

3 IMPACT OF OBSERVATION VIEW POINT

3.1 Dataset Description

In order to have a clean dataset for our experiments, we have selected the traces
observed on 40 platforms out of the 50 that we had at our disposal. All these 40
platforms have been running for more than 800 days. During this period, none of
them has been down for more than 10 times and each of them has been up contin-
uously for at least 100 days at least once. They all have been up for a minimum of
400 days over that period. The total amount of sources observed, day by day, on
all these 40 platforms can be denoted by the initial time seriesTS over a period
of 800 days. We can split that time series per country1 of origin of the sources.
This gives us 231 time seriesTSX where theith point of such time series indi-
cates the amount of sources, observed on all platforms, located in countryX. We
represent byTS L1 the set of all these Level 1 time series. To reduce the com-
putational cost, we keep only the countries from which we have seen at least 10
sources on at least one day. This enables us to focus on 85 (theset of correspond-
ing countries is calledbigcountries), instead of 231, time series. We represent by
TS L1′ this refined set of Level 1 time series. Then, we split each of these time
series by cluster to produce the final set of time seriesΦ[0−800),ci,countryj

∀ci and
∀countryj ∈ bigcountries. Theith point of the time seriesΦ[0−800),X,Y indicates
the amount of sources originating from countryY that have been observed on day
i attacking any of our platforms thanks to the attack defined bymeans of the cluster
X. We represent byTS L2 the set of all these Level 2 time series. In this case
|TS L2| is equal to 436,756 which corresponds to 3,284,551 sources.

1The geographical location is given to us thanks to the Maxmind product, based on the IP ad-
dress. However, some IPs can not be mapped to any real countryand are attached to labels not
corresponding to any country, e.g. EU,A1,..

4

As explained in [17], time series that barely vary in amplitude over the 800 days
are meaningless to identify attack events and we can get rid of them. Therefore, we
only keep the time series that highlight important variations during the 800 days
period. We represent byTS L2′ this refined set of Level 2 time series. In this case
|TS L2′| is equal to 2,420 which corresponds to 2,330,244 sources.

We have done the very same splitting and filtering by looking at the traces on
a per platform basis instead of on a per country of origin basis. The corresponding
results are given in Table 1.

TS consists of 3,477,976 sources
OVP country platform
|TS L1| 231 40
|TS L1′| 85 40

(94,4% TS) (100% TS)
|TS L2| 436,756 395,712
|TS L2′| 2,420 2,127
sources 2,330,244 2,538,922

(67% ofTS) (73% ofTS)

Table 1: dataset description:TS: all sources observed on the period under study, OV P :
observation view point, TS L1: set of time series at country/platform level, TS L1′: set
of significant time series inTS L1, TS L2 : set of all cluster time series, TS L2′ set of
strongly varying cluster time series

3.2 Attack Event Detection

Having defined the time series we are interested in, we now want to find attack
events, that is we now want to identify all time periods during which 2 or more of
these observed cluster time series are correlated together.

To do this, in a first step, we fix the time period to a value of L days and we
use a sliding window of size L to assess the correlation of allpairs of time series
over such sliding window. Therefore, given N time series of length T, we must
compute the correlation of N time series for T-L+1 time interval {[1, L], [2, L +
1], . . . [T − L, T]}. As a result, we obtain the correlated time intervals for every
pair of time series in N. A correlated time interval of two cluster time series is
the interval in which two time series are correlated. After this first step, we group
together all pairs of cluster time series that are correlated together over the same
period of time. Each group of correlated observed cluster time series over a given
period of time constitutes what we have defined as anattack event.

It is worth noting that this method, which we refer to asM1 in the sequel, can
not detect attack events made of one observed cluster time series. This is typically
the case for peaks of activities occurring on a single day. Insuch simpler cases, it
is much more efficient to apply another, less expensive, algorithm to identify the

5

attack events. This is what we have done. For the sake of conciseness, we have
decided not to include the description of this second method, M2, in the paper as
it lies outside the scope of the message we are interested to deliver.

In the first case, the techniques used to find strongly correlated time series are
classical ones developed within the signal processing community. We refer the
interested reader to our previous work [17] where we have covered them in some
more detail and have positioned them with respect to the state of the art in this
domain. It is worth stressing that, in this earlier publication, the methodology
used was very different as well as the results presented. Indeed, in that first work,
we have presented a cheap algorithm, based on heuristics, tovalidate the mere
existence of attack events whereas in this work, we have carried out an expensive,
brute force approach, to study and analyze the relationships between all attack
events one could find in a much larger dataset.

3.3 Impact of Observation View Point

3.3.1 Results on Attack Event Detection

We have applied the attack events identification techniquesto our 2 distinct
datasets, namelyTScountry andTSplatform. For the time series inTScountry, the
first method M1 (resp. second method M2), i.e. the general one, has found 549
(resp. 43) attack events. The total amount of sources found in these attack events is
552,492 for the first method and 21,633 for the second one. Thus, all in all, sources
participating to identified attack events account for 574,125 sources (corresponding
to 16,5% of all sources contained in our initial dataset). Similarly, when working
with the time series found inTSplatform, we end up with a total of 690 attack
events this time, containing 578,372 sources. The results are given in Table 2

Table 2: Result on Attack Event Detection
AE-set-I(TScountry) AE-set-II(TSplatform)

No.AEs No.sources No.AEs No.sources
M1 549 552,492 564 550,305
M2 43 21,633 126 28,067
Total 592 574,125 690 578,372
No.AEs: amount of attack events
M1,M2: methods represented in Section 3.2

3.3.2 Analysis

The table highlights the fact that depending on how we decompose the ini-
tial set of traces of attacks (i.e the initial time seriesTS), namely by splitting it
by countries of origin of the attackers or by platforms attacked, different attacks
events show up. To assess the overlap between attack events detected from differ-
ent observation view points we use thecommon source ratio, namely csr, measure

6

as follows:

csr(e,AEop′) =

∑

∀e′∈AEop′
|e ∩ e′|

|e|

in which e ∈ AEop and |e| is the amount of sources in attack evente, AEop is
AEcountry andAEop′ is AEplatforms (or vice versa).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

common source ratio

C
D

F

Empirical CDF

T

Platform

T
Country

Figure 2: CDF common source ratio

Figure 2 represents the two cumulative distribution functions corresponding to
this measure. The point(x, y) on the curve means that there arey ∗100% of attack
events obtained thanks toTcountry (respTplatforms) that have less thanx ∗ 100%
of sources in common with all attack events obtained thanks to Tplatforms (resp
Tcountry). TheTcountry curve represents the cumulative distribution obtained in
this first case and theTplatforms one represents the CDF obtained when starting
from the attacks events obtained with the intialTplatforms set of time series. As
we can notice, around 23% (resp. 25%) of attack events obtained by starting from
theTcountry (resp.Tplatform) set of time series do not share any sources in com-
mon with any attack events obtained when starting the attackeven identification
process from theTplatform (resp.Tcountry) set of time series. This corresponds to
136 (16,919 sources) and 171 (75,920 sources) attack eventsnot being detected. In
total, there are 288,825 (resp. 293,132) sources present inAE-Set-I (resp. AE-Set-
II), but not in AE-Set-II (resp. AE-Set-I). As a final note, there are in total 867,248
sources involved in all the attack events detected from bothdatasets which cor-
respond to 25% the attacks observed in the period under study. This number is
coincidentally comparable with work in [20], in which, witha much more com-
plicated technique, the authors claim that:“[...] 27% of all malicious connection
attempts observed from our distributed darknet can be directly attributed to botnet
related spreading activity“.

3.3.3 Explanation

There are good reasons that explain why we can not rely on a single viewpoint
to detect all attacks events. They are described here below.

7

Split by country: Suppose we have one botnetB made of machines that are lo-
cated within the set of countries{X,Y,Z}. Suppose that, from time to time, these
machines attack our platforms leaving traces that are also assigned to a clusterC.
Suppose also that this clusterC is a verypopular one, that is, many other ma-
chines from all over the world continuously leave traces on our platforms that are
assigned to this cluster. As a result, the activities specifically linked to the bot-
net B are lost in the noise of all other machines leaving traces belonging toC.
This is certainly true for the cluster time series (as definedearlier) related toC
and this can also be true for the time series obtained by splitting it by platform,
Φ[0−800),C,platformi

∀platformi ∈ 1..40.However, by splitting the time series cor-
responding to clusterC by countries of origins of the sources, then it is quite likely
that the time seriesΦ[0−800),C,countryi

∀countryi ∈ {X,Y,Z} will be highly cor-
related during the periods in which the botnet present in these countries will be
active against our platforms. This will lead to the identification of one or several
attack events.
Split by platform: Similarly, suppose we have a botnetB′ made of machines lo-
cated all over the world. Suppose that, from time to time, these machines attack
a specific set of platforms{X,Y,Z} leaving traces that are assigned to a cluster
C. Suppose also that this clusterC is a verypopular one, that is, many other
machines from all over the world continuously leave traces on all our platforms
that are assigned to this cluster. As a result, the activities specifically linked to the
botnetB′ are lost in the noise of all other machines leaving traces belonging to
C. This is certainly true for the cluster time series (as defined earlier) related toC
and this can also be true for the time series obtained by splitting it by countries,
Φ[0−800),C,countryi

∀countryi ∈ bigcountries. However, by splitting the time series
corresponding to clusterC by platforms attacked, then it is quite likely that the
time seriesΦ[0−800),C,platformi

∀platformi ∈ {X,Y,Z} will be highly correlated
during the periods in which the botnet influences the traces left on the sole plat-
forms concerned by its attack. This will lead to the identification of one or several
attack events.

The top plot of Figure 3 represents the attack event 79. In this case, we see that
the traces due to the cluster 175309 are highly correlated when we group them by
platform attacked. In fact, there are 9 platforms involved in this case, accounting
for a total of 870 sources. If we group the same set of traces bycountry of origin
of the sources, we end up with the bottom curves of Figure 3 where the specific
attack event identified previously can barely be seen. This highlights the existence
of a botnet made of machines located all over the world that target a specific subset
of the Internet.

4 On the armies of Zombies

So far, we have identified what we have called attack events which highlight the
existence of coordinated attacks launched by a group of compromised machines,

8

0 2 4 6 8 10 12 14
0

10

20

30

40

0 2 4 6 8 10 12 14
0

50

100

150

Figure 3: top plot represents the attack event 79 related to cluster 17309 on 9
platforms. The bottom plot represents the evolution of thiscluster by country.
Noise of the attacks to other platforms decrease significantly the correlation of
observed cluster time series when split by country

i.e. a zombie army. It would be interesting to see if the very same army manifests
itself in more than one attack event. To do this, we propose tocompute what we
call theaction sets. An action setis a set of attack events that are likely due to same
army. In this Section, we show how to build these action sets and what information
we can derive from them regarding the size and the lifetime ofthe zombie armies.

4.1 Identification of the armies

4.1.1 Similarity Measures

In its simplest form, a zombie army is a classical botnet. It can also be made of
several botnets, that is several groups of machines listening to distinctC&C. This
is invisible to us and irrelevant. All that matters is that all the machines do act in a
coordinated way. As time passes, it is reasonable to expect members of an army to
be cured while others join. So, if the same army attacks our honeypots twice over
distinct periods of time, one simple way to link the two attack events together is by
noticing that they have a large amount of IP addresses in common. More formally,
we measure the likelihood of two attacks eventse1 ande2 to be linked to the same
zombie army by means of their similarity defined as follows:

sim(e1, e2) =

{

max(|e1∩e2|
|e1|

,
|e1∩e2|
|e2|

) if |e1 ∩ e2| < 200

1 otherwise

We will say thate1 ande2 are caused by the same zombie army if and only if
sim(e1, e2) > δ. This only makes sens forreasonablevalues ofδ. We address this
issue in the coming subsections.

9

4.1.2 Action Sets

We now use thesim() function to group together attack events into action sets.
To do so, we build a simple graph where the nodes are the attackevents. There is
an arc between two nodese1 ande2 if and only if sim(e1, e2) > δ. All nodes that
are connected by at least one path end up in the same action set. In other words,
we have as many action sets as we have disconnected graphs made of at least two
nodes; singleton sets are not counted as action sets.

We note that our approach is such that we can have an action setmade of three
attack eventse1, e2 ande3 wheresim(e1, e2) > δ andsim(e2, e3) > δ but where
sim(e1, e3) < δ. This is consistent with our intuition that armies can evolve over
time in such a way that the machines present in the army can, eventually, be very
different from the ones found the first time we have seen the same army in action.

4.1.3 Results

To test the sensitivity of the thresholdδ, we have computed the amount of
action sets for the two datasets for different values ofδ. The result is represented in
top plot of Figure 4 (the bottom plot represent the corresponding amount of attack
events involved in the armies). As we can see, at first, for thevalue ofδ from 1% to
7%, the amount of action sets increases rapidly. Indeed, forvery small values ofδ
all nodes remain connected together but, asδ increases, the initial graph loses arcs
and more disconnected graphs appear, i.e. more action sets show up. This creation
of action sets reaches a maximum after which action sets start disappearing with a
growing δ value. This is due to the fact that some graphs are broken intoisolated
nodes that are not counting as attack sets anymore. The two curves reach their
maximum values almost at the same position (whenδ = 8%). Then they both start
decreasing linearly.

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

threshold δ

o

f
zo

m
b

ie
 a

rm
ie

s

0 0.1 0.2 0.3 0.4 0.5
0

500

1000

threshold δ

o

f
at

ta
ck

 e
ve

n
ts

T
country

T
platform

T
country

T
platform

Figure 4: sensitivity check of thresholdδ

In the context of this paper, we have arbitrarily chosen to investigate deeper the
armies we can find when settingδ = 10%. We do not pretend that this number is
optimal in any sense and, in fact, we do not really care. Indeed, our purpose, at
this stage, is just to look at the results for one given value of δ and see if, yes or no,
this theory of zombie armies seems to be valid or not, based onthe characteristics

10

of the ones we will find in that particular case. It can very well be that the attack
events found in attack sets, as we have built them, have no underlying common
cause and that they accidentally share common IPs.

For such value ofδ we have identified 40 (resp. 33) zombie armies from AE-
set-I (resp. AE-set-II) which have issued a total of 193 (resp. 247) attack events.
Figure 5 represents the distribution of attack events per zombie army. Its top (resp.
bottom) plot represents the distribution obtained from AE-set-I(resp. AE-set-II).
We can see that the largest amount of attack events for an armyis 53 (resp. 47)
whereas 28 (resp. 20) armies have been observed only two times.

0 10 20 30 40 50 60 70
0

10

20

30

amount of attack events

o

f
zo

m
b

ie
 a

rm
ie

s

0 10 20 30 40 50 60 70
0

10

20

o

f
zo

m
b

ie
 a

rm
ie

s

amount of attack events

Figure 5: Zombie Army Size

4.2 Main Characteristics of the Zombie armies

In this section, we will analyze the main characteristic of the zombie armies.
Lifetime of Zombie Army Figure 6 represents the cumulative distribution of min-

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

duration (day)

C
D

F

country
platform

Figure 6: CDF duration

imum lifetime of zombie armies obtained fromTSplatform and TScountry (see
Section 4.1.3). According to the plot, around 20% of zombie armies have existed
for more than 200 days. In the extreme case, two armies seems to have survived
for 700 days! Such result seems to indicate that either i) it takes a long time to cure
compromised machines or that ii) armies are able to stay active for long periods
of time, despite the fact that some of their members disappear, by continuously
compromising new ones.

11

Lifetime of Infected Host in Zombie Armies In fact, we can classify the armies
into two classes as mentioned in the previous Section. For instance, Figure 7a rep-
resents the similarity matrix of zombie army 33, ZA33. To build this matrix, we
first order its 42 attack events according to their occurred time. Then we repre-
sent their similarity relation under an42 × 42 similarity matrix M . The cell (i,j)
represents the value ofsim() of the ordered attack eventith andjth. Since,M
is a symmetric matrix, for the visibility, we represent onlyhalf of it. As we can
see, we have a very high similarity measure between almost all the attacks events,
around 60%. This is also true between the very first and the very last attack events.
It is important to notice the time interval between the first and the last activities
observed from this army is 753 days!

(a)

(b)

Figure 7: Renewal rate of zombie armies

Figure 7b represents an opposite case, the zombie army 31, ZA31, consisting
of 46 attack events. We proceed as above to build its similarity matrix. As we
can notice the important values are surrounded around the main diagonal ofM . It
means that the attack eventith has the same subset of infected machines with only
few attack events happening not far from it in terms of time. Another important
point to be noticed is that this army changes its attack vectors over time. In fact, it

12

moves from attack against 4662 TCP, to 1025 TCP, then 5900 TCP, 1443 TCP, 2967
TCP, 445 TCP,...And the lifetime of this army is 563 days! It is clear, from these
two cases, that the composition of armies evolves over time in different ways. More
work remains to be done in order to understand the reasons behind these various
strategies.
Attack Capacity By attack capacity, we refer to the amount of different attacks
that a given army is observed lauching over time. The advanced worm, namely
multi-headed worm, we have presented in our earlier work [17] is an example of
worms that have many attack vectors and use them dynamically. The multi attack
vectors allow the worms to have a large chance to propagate, and the varying in
activity helps them to have multi attack traces which make itharder for IDS to
detect them. This work reinforces the results we have earlier [17]. In fact, in
previous work, we were able to detect multi-headed worms by the correlation of
attack traces generated by different attack tools within anattack event. In this
work, we have some even stronger evidence.Indeed, thanks tothe notion of army,
we observe several cases in which the same IP address has different behaviors in
different attack events attached to a given army. As an example, the two attack
events 128 and 131 consist of clusters 1378 and 2666 respectively. They both
have 106 IP addresses in common and belong to the zombie army 12. All the
attacks of attack event 128 are against port 64783 TCP whereas all the attacks
of attack event 131 are against port 6211 TCP. The conclusionis that these 106
attacking machines mentioned earlier have dynamically changed their behavior.
Finally, Figure 8 represents the distribution of number of distinct cluster per army.
One zombie army has almost 120 clusters, yet not all of them are very different
from each other.

0 20 40 60 80 100 120 140
0

2

4

6

8

amount of distinct clusters

#
 o

f
zo

m
b

ie
 a

rm
ie

s

0 20 40 60 80 100 120 140
0

2

4

6

8

amount of distinct clusters

#
 o

f
zo

m
b

ie
 a

rm
ie

s

Figure 8: Zombie Army Attack Capacity

4.3 Illustrated Examples

After having offered a high level overview of the method and main character-
istics of the results obtained, we feel it is important to give a couple of concrete,

13

simple, examples of armies we have discovered. This should help the reader in bet-
ter understanding the reality of two armies as well as what they look like. This is
what we do in the next two subsections where we briefly presenttwo representative
armies.

4.3.1 Example 1

Zombie army 29, ZA-29, is an interesting example which has only been ob-
served attacking a single platform. However, 16 distinct attack events are linked
to that army! Figure 9a presents its two first activities corresponding to the two
attack events 56 and 57. Figure 9b represents other four attack events. In each
attack event, the army tries a number of distinct clusters such as 13882, 14635,
14647, 56608, 144028, 144044, 149357, 164877, 166477. These clusters try many
combinations of Windows ports (135 TCP, 139 TCP, 445 TCP) andWeb server (80
TCP). The time interval between the first and the last activities is 616 days !

75 80 85 90 95 100 105
0

20

40

60

80

100

120

140

Time(day)

N
u

m
b

e
r

o
f

s
o

u
rc

e
s

AE 56 AE 57

(a)

500 520 540 560 580 600
0

50

100

150

200

250

300

350

400

Time(day)

N
u

m
b

er
 o

f
so

u
rc

es

AE 290

AE 297 AE 298
AE 293

(b)

Figure 9: attack events of ZA29

4.3.2 Example 2

Last but not least, the zombie army 33, ZA-33, consisting of 42 attack events
(already mentioned in Section 4.2) is an example of a multi-botnets zombie army.
In fact, it seems that several botnets do different jobs and from time to time, they
do some tasks together. In fact, in one hand, an important setof machines coming
from Italy attacks several times one platform in China. As anexample, the two
top plots of Figure 10 are two examples of these attacks. The attack event 291

14

consisting of several clusters attack on port 64783T. And always coming from Italy,
and targeting the same platform, but attack event 195 tries many clusters on port
9661 TCP. On the other hand, another component of ZA-33 consistently sends
ICMP packets only, always coming from Greece and always targeting the same
platform also located in Greece (see two plots in the middle of Figure 10). And
as an example of coordination of two components of ZA33, the two plots in the
bottom of Figure 10 represent two attack events (out of four)coming mostly from
these two countries and attacking these two platforms. As a reminder, by design,
there are always overlap between the attack events, for instance, attack event 483
share 41 IP address in common with AE 307, whereas 454 and 483 have 47 IP
addresses in common.... The interval between the first and the last attack event
issued by this zombie army is 753 days.

170 180 190
0

500

1000
AE :195

time(day

of

 s
ou

rc
es

260 270 280
0

50

100
AE :291

time(day

of

 s
ou

rc
es

270 275 280
0

50

100
AE :307

time(day

of

 s
ou

rc
es

15 20 25
0

100

200
AE :12

time(day

of

 s
ou

rc
es

420 430 440
0

100

200
AE :454

time(day

of

 s
ou

rc
es

445 450 455
0

50

100
AE :483

time(day

of

 s
ou

rc
es

Figure 10: 6 attack events from zombie army 33

5 Conclusion

In this paper, we have addressed the important attack attribution problem. We
have shown how low interaction honeypots can be used to trackarmies of zom-
bies and characterize their lifetime and size. More precisely, this paper offers three
main contributions. First of all, we propose a simple technique to identify, in a
systematic and automated way, the so-called attack events in a very large dataset
of traces. We have implemented and demonstrated experimentally the usefulness
of this technique. Secondly, we have shown how, by grouping these attack events,
we can identify long living armies of zombies. Here too, we have validated exper-
imentally the soundness of the idea as well as the meaningfulness of the results it
produces. Last but not least, we have shown the importance ofthe selection of the
observation viewpoint when trying to group such traces for analysis purposes. Two
such viewpoints have been considered in this paper, namely the geolocation of the
attackers and the platform attacked. Results of the experiments have highlighted
the benefits of considering more than one viewpoint as each ofthem offers unique
insights into the attack processes. Future work needs to be done to consider other

15

viewpoints as well as the possibility to combine these various viewpoints into a
uniformed framework.

References

[1] M. Allman, E. Blanton, V. Paxson, and S. Shenker. Fighting coordinated
attackers with cross-organizational information sharing. In Hotnets 2006,
2006.

[2] Paul Barford and Vinod Yegneswaran. An inside look at botnets. Advances
in Information Security, 27:171–191, 2007.

[3] Ken Chiang and Levi Lloyd. A case study of the rustock rootkit and spam
bot. InFirst Workshop on Hot Topics in Understanding Botnets, 2007.

[4] Evan Cooke, Farnam Jahanian, and Danny McPherson. The zombie roundup:
understanding, detecting, and disrupting botnets. InSRUTI’05: Proceedings
of the Steps to Reducing Unwanted Traffic on the Internet on Steps to Re-
ducing Unwanted Traffic on the Internet Workshop, pages 6–6, Berkeley, CA,
USA, 2005. USENIX Association.

[5] Neil Daswani and Michael Stoppelman. The anatomy of clickbot.a. InHot-
Bots’07: Proceedings of the First Workshop on Hot Topics in Understanding
Botnets, pages 11–11, Berkeley, CA, USA, 2007. USENIX Association.

[6] Felix C. Freiling, Thorsten Holz, and Georg Wicherski. Botnet tracking:
Exploring a root-cause methodology to prevent distributeddenial-of-service
attacks. InLecture Notes in Computer Science, pages 319–335. Springer-
Verlag GmbH, September 2005.

[7] Jan Goebel and Thorsten Holz. Rishi: Identify bot contaminated hosts by irc
nickname evaluation. InWorkshop on Hot Topics in Understanding Botnets
2007, 2007.

[8] Julian B. Grizzard, Vikram Sharma, Chris Nunnery, BrentByungHoon Kang,
and David Dagon. Peer-to-peer botnets: overview and case study. In Hot-
Bots’07: Proceedings of the first conference on First Workshop on Hot Top-
ics in Understanding Botnets, pages 1–1, Berkeley, CA, USA, 2007. USENIX
Association.

[9] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. Botminer: Clus-
tering analysis of network traffic for protocol- and structure-independent bot-
net detection. InUSENIX Security ’08, 2008.

[10] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke Lee.
Bothunter: Detecting malware infection through ids-driven dialog correla-
tion. In Proceedings of the 16th USENIX Security Symposium, August 2007.

16

[11] Guofei Gu, Junjie Zhang, and Wenke Lee. Botsniffer: Detecting botnet com-
mand and control channels in network traffic. Inthe 15th Annual Network
and Distributed System Security Symposion, 2008.

[12] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C. Freiling. Mea-
suring and detecting fast-flux service networks. InNDSS 2008, 2008.

[13] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and Felix Freil-
ing. Measurements and mitigation of peer-to-peer-based botnets: a case study
on storm worm. InLEET’08: Proceedings of the 1st Usenix Workshop on
Large-Scale Exploits and Emergent Threats, pages 1–9, Berkeley, CA, USA,
2008. USENIX Association.

[14] Nicholas Ianelli and Aaron Hackworth. Botnets as a vehicle for online crime.
In 18th Annual FIRST Conference, May 2007.

[15] Corrado Leita, Van Hau Pham, Olivier Thonnard, EduardoRamirez Silva,
Fabien Pouget, Engin Kirda, and Marc Dacier. The leurre.comproject: col-
lecting internet threats information using a worldwide distributed honeynet.
In 1st WOMBAT workshop, April 21st-22nd, Amsterdam, The Netherlands,
Apr 2008.

[16] Emanuele Passerini, Roberto Paleari, Lorenzo Martignoni, and Danilo Br-
uschi. Fluxor: detecting and monitoring fast- flux service networks. In
DIMVA 2008, 2008.

[17] Van-Hau Pham, Marc Dacier, Guillaume Urvoy Keller, andTaoufik En Na-
jjary. The quest for multi-headed worms. InDIMVA 2008, 5th Conference
on Detection of Intrusions and Malware & Vulnerability Assessment, July
10-11th, 2008, Paris, France, Jul 2008.

[18] Fabien Pouget and Marc Dacier. Honeypot-based forensics. In
AusCERT2004, AusCERT Asia Pacific Information technology Security Con-
ference 2004, 23rd - 27th May 2004, Brisbane, Australia, May 2004.

[19] Niels Provos. A virtual honeypot framework. InProceedings of the 12th
USENIX Security Symposium, pages 1–14, August 2004.

[20] Moheeb Rajab, Jay Zarfoss, Fabian Monrose, and AndreasTerzis. A mul-
tifaceted approach to understanding the botnet phenomenon. In ACM SIG-
COMM/USENIX Internet Measurement Conference, October 2006.

[21] Anirudh Ramachandran, Nick Feamster, and David Dagon.Revealing botnet
membership using dnsbl counter-intelligence. InSRUTI’06: Proceedings of
the 2nd conference on Steps to Reducing Unwanted Traffic on theInternet,
pages 8–8, Berkeley, CA, USA, 2006. USENIX Association.

17

[22] Günther Starnberger, Christopher Krügel, and EnginKirda. Overbot - A bot-
net protocol based on Kademlia. InSecureComm 2008, 4th International
Conference on Security and Privacy in Communication Networks, September
22-25th 2008, Istanbul, Turkey, Sep 2008.

[23] Joe Stewart. Bobax trojan analysis.
http://www.secureworks.com/research/threats/bobax, May 2004.

[24] Joe Stewart. Phatbot trojan analysis.
http://www.secureworks.com/research/threats/sinit/,March 2004.

[25] W. Timothy Strayer, Robert Walsh, Carl Livadas, and David Lapsley. De-
tecting botnets with tight command and control.Local Computer Networks,
Proceedings 2006 31st IEEE Conference on, pages 195–202, Nov. 2006.

[26] Ping Wang, Sherri Sparks, and Cliff C. Zou. An advanced hybrid peer-to-peer
botnet. InHotBots’07: Proceedings of the first conference on First Workshop
on Hot Topics in Understanding Botnets, pages 2–2, Berkeley, CA, USA,
2007. USENIX Association.

18

FIRE: FInding Rogue nEtworks

Brett Stone-Gross, Christopher Kruegel, Kevin Almeroth

University of California, Santa Barbara

{bstone,chris,almeroth}@cs.ucsb.edu

Andreas Moser

Technical University Vienna

andy@iseclab.org

Engin Kirda

Institute Eurecom

kirda@eurecom.fr

Abstract

For many years, online criminals have been able to

conduct their illicit activities by masquerading behind

disreputable Internet Service Providers (ISPs). For

example, organizations such as the Russian Business

Network (RBN), Atrivo (a.k.a., Intercage), McColo, and

most recently, the Triple Fiber Network (3FN) operated

with impunity, providing a safe haven for Internet

criminals for their own financial gain. What primarily

sets these ISPs apart from others is the significant

longevity of the malicious activities on their networks

and the apparent lack of action taken in response to

abuse reports. Interestingly, even though the Internet

provides a certain degree of anonymity, such ISPs

fear public attention. Once exposed, rogue networks

often cease their malicious activities quickly, or are

de-peered (disconnected) by their upstream providers.

As a result, the Internet criminals are forced to relocate

their operations.

In this paper, we present FIRE, a novel system

to identify and expose organizations and ISPs that

demonstrate persistent, malicious behavior. The goal is

to isolate the networks that are consistently implicated

in malicious activity from those that are victims of

compromise. To this end, FIRE actively monitors botnet

communication channels, drive-by-download servers,

and phishing web sites. This data is refined and

correlated to quantify the degree of malicious activity

for individual organizations. We present our results in

real-time via the website maliciousnetworks.org. These

results can be used to pinpoint and to track the activ-

ity of rogue organizations, preventing criminals from

establishing strongholds on the Internet. Also, the in-

formation can be compiled into a null-routing blacklist

to immediately halt traffic from malicious networks.

1. Introduction

Anecdotal evidence indicates the existence of Inter-

net companies and service providers that are under the

influence of criminal organizations or knowingly toler-

ate their activities. Such companies typically control a

number of networks with public IP addresses that are

abused for a wide range of malicious activities. One

such activity is offering bullet-proof hosting, a service

that guarantees the availability of hosted resources even

when they are found to be malicious or illegal. These

hosting services are often used for phishing purposes

or for serving exploits and malware. Other malicious

activities involve the sending of spam, hosting scam

pages, or providing a repository for pirated software

and child pornography.

An example of a rogue network that offered bullet-

proof hosting was the Russian Business Network

(RBN), who made headlines in late 2007 [5], [16].

Various sources alleged that the RBN hosted web

sites, exploits, and malware that were responsible for

a significant fraction of online scams and phishing.

Once publicly exposed, the RBN ceased its operations

in St. Petersburg, only to relocate and resume activities

in different networks [10]. More recently, a report ex-

posed Atrivo (Intercage), a US-based company that is

frequently considered to provide hosting for malicious

content [3], [17]. Often referred to as the RBN of

the United States, this company is considered to be

a “dedicated crime hosting firm whose customer base

is composed almost, or perhaps entirely, of criminal

gangs” [13]. Shortly after Atrivo made headlines, two

more rogue networks, known as McColo and the Triple

Fiber Network (3FN), were discovered to be major

hosting providers for malicious content with ties to

cybercrime [1], [2], [18]. Again, public outcry quickly

lead reputable ISPs to severe their peering relationships

with these organizations, cutting them off the Internet.

In this paper, we describe FIRE, a system that

monitors the Internet for rogue networks. We believe

that it is important to expose such networks, for a

number of reasons. First, as the examples of the

Russian Business Network, Atrivo, McColo, and 3FN

demonstrate, criminals fear public attention. As a result

of the increased media coverage, all four networks

had to cease their immediate activity. In many cases,

it is likely that their operations resumed elsewhere.

However, it took some time before the miscreants

could restructure their setup. Thus, by quickly bringing

to light networks that act maliciously, it becomes more

difficult for cyber-criminals to establish a home base.

The second advantage of identifying rogue networks is

the possibility to generate blacklists that can block all

traffic from a netblock, even when certain IPs within

this netblock have not yet acted maliciously. This

approach prevents criminals from cycling through the

available IP space, quickly shifting to a new IP when a

current host is blacklisted. Currently, there are manual

efforts underway to establish blacklists based on the

observation that certain networks are malicious. For

example, Spamhaus maintains the Don’t Route Or Peer

(DROP) list, a collection of networks that they consider

to be controlled entirely by professional spammers.

Spamhaus suggests that traffic from these sources

should simply be dropped, and recommends the use of

this list by tier-1 ISPs and backbone networks. Another

example is the list maintained by EmergingThreats,

which identifies netblocks that are thought to belong to

the Russian Business Network. While such efforts are

beneficial, they are expensive and tedious to maintain.

Moreover, these lists are often incomplete and limited

in scope (for example, limited to spam operations or

the RBN in particular). In contrast, FIRE operates in

an automated fashion, and we aim to capture a broader

range of malicious activity, independent of any a priori

knowledge of criminal organizations.

To identify rogue networks, we rely on a number

of data sources that report the malicious actions of

individual hosts. Some of the data feeds are publicly

available, such as lists of phishing web pages. The

other data originates from our own analysis efforts,

such as a list of hosts that provide botnet com-

mand and control servers and hosts that are found

to exploit browser vulnerabilities. Of course, given

the widespread use of botnets and the large number

of exploited machines, the fact that a host performs

malicious actions is no immediate indication that the

corresponding ISP or netblock is malicious. Instead,

when a host misbehaves, it is possible that attackers

were able to compromise and abuse it for nefarious

purposes. Thus, it is necessary to search the data for

indicators that allow us to distinguish between hosts

under the control of rogue (or grossly negligent) ISPs

and infected machines of organizations that make a

deliberate effort to keep their network clean.

Based on post-processed information obtained from

different data sources, we compute a malscore (ma-

liciousness score) for individual ASNs (Autonomous

System Number). This score quantifies the amount of

recent, malicious activity in a network and serves as

an indicator for the likelihood that an ASN is linked to

cyber-criminals, or at the least, being very negligent in

removing malicious content. Using the malscores, it is

easy to identify the worst offenders on the Internet and

take appropriate actions (such as increasing the public

pressure, breaking peering relationships, or putting

their IP address space on a blacklist). Moreover, we

can track malicious activity over time.

The main contributions of this paper are as follows:

• We analyze a number of data sources to identify

IP addresses of hosts that misbehave in different

ways.

• We present techniques to filter these lists for hosts

that likely belong to rogue ISPs. In particular,

we combine the information from different data

sources to compute a malscore that quantifies the

malicious activities of an autonomous system.

• We show that our system is successful in iden-

tifying a number of rogue ISPs and can assist

legitimate ISPs in cleaning their networks via our

website maliciousnetworks.org.

2. System Overview

The goal of our system is to identify rogue networks.

Thus, we first need to concretize what we consider

to be a rogue network. Unfortunately, this question is

not straightforward to answer. Some service providers

are simply lax when it comes to the content that they

offer, others are victims of remote exploits, and a few

are well-known to blatantly host malicious content.

Thus, the fact that a network is the source of unwanted

activity does not necessarily qualify it immediately as

being malicious.

We consider a rogue network to be a network that is

under the control of cyber-criminals or that knowingly

profits from cooperating with criminals. Of course, it

is difficult to assert such criminal ties without thorough

investigations by law enforcement agencies. Thus, we

have to redefine our notion of rogue networks based

on the activities that are typically associated with such

networks. To this end, we consider a rogue network to

be one in which significant malicious activity occurs.

In addition, this activity lasts for an extended period

of time, regardless of abuse complaints. Our logic

behind this is that rogue networks provide hosting

for malicious content that often remains up for many

days (sometimes even months or years). In contrast,

malicious activity in other networks tends to be more

short-lived due to abuse reporting and honest attempts

to undo the damage.

Given our notion of rogue networks, the basic idea

to identify such networks is to check for the presence

of a large number of long-lived, misbehaving hosts. To

this end, we analyze a number of data sources for IP

addresses that have exhibited malicious behavior for

an extended period of time (the exact extent of this

time span depends on the type of data source and is

discussed later).

3. Data Collection

In this section, we discuss in more detail the three

data sources that we use to identify hosts that likely be-

long to rogue networks. To this end, we first describe,

for each data source, how we obtain the IP addresses

of hosts that are actively engaged in malicious activity.

3.1. Botnet Command and Control Providers

Despite the emergence of peer-to-peer-based bots,

many botnets still rely on centralized command

and control (C&C). For this C&C infrastructure,

botmasters typically set up IRC servers that provide

channels for bots to join, or web servers that can

be periodically polled for new commands. The

functioning of the complete botnet depends on the

availability of these servers. Thus, a botmaster is

interested in hosting his C&C infrastructure on a

network where it is safe from takedown.

To identify and monitor the networks affiliated

with botnet C&C servers, we utilize data collected

from Anubis [4]. Anubis executes Windows-based

malware binaries in a virtual environment and

records file system and registry modifications, process

information, and network communications. We are

particularly interested in the network traffic (if any)

generated by the malware.

IRC-based botnets. When Anubis monitors IRC traf-

fic the corresponding nickname, server, and channel

information is logged. To monitor whether IRC C&C

channels are active, we use a custom IRC client that

leverages the recorded credentials to connect to the

IRC server and join the channel. Because we are

primarily interested in the longevity of the C&C server,

we resolve the C&C server’s host name to one or more

IP addresses, and then connect to each IP at regular

intervals. When the C&C server is not identified by a

DNS name but by an IP address, then this address is

used directly. A host (an IP address) is considered to

be active when our client can join the corresponding

C&C channel. Sometimes, transient network problems

prevent us from connecting to a host. In such cases,

it would be undesirable and premature to declare a

host as inactive. Thus, we require that an active C&C

channel is unreachable for two days before declaring

the corresponding IP address as inactive.

Interestingly, in a number of cases, we observed that

a channel (and the corresponding server) was reach-

able, but no malicious activity was noticeable. This

is frequently the case when a bot channel is created

on a well-known IRC network (such as undernet or

efnet). The reason is that the IRC administrators of

these networks quickly ban the botmaster and remove

the channel. However, subsequent logins from bots or

other users reopen the channel, thus making the chan-

nel available and leaving the impression that it is still

active. To mitigate this problem, we modify our ap-

proach to determine whether a botnet C&C host is ac-

tive. More precisely, in addition to the requirement that

a server is reachable and the appropriate channel exists,

we also require that the channel shows bot-related

activity. To this end, we introduce heuristics that check

the messages and channel topics for well-known IRC

bot commands (such as download, update, dos) and

signs of encoded or encrypted commands. A channel

is considered up only when such indicators are present.

HTTP-based botnets. To identify and monitor web-

based botnet C&C servers from samples collected by

Anubis, we first require a mechanism to distinguish

between legitimate HTTP traffic and traffic related

to botnet commands. This is necessary because

HTTP traffic sent by a malware sample does not

immediately imply a connection to a C&C server

(HTTP connections are often used to check for

network connectivity or download updates). To

identify HTTP C&C traffic, we manually define static,

malicious characteristics (signatures) of requests used

by well-known botnets. These characteristics include

content from the HTTP request path and parameters,

HTTP headers and POST data, and the HTTP response

from the web server. Such static features are useful

even for botnets that use encryption because they

frequently send an encryption key, bot identifier,

version number, and other parameters to the web

server. Thus, the HTTP C&C server must know how

to parse the request in a specific format.

As an example of a web-based botnet that we have

been monitoring, consider Pushdo/Cutwail, which is

believed to be one of the largest, active botnets used

for spam. When a Cutwail bot connects to the C&C

server, it will often request one or more executables.

Although the botnet utilizes encryption, the request

path for these binaries contains a predictable semi-

static format, such as the prefix /40E8. The response

from the web server contains one or more executables

typically around 100KB. Currently, we are monitoring

24 different types of web-based botnets including

Coreflood, Torpig, and Koobface.

3.2. Drive-by-Download Hosting Providers

Our second data source is a list of servers that

host malware executables distributed through drive-by-

download exploits. Drive-by-downloads are a means

of malware distribution where executables are auto-

matically installed on victim machines without user

interaction. Typically, the only requirement is for a

user to visit a web page that contains an exploit for her

vulnerable browser. In some cases, the exploit and the

malware executable is hosted on a compromised host,

while in other cases, a compromised web page is only

used to redirect the victim to a second machine that

performs the exploit (often referred to as a mothership).

These mothership servers are frequently located in

rogue networks.

There are three data feeds that we use to identify

drive-by-download servers. The first feed is through

Wepawet [25], a system that checks user-submitted

web pages (URLs) for malicious Javascript. In partic-

ular, we are interested in cases where malicious script

contains shellcode that downloads and executes mal-

ware. When malware is discovered, Wepawet records

the locations of these binaries and exports them to

FIRE. The second data feed is through a daily compi-

lation of URLs found in spam mails that are caught

in the spam traps of a computer security company

and an Internet Service Provider. The third feed is a

daily-updated list of “spamvertised” URLs (advertised

via spam) provided by Spamcop [23]. So far, after

eliminating duplicates, we have recorded more than 1.2

million spamvertised links. Of course, not every URL

in a spam email points to a site that launches a drive-by

exploit. Instead, these URLs frequently lead to shady

businesses such as online pharmacies, casinos, or adult

services. To identify those sites and pages that actively

perform drive-by-exploits, we use the Capture Honey

Pot Client (HPC) [21]. Capture is able to find web-

based exploits by opening a potentially malicious web

site in a browser on a virtual machine. After visiting a

page, the state of the virtual machine is inspected and

suspicious changes (i.e., the creation of new files or

the spawning of new processes) are recorded, as they

indicate that the guest system was compromised by a

web-based exploit.

For our analysis, we use a total of eight virtual

machines (VMs) dedicated to scanning web pages.

All VM images are running Windows XP Professional

(Service Pack 2), without any patches installed and

automatic updates disabled. To catch recent exploits,

we have installed the Flash and Quicktime plug-ins.

When the Capture honey client is compromised by

visiting a certain URL, we inspect the network traces

recorded from Capture HPC. We are not interested in

the server that hosts the web site that contains an ex-

ploit. We have observed that those machines are often

legitimate web servers that are victims of compromise

and, therefore, do not yield much information about

malicious networks. Thus, if the malicious binary that

is part of an exploit is downloaded from the same

server, we ignore that host for our analysis. In the more

interesting case, an exploit has been injected into a web

page and the associated binary is hosted on a different

machine (mothership server that usually serves binaries

for many different exploits). Due to the importance of

this mothership servers for the criminals behind the

exploit, these machines are often located in malicious

networks where the chance that it is being shut down

is low. Thus, we only consider the IP addresses of

those mothership servers for our analysis. Once we

have discovered a download server, we revisit it once

per day.

3.3. Phish Hosting Providers

The third data source to identify rogue networks

is derived from information about servers that host

phishing pages. Typically, phishing pages are set up to

steal login credentials, credit card numbers, or other

personal information. Often, these pages are hosted on

compromised servers and are taken down quickly. To

mitigate this problem, phishers often resort to hosting

their phishing pages directly in networks where there

is little or no control of the offered content.

To locate phishing pages, we leverage an XML feed

provided by PhishTank [19]. Once a day, this feed

provides our system with URLs of phishing pages that

are verified by the PhishTank community. Interestingly,

all URLs on the PhishTank list are considered to be

online. However, our experiments have shown that

phishing pages are often taken offline so quickly that

the list is already outdated after one day.

To compute the status of phishing IPs, we attempt

to download the web page located at a given phishing

URL once per day. This is done until either the

domain (of the URL) can no longer be resolved, or

the site is offline for more than one week. A phishing

site is considered offline by our system when the web

server is not reachable anymore or when the phishing

page has been replaced by another page that is not a

phish (usually a HTTP 404 error page or a phishing

warning page).

4. Data Analysis

In this section, we discuss our techniques to identify

rogue networks and compute their malscores based on

the analysis of the individual data sets that we collect.

4.1. Longevity of Malicious IP Addresses

The primary characteristic that distinguishes be-

tween rogue and legitimate networks is the longevity

of the malicious services. Most legitimate networks are

able to clean up illicit content within a matter of days.

In contrast, we have observed malicious content that

has been online for the entire monitoring period of

more than a year. Figure 1 shows the average uptime

of malicious IPs per ASN. It can be seen that the vast

majority of networks remove the offending content in

less than ten days. However, there were 361 ASNs

that had hosts with an average lifespan of more than

ten days in our feeds. Also, we discovered that each

type of malicious activity displays different behaviors

and average uptime.

Since May 2008, we have observed botnet C&C

servers on 1,269 IP addresses. Figure 2 displays the

uptime of the botnet C&C servers from 0-60 days.

Note that we observed C&C servers that were online

for more than 60 days, but limited the x-range of the

graph to illustrate the rapid decline in botnet C&C

servers that are taken down after only a few days,

mainly by reputable IRC and web hosting providers.

We have been monitoring 1,161 of drive-by-

download servers since August 2008. These servers

have a much higher average lifetime than the other

sources depicted in Figure 3. In fact, the number of

drive-by-download servers that have been online for

more than 60 days is 92, or more than 15%. Also,

there have been 17 (approximately 3% of all) drive-

by-download servers that have been online since the

start of our collection.

From July 2008, we recorded 12,149 IP addresses

hosting phishing websites. Similar to botnet C&C

servers, the majority of phishing websites were online

for only a few days. However, we also observed a few

phishing sites that were online for more than a year.

Figure 4 shows the uptime for the first 60 days for

phishing hosts.

As mentioned previously, we use the longevity of

malicious services as a distinguishing feature of rogue

networks. This insight is supported by the previously-

shown data, which demonstrates that a small number

of ASNs is responsible for most persistent, malicious

activity. To discard IPs that have been active for a short

time only, we introduce a threshold δ. IP addresses that

are active less than this threshold are not considered

rogue and discarded from the subsequent malscore

computation. This removes most of the phishing pages

that are hosted on free web spaces or hacked machines,

and legitimate IRC/web servers that are temporarily

abused for botnet communications. As we will explain

later in more detail (in Section 5.2), we do not use

a threshold-based filter for drive-by-download servers.

The reason is that such servers are difficult to set up,

and thus, are typically a direct indication for rogue

networks. This is also reflected in the uptime graph

for drive-by download servers (Figure 3), which is

different than the graphs for the other two data sources.

The output of the filtering step (which removes

short-lived botnet C&C and phishing IPs) is a list of ac-

tive, rogue IPs that constitute the input to the malicious

score computation process, which is discussed in the

next section. In Section 5.2, we will come back to the

effects of selecting different values for the threshold δ

on malscores and ASN ranks.

4.2. Malscore Computation

Once per day, the data collection process produces

three lists Li of active, rogue IPs (each derived from a

different data source i). In the next step, the goal is to

combine this information to expose organizations that

act maliciously. For this, we consider an organization

to be equivalent with an autonomous system (AS).

An autonomous system is a group of a single entity

(RFC 1771). Thus, it is a natural choice to perform

analysis at the AS-level.

To identify those autonomous systems that are most

likely malicious, we first map all IP addresses on the

three lists to their corresponding ASN. For this, we

query the whois database, selecting the most specific

entry for an IP address in case multiple autonomous

systems announce a particular IP. We are aware that

the whois data might not be completely accurate.

However, even in case of small errors, the database

is sufficiently complete and precise to recognize the

worst offenders.

A straightforward approach to identify those au-

tonomous systems that are most malicious is to com-

pute, for each AS, the sum of the IPs on the three lists

that belong to this AS. While simple, this technique is

not desirable because it ignores the size of a network.

Clearly, when an AS P controls many more live hosts

than AS Q, we can expect that the absolute number

of malicious hosts in P are higher than in Q, even

though the relative numbers might show the opposite.

To avoid this pitfall, we compute the maliciousness

score (malscore) MA for an AS P as follows:

MP = ρP ∗
3∑

i=1

ni(P) (1)

In Equation 1, ni(P) is the number of IP addresses

on list Li that belong to the autonomous system P .

Moreover, the malscore for each AS is adjusted by a

factor ρ, which is indirectly proportional to the number

of hosts in a network. That is, ρ decreases for larger

networks.

The purpose of ρ is to put into relation the number

of incidents with the number of active hosts in an

autonomous system. This requires, for each AS, the

knowledge of the number of live (active) hosts that

10 20 30 40 50 60
Number of Days

100

101

102

103

104

N
u
m

b
e
r

o
f

A
S
N

s

Average Uptime of Malicious Activity by ASN

Figure 1: Average IP uptime by ASN.

10 20 30 40 50 60
Number of Days

0

20

40

60

80

100

120

140

N
u
m

b
e
r

o
f

IP
s

Botnet IP Address Uptimes

Figure 2: Botnet uptime between 0-60 days.

10 20 30 40 50 60
Number of Days

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f

IP
s

Drive-by-Download IP Address Uptimes

Figure 3: Drive-by uptime between 0-60 days.

10 20 30 40 50 60
Number of Days

0

1000

2000

3000

4000

5000

N
u
m

b
e
r

o
f

IP
s

Phish IP Address Uptimes

Figure 4: Phishing uptime between 0-60 days.

are operating in the networks of this AS. Clearly, this

knowledge is difficult to obtain precisely, and it also

can change over the course of several months. Previous

work attempted to address this question [20], resorting

to the idea of sending ping probes to a well-chosen

subset of the IP addresses of a network. While these

techniques can discriminate well between completely

inactive (dark) regions and used networks, it is still

quite difficult to determine the exact number of active

hosts. Also, it is possible that networks are configured

so that they do not respond to ping requests at all,

thereby skewing the results. For these reasons, we

decided to estimate the size of a network based on the

size of the networks (i.e., the number of IP addresses)

that an AS announces as routeable to the global

Internet. To determine the size of the address space

that an AS announces to the Internet, we leverage data

provided by the Cooperative Association for Internet

Data Analysis (CAIDA). CAIDA is a collaborative

undertaking among organizations in the commercial,

government, and research sectors that promotes coop-

eration in the engineering and maintenance of a robust,

scalable, global Internet. In this role, CAIDA makes

available a variety of data repositories that provide

up-to-date measurements of the Internet infrastructure.

One of these data repositories [14] shows a ranking

of autonomous systems based on the size of their

customer cones (address spaces). This information is

compiled from RouteViews BGP tables.

We define sizep as the number of /20 prefixes that

an AS P announces. With this, we define ρ as shown in

Equation 2 below. As desired, ρ decreases when sizep

increases.

ρp = 2−sizep/c, where c = 4 (2)

Of course, we are aware of the fact that the an-

nounced address space is not a perfectly reliable in-

dicator for the number of active hosts. For example,

there are network telescopes or educational institutions

such as MIT that announce huge address ranges while

having few or no live hosts. However, such networks

are infrequent and, given the shortage of available

IPv4 address space, many networks densely populate

their available space. On the other hand, masquerading

(network address translation - NAT) might result in

multiple hosts sharing a singe IP address. Because

of the imprecision that is inherent in estimating the

number of active hosts, we limit the impact of size

on ρ by a parameter c. Empirically, we found that a

value of c = 4 yields good results. In Section 5.2,

we motivate this choice and discuss the influence of

different values of c on our results.

5. Evaluation

In this section, we analyze the quality of our results.

Moreover, we discuss in more detail the choice of im-

portant system parameters (such as the time threshold

δ and size parameter c).

5.1. Analysis Results and Malicious Networks

Table 1 shows a snapshot of our system on June 1st,

2009, listing the ten entries with the largest malscores

and the originating country (using the ip2location.com

database). For this snapshot, we computed the mali-

ciousness scores for all 417 autonomous systems that

control at least one active, rogue IP.

Unfortunately, we do not have ground truth available

that would allows us to evaluate the results of our sys-

tem in a quantitative fashion. In fact, if such informa-

tion would be available, then there would be no need

for our system. Thus, we can only argue qualitatively

that our system produces meaningful and interesting

insights into the behavior of rogue networks.

Correctness of results. The top ten autonomous sys-

tems reported by FIRE on June 1st host a large number

of persistent, malicious servers. In an attempt to con-

firm that our results are correct and meaningful, we

leveraged a number of third party efforts that attempt

to track down certain types of malicious activity on

the Internet. More precisely, we first obtained a top-25

list, complied by the ShadowServer Foundation [22],

that shows the most malicious networks with regards

to botnet activity. Then, we looked at Google’s Safe

Browsing initiative [15] and extracted the top 150

ASNs, based on the absolute numbers of malicious

drive-by servers that Google identified. In addition, we

used the top-10 entries provided by ZeusTracker [26],

a network that monitors and lists command and control

servers for the Zeus botnet. Finally, we searched a

number of blogs written by well-known security re-

searchers for references to malicious and rogue ISPs

and networks.

For each of our top ten entries, we then tried to

find evidence in any of the third party lists that would

confirm that a network is known to be rogue, or at least,

strongly linked to certain malicious activities. Table 1

shows that we were successful for all ten entries.

In our list, IPNAP-ES (GigeNET) has consistently

ranked among the top malicious networks, because it

hosts the largest numbers of IRC botnet C&C servers.

This is confirmed by the findings of ShadowServer.

Some security forums have actually reported botnet

activity from IPNAP as early as 2006. The Petersburg

Internet Network (PIN), currently ranked second in

Table 1, is known to be hosting the Zeus malware kit

(also known as Zbot and WSNPoem).

It is also interesting to note that the “Novikov Alek-

sandr Leonidovich” AS has been linked to the recent

Beladen drive-by-download exploit campaign [12],

which is believed to be run by the same criminals that

operated the Russian Business Network.

Completeness of results. In addition to checking our

own top entries and comparing them to information

from third parties, we also decided to analyze the

top entries that these third parties have listed. This

might allow us to find malicious networks that our

analysis missed. In many cases, we found that ma-

licious networks in those lists were also identified

and prominently listed by FIRE (although, of course,

not always in the top ten). This is especially true for

Google’s Safe Browsing list.

For the remaining entries that did not overlap with

our results, we found that they mainly fit into two

categories. In the first category, we find many large

networks that were given an unfair bias in these lists

due to the number of compromised hosts on their

network. This includes large ISPs such as Cogent.

We tagged these large networks with an X in each

table to show that they are likely false positives. The

second category consists of reputable networks that

provide web and IRC hosting services (e.g., EUnet

Finland hosts an IRC server for EFnet or FDCservers)

with very short-lived malicious servers. That is, these

networks just happen to be listed because they were

under attack on a certain day, but they drop out quickly

once the hosts or services are cleaned up. Thus, we

believe that our results clearly show the importance

of filtering ASNs by size and IP address longevity

to accurately identify rogue networks while removing

false positives.

5.2. Sensitivity of Important Parameters

Longevity thresholds. To distinguish between rogue

and benign networks, FIRE uses thresholds δ based

on the longevity of a malicious server. If a malicious

host is online/active longer than this threshold, the IP is

considered malicious. If a host is taken offline before it

reaches the threshold, FIRE discards the corresponding

IP for the malscore computation. The choices of the

thresholds is thus important for the correctness of

the analysis. If a threshold is selected too low, many

compromised (but benign) hosts would be considered

part of malicious networks. If the threshold is chosen

too high, true malicious servers will be missed.

To quantify the influence of different thresholds on

the results produced by FIRE, we introduce a simple

distance metric between two rankings (i.e., lists of

malicious networks sorted by malscore). This metric

works by computing the edit distance between the two

rankings A and B; that is, the distance between A and

B is the number of insertions and deletions of ASNs

that are needed to “convert” the ranking A into B.

Rank ASN Name Country Score ShadowServer Google ZeusTracker Blogs

1 AS23522 GigeNET US 42.4 1 - -

2 AS44050 Petersburg Internet Network UK 28.0 - - 6 [9]

3 AS3595 Global Net Access US 18.2 - 23 -

4 AS41665 National Hosting Provider ES 16.5 - 104 5

5 AS8206 JUNIKNET LV 14.1 - 30 -

6 AS48031 Novikov Aleksandr Leonidovich UA 14.0 - - - [12]

7 AS16265 LEASEWEB NL 13.0 24 14 -

8 AS27715 LocaWeb Ltda BR 11.6 - 130 -

9 AS22576 Layered Technologies US 11.5 - 64 - [8]

10 AS16276 OVH OVH FR 10.6 25 18 -

Table 1: FIRE Top 10 for June 1st, 2009

ShadowServer Botnet C&Cs Google Safe Browsing

ASN Name FIRE Large ASN Name FIRE Large
Rank Network Rank Network

AS23522 GigeNET 1 AS4134 Chinanet Backbone No.31 17 X

AS3265 XS4ALL 118 X AS21844 ThePlanet.com 13

AS25761 Staminus Comm - AS4837 China169 Backbone 90 X

AS30058 FDCservers.net - AS36351 SoftLayer Technologies 30

AS174 Cogent 148 X AS26496 GoDaddy.com 15 X

AS2108 Croatian Research - AS41075 ATW Internet Kft. 23

AS31800 DALnet - X AS4812 Chinanet-SH-AP Telecom 89 X

AS13301 Unitedcolo.de 86 AS10929 Netelligent Hosting 12

AS790 EUnet Finland - AS28753 Netdirect 11

AS35908 SWIFT Ventures 68 AS8560 1&1 Internet AG - X

Table 2: ShadowServer Botnets / Google Safe Browsing Top 10 for June 1st, 2009

We then add to this value the number of those ASNs

that appear in both rankings but that have a different

number of rogue IPs.

We used our metric to understand the influence of

different threshold values on the result. To this end,

we first calculated a ranking for a small threshold

value. Then, we iteratively increased the threshold by

a small value, recalculating the rankings at each step.

Finally, we compare the rankings between each pair of

subsequent steps. The idea is to see whether rankings

eventually “stabilize,” or whether they continuously

fluctuate, depending on the specific values for δ.

We applied our analysis to all three data sources,

ranging the threshold δ from 0 to 9. This was done

for each day since January 1st, 2009, and the results

were averaged. Figure 5 shows the results. Figures 5a

and 5b indicate that for phishing servers and botnet

control servers, there is significant fluctuation when

threshold values are low. This is a direct result of the

fact that these data sources contain many compromised

servers that are taken offline after only one or two days

by vigilant ISPs. Thus, we select the thresholds in a

way that such compromised (but benign) servers are

ignored. An ideal threshold value should be chosen

high enough that the spikes at the beginning of both

graphs are cut off, and the fluctuations around the

threshold should be low. Thus, a threshold value that

lies to the right of the initial peak in the curve is a

good choice. Consequently, FIRE uses thresholds of

δphish = 3 and δbot = 4.

For drive-by-download servers, we did not observe

a stabilizing effect over time. On the contrary, Fig-

ure 5c shows a constant fluctuation. The reason is

that most drive-by-download servers are not taken

offline quickly. These servers are typically deployed by

professional criminal organizations who do not want

to risk that their exploits fail because the mothership

server is taken offline. Thus, such servers are predom-

inantly deployed in rogue networks. As a result, we do

not take the uptime of drive-by-download servers into

account when computing malscores.

Size parameter. As mentioned previously, FIRE de-

creases the malscores of large networks. This is to

compensate for the fact that, due to their size, big-

ger networks are more likely to contain a significant

number of rogue IPs. The extent to which the score

of larger networks is decreased is influenced by the

parameter c.

To show the effect of different choices for the

parameter c, we calculated the rankings for varying

values of this parameter. Again, we use the metric

presented previously to quantify how changes of c

influence the rankings. These result are shown in

Figure 6. It can be seen that for c values (much)

less than 1, the overall rank changes are small. This

is due to the fact that, with small values for c, the

resulting lists are dominated by ASN size, regardless

1 2 3 4 5 6 7 8 9
Threshold (days)

0

2

4

6

8

10

12

14

16

D
if
fe

re
n
ce

(a) Phishing Servers

1 2 3 4 5 6 7 8 9
Threshold (days)

0

2

4

6

8

10

12

14

16

D
if
fe

re
n
ce

(b) Botnet Servers

1 2 3 4 5 6 7 8 9
Threshold (days)

0

2

4

6

8

10

12

14

16

D
if
fe

re
n
ce

(c) Download Servers

Figure 5: Ranking changes for varying thresholds.

of the number of incidents. Similarly, for c values much

greater than 1, the rankings are dominated by incident

count, regardless of the size of a network.

For our analysis, it is thus important to choose a

value for c that is located on the right side of the

peak shown in the graph, as we want to favor incident

count over network size. However, we are interested

in a value for c that has some effect and, in particular,

reduces the rank of very large networks (such as tier-1

ISPs and backbone networks). This lead to the choice

of the threshold c = 4 for our malscore computation.

0.1 0.2 0.3 0.5 0.7 1.0 1.5 2.0 3.0 5.0 8.0
c (log scale)

0

20

40

60

80

100

120

C
h
a
n
g
e

Size Parameter

Figure 6: Sensitivity of parameter c.

6. Related Work

The work closest to ours are efforts that attempt

to assign a reputation to networks or an individual

IP address. In its simplest form, these efforts produce

blacklists of IPs that have been observed to perform

malicious actions. Most often, such blacklists are used

to filter spam mails [23], [24], but there are also black-

lists that warn users when they visit potentially harmful

web pages [11], [19]. Many of the sites that offer

blacklists also compile statistics of the worst offenders,

typically by counting the number of incidents in a

network. Unfortunately, this technique does not dis-

tinguish between compromised, bot-infected machines

and hosts in networks that are deliberately malicious.

As a result, the worst offenders are typically large

networks with many customers. The goal of our work,

on the other hand, is to discard the large amounts

of compromised machines and identify those (often

smaller) networks likely controlled by determined ad-

versaries.

We are aware of two recent papers [6], [7] that

look at temporal and spatial properties of attack

sources. In [6], the authors study the spatial-temporal

characteristics of malicious sources on the Internet,

using data from the DShield.org project. The

conclusion is that 20% of all IPs are responsible for

80% of the observed attacks. In [7], the authors attempt

to find IPs that are clustered (spatial uncleanliness) and

persistent (temporal uncleanliness) in sending spam

mails, launching network scans, and hosting phishing

pages. This work is closest to ours in that the behavior

of hosts is used to identify “unclean” (infected)

netblocks. The difference to our approach is twofold:

First, we attempt to identify networks that are operated

by criminals, while their work was focusing on finding

bot infections. As a result, the selection of the input

data sets (we include drive-by download providers and

botnet C&C servers, but do not consider scanning) and

the filtering techniques are different. Moreover, we

combine results from multiple feeds. Such correlation

efforts were not part of the previous paper.

7. Conclusions

In this paper, we presented FIRE, a novel system

to automatically identify and expose organizations and

ISPs that demonstrate persistent, malicious behavior.

FIRE can help isolate networks that tolerate and aid

miscreants in conducting malicious activity on the In-

ternet. It does this by actively monitoring different data

sources such as botnet communication channels, drive-

by-download servers, and feeds from phishing web

sites. Because it is important to distinguish between

networks that are knowingly malicious and networks

that are victims of compromise, we refine the collected

data and correlate it to deduce the level of malicious-

ness for the identified networks. Our ultimate aim is

to automatically generate results that can be used to

pinpoint and track organizations that support Internet

miscreants and to help report and prevent criminal

activity. Furthermore, the networks we identify can

also be used by ISPs as blacklists in order to simply

block traffic that is originating from them. Hence,

an ISP can enhance the security of its users by not

allowing malicious traffic to reach them.

Acknowledgments

The research was supported by the National Science

Foundation under grant CNS-0831408 and the WOM-
BAT project sponsored by the EU commission.

References

[1] J. Armin, G. Bruen, G. Feezel, P. Ferguson,
M. Jonkman, and J. McQuaid. McColo - Cyber
Crime USA. http://hostexploit.com/downloads/
Hostexploit%20Cyber%20Crime%20USA%20v%202.
0%201108.pdf, 2008.

[2] J. Armin, P. Ferguson, G. Bruen, G. Feezel,
M. Jonkman, and J. McQuaid. McColo - Cyber Crime
USA Supplement. http://hostexploit.com/downloads/
Hostexploit McColo supplement 111808.pdf, 2008.

[3] J. Armin, J. McQuaid, and M. Jonkman. Atrivo -
Cyber Crime USA. http://hostexploit.com/downloads/
Atrivowhitepaper082808ac.pdf, 2008.

[4] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool
for Analyzing Malware. In EICAR Conference, 2006.

[5] D. Bizeul. Russian Business Network Study. http://
www.bizeul.org/files/RBN study.pdf, 2007.

[6] Z. Chen, C. Ji, and P. Barford. Spatial Temporal Char-
acteristics of Internet Malicious Sources. In Infocomm
Mini-Conference, 2008.

[7] M. Collins, T. Shimeall, S. Faber, J. Janies, R. Weaver,
and M. D. Shon. Using Uncleanliness to Predict Future
Botnet Addresses. In ACM Internet Measurement
Conference (IMC), 2007.

[8] D. Danchev. The Malicious ISPs You Rarely See
in Any Report. http://ddanchev.blogspot.com/2008/06/
malicious-isps-you-rarely-see-in-any.html, 2008.

[9] D. Danchev. GazTransitStroy/GazTranZitStroy
Rubbing Shoulders with Petersburg Internet
Network LLC. http://ddanchev.blogspot.com/2009/06/
gaztransitstroygaztranzitstroy-rubbing.html, 2009.

[10] dn1nj4. The Shadowserver Foundation: RBN
”Rizing”. http://www.shadowserver.org/wiki/uploads/
Information/RBN Rizing.pdf, 2008.

[11] D. Glosser. DNS-BH - Malware Domain Blocklist.
http://malwaredomains.com/, 2008.

[12] D. Goodin. 40,000 sites hit by PC-pwning hack at-
tack. http://www.theregister.co.uk/2009/06/02/beladen
mass website infection/, 2009.

[13] V. Hanna. Spamhaus: Cybercrime’s U.S. Hosts. http:
//www.spamhaus.org/news.lasso?article=636, 2008.

[14] B. Huffaker. CAIDA: AS ranking. http://as-rank.caida.
org/, 2008.

[15] G. Inc. http://google.com/safebrowsing/diagnostic?
site=AS:27715, 2009.

[16] B. Krebs. Taking on the Russian Business Net-
work. http://voices.washingtonpost.com/securityfix/
2007/10/taking on the russian business.html, 2007.

[17] B. Krebs. Report Slams U.S. Host as Major Source of
Badware. http://voices.washingtonpost.com/securityfix/
2008/08/report slams us host as major.html, 2008.

[18] B. Krebs. FTC Sues, Shuts Down N. Calif. Web Host-
ing Firm. http://voices.washingtonpost.com/securityfix/
2009/06/ftc sues shuts down n calif we.html, 2009.

[19] PhishTank. Clearinghouse for phishing data on the
Internet. http://www.phishtank.com, 2008.

[20] M. Rajab, F. Monrose, and A. Terzis. Fast and Evasive
Attacks: Highlighting the Challenges Ahead. In Inter-
national Symposium on Recent Advances in Intrusion
Detection (RAID), 2006.

[21] C. Seifert. Capture-HPC - Honeypot Client. https://
projects.honeynet.org/capture-hpc, 2008.

[22] Shadowserver. ASN Botnet Stats. http://www.
shadowserver.org/wiki/pmwiki.php/Stats/ASN, 2009.

[23] SpamCop. Blocking List. http://www.spamcop.net/bl.
shtml, 2008.

[24] Spamhaus. Zen: Comprehensive DNSBL. http://www.
spamhaus.org/zen/, 2008.

[25] Wepawet. http://wepawet.iseclab.org/, 2009.

[26] ZeuSTracker. https://zeustracker.abuse.ch/statistic.php,
2009.

The WOMBAT Attack Attribution method:
some results

Marc Dacier1, Van-Hau Pham2, and Olivier Thonnard3

1 Symantec Research
Sophia Antipolis, France

marc dacier@symantec.com
2 Institut Eurecom

2229 Route des Crètes,
Sophia Antipolis, France
van-hau.pham@eurecom.fr
3 Royal Military Academy

Polytechnic Faculty
Brussels, Belgium

olivier.thonnard@rma.ac.be

Abstract. In this paper, we present a new attack attribution method
that has been developed within the WOMBAT4 project. We illustrate
the method with some real-world results obtained when applying it to
almost two years of attack traces collected by low interaction honeypots.
This analytical method aims at identifying large scale attack phenom-
ena composed of IP sources that are linked to the same root cause. All
malicious sources involved in a same phenomenon constitute what we
call a Misbehaving Cloud (MC). The paper offers an overview of the var-
ious steps the method goes through to identify these clouds, providing
pointers to external references for more detailed information. Four in-
stances of misbehaving clouds are then described in some more depth to
demonstrate the meaningfulness of the concept.

1 Introduction

There is no real consensus on the definition of “attack attribution” in the cyber
domain. Most previous work related to that field tend to use the term “attri-
bution” as a synonym for traceback, which consists in “determining the identity
or location of an attacker or an attacker’s intermediary” [25]. In the context of
a cyber-attack, the obtained identity can refer to a person’s name, an account,
an alias, or similar information associated with a person or an organisation. The
location may include physical (geographic) location, or any virtual address such
as an IP address or Ethernet address. The rationale for developing such attri-
bution techniques is mainly due to the untrusted nature of the IP protocol, in
which the source IP address is not authenticated and can thus be easily spoofed.
4 Worldwide Observatory of Malicious Behaviors and Threats - http://www.wombat-

project.eu

An extensive survey of attack attribution techniques used in the context of IP
traceback can be found in [25].

In this paper, we refer to “attack attribution” as something quite different
from what is described here above. We are primarily concerned with larger scale
attacks. In this context, we aim at developing an analytical method to help
security analysts in determining their root causes and in deriving their modus
operandi. These phenomena can be observed through many different means (e.g.,
honeypots, IDS’s, sandboxes, web crawlers, malware collecting systems, etc). In
most cases, we believe that attack phenomena manifest themselves through so-
called “attack events”, which can be observed with distributed sensors that are
deployed in the Internet. Typical examples of attack phenomena that we want
to identify vary from worm or malware families that propagate through code
injection attacks [9], to established botnets controlled by the same people and
targeting machines in the IP space. All malicious sources involved in the same
root phenomenon constitute what we call a Misbehaving Cloud (MC).

The structure of the paper is as follows: Section 2 describes the experimental
environment used to validate the method presented. Section 3 offers a high level
overview of the attack attribution method defined within the WOMBAT project
and Section 4 gives some more information on the multi criteria fusion approach
used in the method. Section 5 discusses a couple of illustrative examples obtained
by applying the method on honeynet traces, and Section 6 concludes the paper.

2 Description of the experimental environment

This paper offers an empirical analysis of some attacks collected during two
years by a set of low interaction honeypots deployed all over the world by the
Leurré.com Project [10]. We refer the interested reader to [8, 19] for an in-depth
presentation of the data collection infrastructure. From an analytical viewpoint,
our attack attribution method builds upon previous results, namely [18, 4, 16,
24, 17]. For the sake of clarity, we start by introducing some important terms
that have been defined in these previous publications.

2.1 Terminology

1. Platform: A physical machine running three virtual honeypots, which em-
ulate three distinct machines thanks to honeyd [20]. A platform is connected
directly to the Internet and collects tcpdump traces that are gathered on a
daily basis in a centralized database [10].

2. Source: an IP address that has sent at least one packet to, at least, one
platform. An IP address remains associated to a given Source as long as no
more than 25 hours5 elapse between two packets sent by that IP. After such

5 By grouping packets by originating sources instead of by IPs, we minimize the risk
of mixing together the activities of two distinct physical machines (as a side effect
of the dynamic address allocation implemented by ISP’s).

a delay, the IP will be associated to a new source identifier if we observe it
again.

3. Attack: refers to all packets exchanged between a malicious source and a
platform.

4. Cluster: all the sources that execute the same attack against any of the
platforms constitute an (attack) Cluster. In practice, such a cluster groups
all malicious sources that have left highly similar network traces on our
platforms. How to identify clusters and how those clusters look like are issues
that have been explained in other publications [18, 8].

2.2 Honeynet dataset

Machines used in the Leurré.com project are maintained by partners all over the
world, on a voluntary basis. Some of these platforms can thus become unavail-
able. In the context of this paper, we wanted to apply our analytical method
on a dataset that would be, as much as possible, unimpacted by these opera-
tional issues. Therefore, we have selected a subset of 40 stable platforms from
all platforms at our disposal. A total of 3,477,976 attacks have been observed
by those platforms. We represent the total number of attacks per day over the
whole analysis period (800 days, from Sep 2006 until November 2008), as a time
series denoted by TS. Similarly, we can represent, for each platform, the number
of attacks observed on it, on a daily basis. This leads to the definition of 40
distinct attack time series (each made of 800 points), denoted by TSX where X
represents a platform identifier.

We can go even further in splitting our time series in order to represent
which type of attack was observed on which platform. To do this, we split each
TSX into as many time series as there are attack clusters, as defined before.
These newly obtained time series are represented by Φ[0−800),ci,pj

∀ cluster ci and
∀platformpj . That is, the ith point of the time series Φ[0−800),X,Y represents the
amount of sources attacking, on day i, the platform Y by means of the attack
defined by the cluster identifier X . We represent by TS L2 the set of all these
observed cluster time series (in total, 395,712 time series).

In [17], it has been shown that a large fraction of these time series barely
vary in amplitude on a daily basis. This continuous, low-intensity activity is also
referred to as the Internet background radiation [13]. In this paper, we do not
consider those flat curves, and we instead focus on time series that show some
significant variations over time, indicating the existence of some ephemeral phe-
nomena. To automatically identify these time series of interest, we have applied
the method presented in [17], which finally gives a subset of time series denoted
by TS L2′. In our dataset, TS L2′ contains now only 2,127 distinct time se-
ries. However, they still comprise a total of 2,538,922 malicious sources. TS L2′
represents the set of time series we have used for this analysis.

380 385 390 395 400 405 410
0

10

20

30

40

50

n
u
m
b
e
r

o
f

s
o
u
r
c
e
s

time(day)

Cluster 60232 attacks on 7 platforms 5,8,11,...,21

Fig. 1. An example ofM-event, composed of seven µ-events (on seven different plat-
forms) that are correlated in the same time interval. Cluster 60332 corresponds to a
malicious activity on the VNC port (5900/TCP).

3 Overview of WOMBAT attribution method

The WOMBAT attack attribution method is made of two distinct steps. In the
very first one, we identify periods of time where some of the time series from
TS L2′ exhibit a pattern that indicate that a specific phenomenon worth of
interest is happening. We call a micro attack event such period of time for a
given time series from TS L2′. Moreover, we call macro attack event a group of
micro attack events that are correlated during the same period of time.

The second step of the method consists in characterizing each of these micro
attack events and in trying to establish connections between them. All micro
attack events that share enough features constitute what we call a Misbehaving
Cloud (MC). We hypothesize that all malicious sources involved in a Misbehav-
ing Cloud have a common root cause. By identifying them and studying their
global behavior, we hope to get a better insight into the modus operandi and
the strategies of those responsible for them.

We further detail the two steps of the method in the next subsections.

3.1 Step 1: Micro and Macro attack events identification

Definition (µ-event): A micro attack event (or µ-event) is defined by a tuple
(T , Ci) where T represents a limited period of time (typically a few days) during
which a significant attack activity is observed, and Ci represents the time series
corresponding to cluster C observed on the platform i.
Definition (M-event): A set of micro attack events observed over the same
period of time, and during which the corresponding time series are strongly
correlated is defined as a macro attack event (or M-event).

Figure 1 illustrates this concept by representing aM-event composed of seven
µ-events that are correlated in the same time interval.

Identification of µ-events. The micro attack event identification relies mostly
on some well-known signal processing techniques. The goal is to segment the time
series into periods of interest. Such periods are characterized by some intense
period of activities isolated by periods of very stable or non existent activities.
Several techniques exist to detect abrupt changes in a signal [1]. In this paper,
the method we have used is the one that has been precisely presented in [15].

Identification of M-event. Once we have identified all µ-events of interest in
our dataset, we need to identify all those that are strongly correlated over the
same period of time, which form thus a M-event. The problem is not as trivial as
it may sound, because i) µ-events may have overlapping periods, and ii) within a
given period of time, several distinct phenomena may have taken place. Here too,
we have presented and compared various approaches and we refer the interested
reader to [17, 15] for an in-depth explanation of the algorithms used.

3.2 Step 2: Multi criteria fusion of attack events features

The purpose of this second step consists in deciding whether several distinct
µ-events are likely due to a same root phenomenon (i.e., the same Misbehaving
Cloud), on the basis of different characteristics derived from the network traffic
generated by malicious sources involved in such events.

Our approach is based on three components:

1. Attack Feature Selection: we determine which attack features we want to
include in the fusion process, and we thus characterize each µ-event according
to this set of features;

2. Graph-based Clustering: a graph of µ-events is created regarding each fea-
ture, based on an appropriate distance for measuring pairwise similarities.
Fully connected components can then be identified within each graph;

3. Multi criteria fusion: the different graphs are then combined using an agre-
gation function that models some dynamic behavior.

This approach is mostly unsupervised, i.e., it does not rely on a preliminary
training phase to attribute µ-events to larger scale phenomena. In the next
Section, we describe the three steps of this method.

4 On the Multi criteria fusion approach

4.1 Attack Features Selection

In most clustering tasks, the very first step consists in selecting some key char-
acteristics from the dataset, i.e., salient features that may reveal meaningful
patterns [6]. In this analysis, we have selected some features that we consider
useful to analyze the behavior of global phenomena.

One of the key features used in this attribution technique is the spatial dis-
tributions of malicious sources involved in µ-events, in terms of originating coun-
tries and IP blocks. Looking at these statistical characteristics may reveal attack

activities having a specific distribution of originating countries or IP networks,
which can help for instance to confirm the existence of “unclean networks” [3].
In practice, for each µ-event, we create a feature vector representing the distri-
bution of countries of sources (as a result of the IP to geolocation mapping), or
a vector representing the distribution of IP addresses (grouped by their Class
A-prefix, to limit the vector’s size).

We have also selected an attack characteristic related to the targeted plat-
forms. Looking at which specific platform has observed a µ-event is certainly
a pertinent feature. At the same time, we combine this information with the
M-event identification, since (by definition) M-events are composed of µ-events
that are strongly correlated in time (which indicates a certain degree of coordi-
nation among them).

Besides the origins and the targets, the type of activity performed by the
attackers seems also relevant. In fact, worm or bot software is often crafted with
a certain number of available exploits targeting a given set of TCP or UDP
ports. So, it makes sense to take advantage of similarities between the sequences
of ports that have been probed or exploited by malicious sources.

Finally, we have decided to compute, for each pair of µ-events, the ratio
of common IP addresses. We are aware of the fact that, as time passes, some
machines of a given botnet (or misbehaving cloud) might be cured while others
may get infected (and thus join the cloud). Additionally, certain ISPs apply a
quite dynamic policy of IP allocation for residential users, which means that
infected machines can have different IP addresses when we observe them at
different moments. Nevertheless, considering the huge size of the IP space, it is
still reasonable to expect that two µ-events are probably related to the same
root phenomenon when they have a high percentage of IP addresses in common.

To summarize, and to provide a short-hand notation in the rest of this paper,
for each µ-event we define a set of features that we denote by:

F = {Fi} , i ∈ {geo, sub, targ, ps, cip}

where:

geo = geolocation, as a result of mapping IP addresses to countries;
sub = distribution of sources IP addresses (grouped by Class A-subnet);
targ = targeted platforms + degree of coordination (M-event membership);
ps = port sequences probed or targeted by malicious sources;
cip = feature representing the ratio of common IP addresses among sources;

4.2 Graph-based Clustering

The second component of our attribution method implements an unsupervised
clustering technique that aims at discovering groups of strongly connected µ-
events, when these are represented within a graph. In [22, 23], we have given a
detailed description of this graph-based clustering technique. However, to make
this paper as self-contained as possible, we briefly describe the high-level prin-
ciples of this technique.

As defined by Jain and Dubes in [6], many typical clustering tasks involve
the following steps:

i) feature selection and/or extraction (as described in the previous Subsection);
ii) definition of an appropriate distance for measuring the similarities between

pairs of elements with respect to a given feature;
iii) application of a grouping algorithm, such as the classical hierarchical clus-

tering or K-means algorithm;
iv) data abstraction (if needed), to provide a compact representation of each

cluster;
v) optionally, the assessment of the clusters quality and coherence, e.g. by means

of validity indices.

Steps (iv) and (v), while important, lie outside the scope of this paper. In-
stead, we will simply use four anecdotal examples to intuitively demonstrate the
quality, i.e., the meaningfulness, of the groups created by the method. Steps (ii)
and (iii) are described here after.

Choosing a distance function How to measure pairwise similarities between
two feature vectors is obviously an important step, since it will have an impact
on the coherence and the quality of the resulting clusters.

When we have to deal with observations that are in the form of probability
distributions (or frequencies), like in the case of features Fgeo and Fsub, we need
to rely on statistical distances. One commonly used technique is the Kullback-
Leibler divergence [7]. Let p1 and p2 be for instance two probability distributions
over a discrete space X , then the K-L divergence of p2 from p1 is defined as:

DKL(p1||p2) =
∑

x

p1(x) log
p1(x)
p2(x)

(1)

which is also called the information divergence (or relative entropy). Because
DKL is not considered as a true metric, it is usually better to use instead the
Jensen-Shannon divergence (JSD) [11], defined as:

JS(p1, p2) =
DKL(p1||p̄) + DKL(p2||p̄)

2
(2)

where p̄ = (p1 + p2)/2. In other words, the Jensen-Shannon divergence is the
average of the KL-divergences to the average distribution.

Finally, to transform pairwise distances dij to similarity weights simij , we
still have to define a mapping function. Previous studies found that the similarity
between stimuli decay exponentially with some power of the perceptual measure
distance [21]. As customary, we can thus use the following functional form to do
this transformation:

sim(i, j) = exp(
−dij

2

σ2
) (3)

where σ is a positive real number that affects the decreasing rate of w.

Measuring pairwise similarities for the other considered features (Ftarg, Fps, Fcip)
is more straightforward. In those cases, we can use simpler distance functions,
such as the Jaccard similarity coefficient. Let s1 and s2 be two sample sets (for
instance with Fps, s1 and s2 are sets of ports that have been probed by sources of
two µ-events), then the Jaccard coefficent is defined as the size of the intersection
divided by the size of the union of the sample sets, i.e.:

sim(i, j) =
|s1

⋂
s2|

|s1
⋃

s2|

The Jaccard similarity coefficient can also be used to compute the ratio of
common IP addresses between attack events (Fcip). Regarding Ftarg, a simple
weighted means is used to combine two scores: i) one score in [0, 1] as given by the
simple comparison of the two targeted platforms, and ii) another score (also in
[0, 1]) indicating whether two µ-events belong to the same M-event (indicating
a time coordination).

Grouping algorithm In this step, we formulate the problem of clustering
µ-events using a graph-based approach. The vertices (or nodes) of the graph
represent the patterns (or feature vectors) of the µ-events, and the edges (or
links) express the similarities between µ-events, as calculated with the distance
metrics described before. Then, we can extract so-called maximal cliques from
the graph, where a maximal clique is defined as an induced subgraph in which
the vertices are fully connected and it is not contained within any other clique.
To do this, we use the dominant sets approach of Pavan et al. [14], which proved
to be an effective method for finding maximal weighted cliques. This means that
the weight of every edge (i.e., the relative similarity value) is also considered
by the algorithm, as it seeks to discover maximal cliques whose total weight is
maximized.

By repeating this process, we can thus create an undirected edge-weighted
graph Gi for each attack feature Fi, in which the edges are similarity weights
∈ [0, 1] that can be seen as relatedness degrees between µ-events (where a zero
value indicates totally unrelated events). Then, the clique algorithm extracts one
set of cliques per feature, which reveals the cohesions among µ-events regarding
each Fi.

4.3 Multi-Criteria Aggregation

Definition (Aggregation function). An aggregation function is formally de-
fined as a function of n arguments (n > 1) that maps the (n-dimensional) unit
cube onto the unit interval: f : [0, 1]n −→ [0, 1], with the following properties [2]:

(i) f(0, 0, . . . , 0︸ ︷︷ ︸
n-times

) = 0 and f(1, 1, . . . , 1︸ ︷︷ ︸
n-times

) = 1

(ii) xi ≤ yi for all i ∈ {1, . . . , n} implies f(x1, . . . , xn) ≤ f(y1, . . . , yn)

Aggregation functions are used in many prototypical situations where we
have several criteria of concern, with respect to which we assess different options.
The objective consists in calculating a combined score for each option, and this
combined output forms then a basis from which decisions can be made. For
example, aggregation functions are largely used in problems of multi criteria
decision analysis (MCDA), in which an alternative has to be chosen based on
several, sometimes conflicting criteria. Usually, the alternatives are evaluated
from different attributes (or features) that are expressed with numerical values
representing a degree of preference, or a degree of membership.

In our application, we have n different attack features given by the Fi’s,
and thus a vector of criteria x ∈ [0, 1]n can be constructed from the similarity
weights, i.e., xi = Ai(j, k), with Ai being the similarity matrix of graph Gi corre-
sponding to attack feature Fi. Our approach consists in combining the n values
of each criteria vector x (which reflect the set of all relationships between a pair
of µ-events), in order to build an aggregated graph G′ =

∑
Gi from which we

can then extract the connected components. A straightforward but rather sim-
plistic approach would consist in combining the criteria using a simple arithmetic
mean, or by assigning different weights to each criteria (weighted mean). How-
ever, this does not allow us to model more complex behaviors, such as “most
of”, or “at least two” criteria to be satisfied in the overall decision function.
Yager has introduced in [26] a type of operator called Ordered Weighted Av-
eraging (OWA), which allows to include certain relationships between multiple
criteria in the aggregation process. An OWA aggregation operator differs from a
classical weighted means in that the weights are not associated with particular
inputs, but rather with their magnitude. As a result, OWA can emphasize the
largest, smallest or mid-range values. It has become very popular in the research
community working on fuzzy sets.

Definition (OWA). For a given weighting vector w, wi ≥ 0,
∑

wi = 1, the
OWA aggregation function is defined by:

OWAw(x) =
n∑

i=1

wix↘(i) =< w,x↘ > (4)

where we use the notation x↘ to represent the vector obtained from x by
arranging its components in decreasing order: x(1) ≥ x(2) ≥ . . . ≥ x(n).

It is easy to see that for any weighting vector w, the result of OWA lies
between the classical and (=min) and or (=max) operators, which are in fact
the two extreme cases when w = (0, 0, . . . , 1) (then OWAw(x) = min(x)) or
when w = (1, 0, . . . , 0) (then OWAw(x) = max(x)). Another special case is
when all weights wi = 1

n , which results in obtaining the classical arithmetic
mean.

To define the weights wi to be used in OWA, Yager suggests two possible ap-
proaches: either to use some learning mechanism with sample data and a regres-
sion model (i.e., fitting weights by using training data and minimizing the least-
square residual error), or to give some semantics to the wi’s by asking an expert

to provide directly those values, based on domain knowledge. We selected the
latter approach by defining the weighting vector as w = (0.1, 0.35, 0.35, 0.1, 0.1),
which translates our intuition about the dynamic behavior of large-scale attack
phenomena. It can be interpreted as: at least three criteria must be satisfied, but
the first criteria is of less importance compared to the 2nd and 3rd ones (because
only one correlated feature between two µ-events might be due to chance only).

These weights must be carefully chosen in order to avoid an unfortunate
linkage between µ-events when, for example, two events involve IP sources orig-
inating from popular countries and targeting common (Windows) ports in the
same interval of time (but in reality, those events are not due to the same phe-
nomenon). By considering different worst-case scenarios, we verified that the
values of the weighting vector w work as expected, i.e., that it minimizes the
final output value in such undesirable cases. Moreover, these considerations en-
able us to fix our decision threshold to an empirical value of about 0.25, which
has been also validated by a sensibility analysis. In other words, all combined
values that are under this threshold will be set to zero, leading to the removal
of corresponding edges in the aggregated graph G′.

Finally, we can easily identify misbehaving clouds by extracting the connected
components (or subgraphs) from G′. As a result, for any subset of events of a
given MC, we will find a sufficient number of evidences that explain why those
events have been linked together by the multi criteria aggregation process.

5 Experimental Results

5.1 Overview

When applying the technique described in Section 3.1 to the dataset described
in Section 2.2, we obtain 690 M-events which consist of 2454 µ-events. We use
these µ-events as input for the multi-criteria fusion approach (Section 4), and
we consequently identify 83 Misbehaving Clouds (MCs), which correspond to
1607 µ-events, and 506,835 attacking sources. The phenomena involve almost all
common services such as NetBios (ports 139/TCP, 445/TCP), Windows DCOM
Service (port 135/TCP), Virtual Network Computing (port 5900/TCP), Mi-
crosoft SQL Server (port 1433/TCP), Windows Messenger Service (ports 1025-
1028/UDP), Symantec Agent (port 2967/TCP), and some others. Figure 7a
shows the distribution of µ-events per MC. As we can see, in most cases, the
MCs contain few µ-events. However, around 20% of MCs contain more than
15 µ-events, and some even contain up to 300 events. Figure 7b represent the
CDF of the MCs lifetime. Such lifetime is defined as the time interval, in days,
between the very first and the very last attack event of a given MC. As showed
in Figure 7b, 67% of MCs exist during less than 50 days but around 22% of
them last for more than 200 days.

Figure 7c represents the CDF of the number of platforms targeted by MC.
As showed in the Figure, in 94% of the cases, the MCs are seen on less than 10
platforms.

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

number of micro attack events

F(
x)

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

Time (day)

C
D

F

(a) (b)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

number of platforms

C
D

F

0 5 10 15
0

0.2

0.4

0.6

0.8

1

number of /8 networks

C
D

F

(c) (d)

Fig. 2. Some global characteristics of the obtained MCs

These various characteristics suggest that the root causes behind the exis-
tence of these MCs are fairly stable, localised attack processes. In other words,
different places of the world do observe different kind of attackers but their
modus operandi remain stable over a long period of time. We are, apparently,
not that good at stopping them from misbehaving.

5.2 Case Studies

It is certainly not our intention to detail extensively the behavior and character-
istics of every MC that has been found in our 2-year data set. Instead, in this
Section, we detail only four MCs, which, although anecdotal, still reflect the
kind of findings that our method can provide automatically. Table 1 provides
some high-level characteristics of these four MCs phenomena under study. Each
MC is analyzed in some detail in the following pages.

MC2: Worm-behaving cloud. MC2 consists of 122 µ-attack events. These
µ-events exhibit a shape which is fairly similar to the one left by a typical worm:
its trace exists for several days, it has a small amplitude at the beginning but
grows quickly, exhibits important drops that can correspond to subnets being

Table 1. High-level characteristics of four MCs under study. The colon Root cause
refers to the presumed type of phenomenon, based on the results of the attack attri-
bution method.

MC Id Nr Events Nr Sources Duration Root cause Targeted ports
2 122 45,261 741 Worm-behaving 1433T (MSSQL), 1025T (RPC), 139T (Netbios),

cloud 5900T (VNC), 2967T (Symantec)
3 56 48,007 634 UDP spammers 1026U (Windows Messenger)

(botnet)
10 138 26,243 573 P2P Unusual ephemeral ports (TCP)
20 110 195,018 696 UDP spammers 1026U, 1027U, 1028U

(botnet)

cured or blacklisted, and it eventually dies slowly (see [15] for a more formal
description of this class of phenomena).

The interesting thing with MC2 is that it is made of a sequence of worm-like
shaped µ-events. The lifetime of this MC is 741 days! It is composed of µ-events
that have targeted a number of distinct services, including 1025T, 139T, 1433T,
2967T and 5900T. The results of the multi-criteria fusion algorithm indicate that
those µ-events have been grouped together mainly because of the following three
features: geographical location, targeted platform, and ports sequence. Moreover,
a detailed analysis reveals that an important amount of IP addresses is shared
by many µ-events composing this MC.

To illustrate the kinds of µ-events found in this MC, Figures 3a and 3b
represent four µ-events time series. Figure 3a represents two of them, namely
e626 and e628, consisting of activities against Microsoft SQL Server (1433/TCP).
Whereas Figure 3b represents the other two, namely e250 and e251, consisting
of activities against a Symantec Service (2967/TCP). Figure 3c zooms on these
last two µ-events from day 100 to day 150. We can observe the slow increase of
the two curves that are typical of worm-related attacks [15, 27].

The two µ-events on the left (resp. middle) share 528 (resp. 1754) common
IP addresses with each other. Given these elements, we are tempted to believe
that e626 and e628 (resp. e250 and e251) are generated by the same worm, called
WORM A (resp. called WORM B). Both worms, WORM A and WORM B, tar-
get the same two platforms: 25 and 64. Furthermore, we found that these four
µ-events share an important amount of common compromised machines. This
could indicate that both worms, before having contacted our honeypots, had
contaminated a relatively similar population of machines. A plausible explana-
tion could be that both had been launched from the same initial set of machines
and that they were using the same, or similar, code to choose their targets.

From the attack vector point of view, these two worms have nothing in com-
mon since they use very different types of exploits. Furthermore, they have been
active in different periods of time. However, the analysis reveals that they ex-
hibit a very similar pattern both in terms of propagation strategy and in terms
of success rates. Thus, even if the infection vector differs between the two, the
starting point of the infection as well as the code responsible for the propagation
are, as explained, quite likely very similar. This reasoning can be generalized
to all 122 µ-events, revealing the high probability that all these different attack

160 180 200 220 240 260
0

20

40

60

80

100

120

140

Time(day)

N
um

be
r o

f s
ou

rc
es

100 150 200 250 300
0

20

40

60

80

100

120

140

Time(day)

N
um

be
r o

f s
ou

rc
es

100 110 120 130 140 150
0

20

40

60

80

100

120

140

Time(day)

N
um

be
r o

f s
ou

rc
es

(a) (b) (c)

Fig. 3. Attack time series (nr of sources by day) of some µ-events from MC2, targeting
(a) MS SQL Server (1433/TCP), (b) Symantec agent (2967/TCP). Fig. (c) is a zoom
on (b).

phenomena have some common root cause(s). This does not, per se, mean that
all these attacks are due to the very same person or organisation -even if this is
likely- but it indicates that the same core piece of code has probably been reused,
from a very similar starting point to launch a number of distinct attacks. This
reveals some aspect of the modus operandi of those who have launched these
attacks and this is an important piece of information for those who are in charge
of identifying these misbehaving groups and their tactics.

MC3 and MC20: Windows Messenger Spammer. In this other case
study, we look at two distinct MCs: MC3 and MC20. Both are made of µ-
events that have exclusively tried to send spam to innocent victims thanks to
the Windows Messenger service, using UDP packets. Both MCs have been ob-
served over a large period of time, more than 600 days in both cases. Even if
they, conceptually, look similar, there are important differences between MC3
and MC20. First, the targeted ports are not identical: in MC3, UDP packets
are being sent to three different UDP ports, namely 1026, 1027 and 1028, while
in MC20 packets are sent exclusively to the 1026 UDP port. Then, as illus-
trated in Fig.4 where we can see the cumulative distribution (CDF) of sources
IP addresses (grouped by /8 blocks of addresses), we observe that MC3 is uni-
formly distributed in the IPv4 space. This result is absurde since large portions
of the IPv4 space can not be allocated to individual machines (multicast, bogons,
unassigned, etc.) and, in all these regions, it is impossible to find compromised
machines sending spams. If we find these IPs in packets hitting our honeypots,
it clearly means that these are spoofed IP addresses. Furthermore, the uniform
distribution of all the IP addresses in that MC leads us to believe that all other
IPs are also spoofed. On the other hand, MC20 has a constant distribution
pointing exclusively to a single /8 block owned by an ISP located in Canada6.
A likely explanation is that those spammers have also used spoofed addresses

6 Actually, a closer inspection of sources IP addresses reveals they were randomly
chosen from only two distinct /16 blocks from this same /8 IP subnet.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IPv4 space (Class A subnet)

C
D

F

MC2
MC3
MC5
MC10
MC17
MC20
MC25
MC30
MC46
MC58

Fig. 4. CDF’s of originating IP subnet distributions for the largest phenomena.

to send UDP messages to the Windows Messenger service, and they have been
able to do so for 600 days without being disturbed!

To further validate these results, we also looked at the payloads of the UDP
packets by computing a hash for each packet payload. What we discovered is
quite surprising: all payloads sent by the sources have exactly the same mes-
sage template, but the template was different for the two clouds. Fig.5 and
Fig.6 show the two different templates used by spammers of MC3 and MC20
respectively. Regarding MC3, we also observe many alternate URL’s, such as:
32sys.com, Fix64.com, Key32.com, Reg64.com, Regsys32.com, Scan32.com, etc,
whereas spammers in MC20 use apparently almost7 always the same URL
(www.registrycleanerxp.com).

This knowledge has been derived from the observation of the MCs automat-
ically built by our method. This illustrates the richness and meaningfulness of
the analyses that can be performed. At this point, there are still two questions
left unanswered when we look at those two UDP spam phenomena:

i) Do all those UDP packets really use spoofed IP addresses, and how were
they sent (e.g., from a single machine in the Internet or from a very large
botnet)?

ii) Could it be that those two phenomena have in fact the same root cause, i.e.,
the same (group of) people running in parallel two different spam campaigns?

7 For MC20, only a few instances of spam messages were observed with a different
URL: nowfixpc.com

SYSTEM ALERT - STOP! WINDOWS REQUIRES IMMEDIATE ATTENTION.
Windows has found CRITICAL SYSTEM ERRORS.

To fix the errors please do the following:
1. Download Registry Cleaner from: http://www.wfix32.com
2. Install Registry Cleaner
3. Run Registry Cleaner
4. Reboot your computer
FAILURE TO ACT NOW MAY LEAD TO DATA LOSS AND CORRUPTION!

Fig. 5. Spam template used in MC3.

Local System User
CRITICAL ERROR MESSAGE! - REGISTRY DAMAGED AND CORRUPTED.

To FIX this problem:
Open Internet Explorer and type: www.registrycleanerxp.com
Once you load the web page, close this message window

After you install the cleaner program
you will not receive any more reminders or pop-ups like this.

VISIT www.registrycleanerxp.com IMMEDIATELY!

Fig. 6. Spam template used in MC20.

To answer the first question, we have extracted from the UDP packets the
Time To Live (TTL) value of their IP headers. We have computed the distribu-
tions of these TTL values for both phenomena, grouped by targeted platform.
The results, illustrated in Fig.7, seems to confirm our intuition about spoofed
UDP packets, since these TTL distributions are too narrow to originate from
a real population of physical machines. In both cases (MC3 and MC20), we
observe that the TTL distributions have a width of about 5 hops, whereas TTL
distributions for non-spoofed packets are normally much larger, certainly when
sources are largely distributed. As a sanity check, we retrieved the TTL distribu-
tions for another phenomenon, which has been validated as a botnet of machines.
As one can see in Fig.8, the TTL distributions are much larger (around 20 hops)
than for spoofed UDP packets. Another finding visible in Fig.7 is the unusual
initial value used for TTL’s, which also indicates that those packets were proba-
bly forged using raw sockets, instead of using the TCP/IP protocol stack of the
operating system.

Finally, trying to answer the last question (same root cause or not), we looked
at one additional feature of the attacks. We generated a distribution of sources by
grouping them based on the day and hour of the week they have been observed
by our platforms (using the same universal time reference, which is GMT+1 in
this case). As one can see in Fig.9, the result is very intriguing: although there

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 104

IP Time To Live

N
r o

f p
ac

ke
ts

platform 6 (213/8)
platform 9 (195/8)
platform 21 (193/8)
platform 25 (192/8)
platform 27 (193/8)
platform 57 (24/8)
platform 64 (192/8)

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5
x 105

IP Time To Live

N
r o

f p
ac

ke
ts

platform 30 (129/8)
platform 56 (202)
platform 57 (24/8)
platform 64 (192/8)
platform 84 (195/8)
platform 89 (198/8)

(a) (b)

Fig. 7. TTL distribution of UDP packets for MC3 (a) and MC20 (b) (grouped by
targeted platform)

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

IP TTL

N
r o

f p
ac

ke
ts

platform 14
platform 42
platform 47
platform 67
platform 72
platform 76
platform 81
platform 85

Fig. 8. TTL distribution of TCP packets for a phenomenon (MC28) attributed to a
botnet targeting ports 445T and 139T (grouped by targeted platform).

is no privileged day or time interval in the week on which we observe a specific
pattern, the UDP traffic created by MC3 (in dashed) and MC20 (in green)
look apparently synchronized. Since both phenomena have lasted more than 600
days, it is quite unlikely that such correlation could be due to chance only. So,
while we have no true evidence to verify this, we can reasonably assume that
both phenomena have been orchestrated by the same people, or at least using
the same software tool and sets of compromised machines.

MC10: P2P aberrations MC10 is a very interesting, yet intriguing, cloud.
Our technique has grouped together 138 µ-events that have been observed over
a period of 573 days. All these events share a number of common characteristics
that we have some difficulty to explain:

1. The vast majority of these µ-events target a single platform, located in
China. A very few µ-events have also hit another platform in Spain.

2. The vast majority of these µ-events originate from Italy and Spain only.

Sunday Monday Tuesday Wednesday Thursday Friday Saterday
0

0.2

0.4

0.6

0.8

1

Vo
lu

m
e

of
 s

ou
rc

es
(n

or
m

al
iz

ed
)

MC3
MC20
MC10

Fig. 9. Distribution of malicious sources grouped by weekdays. For each MC, a data
point represents the accumulated number of sources observed for a given day and hour
of the week.

3. All these µ-events exist during a single day.
4. All these µ-events target a single high TCP port number, most of them

not being assigned to any particular protocol (e.g. 10589T, 15264T, 1755T,
18462T, 25618T, 29188T, 30491T, 38009T, 4152T, 46030T, 4662T, 50656T,
53842T, 6134T, 6211T, 64264T, 64783T, 6769T, 7690T)

5. these µ-events share a substantial amount of source addresses between them.
6. A number of high port numbers correspond to port numbers used by well

known P2P applications (e.g., 4662/TCP, used by eDonkey P2P network).

This last remark leads us to hypothesize that this extremely weird type of
attack traces may have something to do with P2P traffic aberrations. It can be a
misconfiguration error or, possibly, the side effect of a deliberate attack against
these P2P networks, as explained in [12, 5], in which authors argued that it is
possible to use P2P networks to generate DDoS attacks against any arbitrary
victim.

Also, Figure 9 highlights the fact that these 138 µ-events are not randomly
distributed over the hours of the week but that, instead, they seem to exist on
a limited number of recurrent moments.

All these elements tend to demonstrate the meaningfulness of grouping all
these, apparently different, attack events. Even if we are not able, at this stage,
to provide a convincing explanation related to their existence, our method has,
at least, the merit of having highlighted the existence of these, so far, unknown
phenomena.

It is our hope that other teams will build upon this fundational result to
help all of us to better understand these numerous threats our approach has
identified.

6 Conclusions

In this document, we have presented the WOMBAT attack attribution method.
We have explained its motivations, its principles, the various steps it was made
of, as well as some of the interesting results it had delivered so far. We have
applied that technique to 2 years of attack traces captured on 40 low interaction
honeypots located all over the world. It is worth noting that the method could
as easily be applied on completely different threats-related events. In fact, the
interim Symantec report published mid October 2009 on the analysis of rogue
AV web sites offers results of the application of this very same method to the
problem of understanding the modus operandi of malicious users setting up rogue
AV campaigns.

It is our hope that people will be interested in trying to understand the
rationales behind the Misbehaving Clouds we have identified. We are eager to
share as much information as possible with such interested parties. Similarly, we
are looking forward in having other opportunities to apply this method to other
security datasets that future partners would be willing to share with us.

References

1. Michele Basseville and Igor V. Nikiforov. Detection of Abrupt Changes:Theory and
Application. Prentice Hall, 1993.

2. G. Beliakov, A. Pradera, and T. Calvo. Aggregation Functions: A Guide for Prac-
titioners. Springer, Berlin, New York, 2007.

3. M. P. Collins, T. J. Shimeall, S. Faber, J. Janies, R. Weaver, M. De Shon, and
J. Kadane. Using uncleanliness to predict future botnet addresses. In IMC ’07: Pro-
ceedings of the 7th ACM SIGCOMM conference on Internet measurement, pages
93–104, New York, NY, USA, 2007. ACM.

4. Marc Dacier, Fabien Pouget, and Hervé Debar. Attack processes found on the
internet. In NATO Symposium IST-041/RSY-013, Toulouse, France, April 2004.

5. Karim El Defrawy, Minas Gjoka, and Athina Markopoulou. Bottorrent: misusing
bittorrent to launch ddos attacks. In SRUTI’07: Proceedings of the 3rd USENIX
workshop on Steps to reducing unwanted traffic on the internet, pages 1–6, Berkeley,
CA, USA, 2007. USENIX Association.

6. A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice-Hall advanced
reference series, 1988.

7. S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathe-
matical Statistics 22: 79-86., 1951.

8. C. Leita, V. H. Pham, O. Thonnard, E. Ramirez Silva, F. Pouget, E. Kirda, and
M. Dacier. The leurre.com project: collecting internet threats information using
a worldwide distributed honeynet. In 1st WOMBAT workshop, April 21st-22nd,
Amsterdam, The Netherlands, Apr 2008.

9. Corrado Leita and Marc Dacier. Sgnet: a worldwide deployable framework to
support the analysis of malware threat models. In Proceedings of the 7th European
Dependable Computing Conference (EDCC 2008), May 2008.

10. Leurre.com, Eurecom Honeypot Project. http://www.leurrecom.org/, [[s]ep 2009].
11. J. Lin. Divergence measures based on the shannon entropy. Information Theory,

IEEE Transactions on, 37(1):145–151, Jan 1991.

12. Naoum Naoumov and Keith Ross. Exploiting p2p systems for ddos attacks. In In-
foScale ’06: Proceedings of the 1st international conference on Scalable information
systems, page 47, New York, NY, USA, 2006. ACM.

13. Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, and Larry Peter-
son. Characteristics of Internet Background Radiation. In Proceedings of the 4th
ACM SIGCOMM conference on the Internet Measurement, 2004.

14. M. Pavan and M. Pelillo. A new graph-theoretic approach to clustering and seg-
mentation. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 2003.

15. Van-Hau Pham. Honeypot traces forensics by means of attack event identification.
PhD thesis, TELECOM ParisTech, 2009.

16. Van-Hau Pham and Marc Dacier. Honeypot traces forensics : the observation view
point matters. In NSS 2009, 3rd International Conference on Network and System
Security, October 19-21, 2009, Gold Coast, Australia, Dec 2009.

17. Van-Hau Pham, Marc Dacier, Guillaume Urvoy Keller, and Taoufik En Najjary.
The quest for multi-headed worms. In DIMVA 2008, 5th Conference on Detection
of Intrusions and Malware & Vulnerability Assessment, July 10-11th, 2008, Paris,
France, Jul 2008.

18. Fabien Pouget, Marc Dacier, and Hervé Debar. Honeypot-based forensics. In
Proceedings of AusCERT Asia Pacific Information Technology Security Conference
2004, Brisbane, Australia, May 2004.

19. Fabien Pouget, Marc Dacier, and Van Hau Pham. Leurre.com: on the advantages
of deploying a large scale distributed honeypot platform. In ECCE’05, E-Crime
and Computer Conference, 29-30th March 2005, Monaco, Mar 2005.

20. Niels Provos. A virtual honeypot framework. In Proceedings of the 12th USENIX
Security Symposium, pages 1–14, August 2004.

21. Roger N. Shepard. Multidimensional scaling, tree fitting, and clustering. Science,
210:390–398, 1980.

22. Olivier Thonnard and Marc Dacier. A framework for attack patterns’ discovery in
honeynet data. DFRWS 2008, 8th Digital Forensics Research Conference, August
11- 13, 2008, Baltimore, USA, 2008.

23. Olivier Thonnard and Marc Dacier. Actionable knowledge discovery for threats
intelligence support using a multi-dimensional data mining methodology. In
ICDM’08, 8th IEEE International Conference on Data Mining series, December
15-19, 2008, Pisa, Italy, Dec 2008.

24. Olivier Thonnard, Wim Mees, and Marc Dacier. Addressing the attack attribu-
tion problem using knowledge discovery and multi-criteria fuzzy decision-making.
In KDD’09, 15th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Workshop on CyberSecurity and Intelligence Informatics, June 28th - July
1st, 2009, Paris, France, Dec 2009.

25. D. Wheeler and G. Larsen. Techniques for Cyber Attack Attribution. Institute
for Defense Analyses, Oct 2003, 2008.

26. Ronald R. Yager. On ordered weighted averaging aggregation operators in multi-
criteria decisionmaking. IEEE Trans. Syst. Man Cybern., 18(1):183–190, 1988.

27. Vinod Yegneswaran, Paul Barford, and Vern Paxson. Using honeynets for inter-
net situational awareness. In Fourth ACM Sigcomm Workshop on Hot Topics in
Networking (Hotnets IV), 2005.

Symantec Report on Rogue
Security Software

July 08 – June 09

Published October 2009

R
E

P
O

R
T: S

Y
M

A
N

T
E

C
 E

N
T

E
R

P
R

IS
E

 S
E

C
U

R
IT

Y

Confidence in a connected world.

White Paper: Symantec Enterprise Security

Symantec Report on Rogue Security Software

July 08 – June 09

Contents

Introduction . 1

Overview of Rogue Security Software. 2

Risks . 4

Advertising methods . 7

Installation techniques . 9

Legal actions and noteworthy scam convictions . 14

Prevalence of Rogue Security Software . 17

Top reported rogue security software. 17

Additional noteworthy rogue security software samples . 25

Top rogue security software by region . 28

Top rogue security software installation methods . 29

Top rogue security software advertising methods . 30

Analysis of Rogue Security Software Distribution . 32

Analysis of Rogue Security Software Servers . 36

Appendix A: Protection and Mitigation . 45

Appendix B: Methodologies. 48

Credits . 50

Introduction

The Symantec Report on Rogue Security Software is an in-depth analysis of rogue security software programs. This

includes an overview of how these programs work and how they affect users, including their risk implications, various

distribution methods, and innovative attack vectors. It includes a brief discussion of some of the more noteworthy scams,

as well as an analysis of the prevalence of rogue security software globally. It also includes a discussion on a number of

servers that Symantec observed hosting these misleading applications. Except where otherwise noted, the period of

observation for this report was from July 1, 2008, to June 30, 2009.

Symantec has established some of the most comprehensive sources of Internet threat data in the world through the

Symantec™ Global Intelligence Network. More than 240,000 sensors in over 200 countries monitor attack activity through

a combination of Symantec products and services such as Symantec DeepSight™ Threat Management System, Symantec

Managed Security Services and Norton™ consumer products, as well as additional third-party data sources.

Symantec also gathers malicious code intelligence from more than 130 million client, server, and gateway systems that

have deployed its antivirus products. Additionally, Symantec's distributed honeypot network collects data from around the

globe, capturing previously unseen threats and attacks and providing valuable insight into attacker methods.

Spam and phishing data is captured through a variety of sources including the Symantec Probe Network, a system of more

than 2.5 million decoy accounts; MessageLabs™ Intelligence, a respected source of data and analysis for messaging

security issues, trends and statistics; and other Symantec technologies. Data is collected in more than 86 countries. Over

8 billion email messages and over 1 billion Web requests are processed per day across 16 major data centers. These

resources give Symantec's analysts unparalleled sources of data with which to identify, analyze, and provide informed

commentary on emerging trends in attacks, malicious code activity, phishing, and spam.

NOTE: Symantec advises against visiting the websites of the rogue security applications discussed in this

report because these sites may be unsafe and could potentially harm your computer.

Also, rogue security applications are often marketed by different distributors under slightly different spellings. For

example, AntiVirus XP 2008 may appear as AntiVirusXP 2008, AntivirusXP 2008, etc. Symantec uses what it considers

to be a common variation for this report.

Symantec Report on Rogue Security Software
July 08 – June 09

1

Overview of Rogue Security Software

A rogue security software program is a type of misleading application (also known as scareware) that pretends to be

legitimate security software, such as an antivirus scanner or registry cleaner, but which actually provides the user with

little or no protection whatsoever and, in some cases, can actually facilitate the installation of malicious code that it

purports to protect against. There are two prevalent ways in which rogue security software can be installed on a user's

computer: either it is downloaded and installed manually by a user after he or she has been tricked into believing that the

software is legitimate; or it is unknowingly installed onto a user's computer, such as when a user visits a malicious website

designed to automatically download and install illegitimate applications.

Profit is a primary motivation for creators and distributors of rogue security software scams. A common approach is to try

to trick users into believing that these rogue security applications are valid and to get users to download and install the

programs and to pay for them. Techniques used to entrap users often rely on fear tactics and other social engineering

tricks that are distributed through means such as links in spam, pop-up and banner advertisements on websites and

instant messaging programs, postings on forums and social networking sites, and sponsored or falsely promoted search

engine results.1 Attackers also market rogue security software with claims that the programs can remove unwanted

applications such as spyware or adware. Not only do these scams cheat users out of money—advertised costs for these

products range from $30 to $100 (all currency U.S.) and some even try to sell multi-year licenses—but the personal and

credit card information that users provide to register these fake products could also be used in additional fraud.2

Once installed on a user's computer—and to induce payment—rogue security applications often deliberately misrepresent

the computer's security status or performance, displaying fake or exaggerated claims of security threats even if the

computer has not been compromised. These applications use continuous pop-up displays, taskbar notification icons, and

other alerts to indicate that the user needs to purchase a full version or register for an annual subscription of the program

in order to remove the reported threats and clean the computer (figure 1).3 Some rogue security applications may even

install additional threats onto the compromised computer while simultaneously producing reports that it is clean.

Figure 1. Rogue security software taskbar notification alert

Courtesy: Symantec Corporation

To fool potential victims, rogue security software programs are designed to appear as legitimate as possible. This includes

using realistic-sounding names such as VirusRemover2008,4AntiVirusGold,5 or SystemGuard2009,6 or names that mimic

existing legitimate security software, such as "Nortel."7 Most rogue security programs also have fully developed websites

that include the ability to download and purchase the software, with some actually using legitimate online payment

services to process credit card transactions from successful scams. Some scams even return an email message to the

victim with a receipt for purchase that includes a serial number and a valid, functioning customer service phone number.

The advertisements, pop-up windows, and notification icons used to market these scams are also all designed to mimic

Symantec Report on Rogue Security Software
July 08 – June 09

2

legitimate antivirus software programs, often using the same fonts, colors, and layouts as trusted security software

vendors (figure 2).

Figure 2. Security warning mimicking a legitimate vendor

Courtesy: Symantec

Rogue security software programs are often rebranded or cloned versions of previously developed programs. Cloning is

often done because the original version of the rogue security application has been discovered or detected by legitimate

security vendors. Cloning is therefore fuelled by the hope that one or more of the clones will escape detection.8 This

process sometimes involves nothing more than changing out the name, logos, and images of a program in an attempt to

give it a new identity while the program itself remains unchanged. One program may be rebranded multiples times.

Another reason for cloning programs is to minimize the impact of credit card chargebacks and payment reversals.9 Major

credit card companies fine issuing banks and credit card payment processors for retaining merchants with high

chargebacks.10 Usually, the payment processing company simply ceases conducting business with such merchants or else

passes the cost of the fines onto them. By rebranding the applications and registering using a different name, rogue

security software creators and distributors—the merchants in this case—can circumvent these issues. As well, many users

might not recognize the rebranded application as false.

Examples of rebranded rogue security software programs include AntiVirus 2009,11 which is a clone of Antivirus 2008,12

and AntiVirus XP 2008,13 which is a clone of Malware Protector 2008 (figure 3).14 The latter program is also part of a family

of rogue security software clones that includes AdvancedXPFixer15 and WinIFixer.16

1-http://www.messagelabs.com/mlireport/MLIReport_Annual_2008_FINAL.pdf: pp. 31, 35
2-http://www.symantec.com/connect/blogs/misleading-applications-show-me-money
3-Ibid.
4-http://www.symantec.com/security_response/writeup.jsp?docid=2008-072217-2258-99
5-http://www.symantec.com/security_response/writeup.jsp?docid=2006-032415-1558-99
6-http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-031311-4206-99
7-http://www.symantec.com/connect/blogs/nort-what-av (Please note that the spoofed site has no association at all with Nortel Networks™.)
8-http://www.symantec.com/connect/blogs/cloning-profit
9-A credit card chargeback is when the consumer's issuing bank returns the funds back to the consumer, and the payment to the merchant is reversed. This usually occurs when the consumer files a complaint regarding the

charge with the issuing bank.
10-http://www.corporate.visa.com/pd/rules/pdf/visa-international-operating-regulations.pdf: Table 1-9
11-http://www.symantec.com/business/security_response/writeup.jsp?docid=2008-082521-2037-99
12-http://www.symantec.com/business/security_response/writeup.jsp?docid=2008-050906-3727-99
13-http://www.symantec.com/security_response/writeup.jsp?docid=2008-071613-4343-99
14-http://www.symantec.com/security_response/writeup.jsp?docid=2008-060420-4214-99
15-http://www.symantec.com/security_response/writeup.jsp?docid=2008-052212-0934-99
16-http://www.symantec.com/security_response/writeup.jsp?docid=2008-030406-0943-99

Symantec Report on Rogue Security Software
July 08 – June 09

3

Figure 3. Malware Protector 2008 and its clone, AntiVirus XP 2008

Courtesy: Symantec

Risks

One major risk associated with installing rogue security software programs is that the user may be given a false sense of

security with the belief that the application is genuine and that his or her computer is protected from malicious code

threats. This is because rogue security applications frequently report that malicious threats have been removed and that

the computer is clean and fully protected when, in reality, the opposite is often true and the misleading application is

providing little or no protection from threats at all. These programs may actually increase the danger of the user's

computer being compromised. This is because some rogue security software programs instruct the user to lower existing

security settings in order to advance the registration process, such as switching off firewall settings and/or disabling

existing (and legitimate) antivirus programs (figure 4). Also, once installed, the false application may prevent the

computer from accessing legitimate security vendor websites, thus obstructing the user's ability to research how to

remove the misleading software.

Symantec Report on Rogue Security Software
July 08 – June 09

4

Figure 4. Registration pop-up display for AntiVirus 2009

Courtesy: Symantec

In other instances, a computer may have already been compromised with malicious code or may be at risk of attack from

additional threats. This is because some rogue security applications are designed to install additional threats (even while

continuing to report that the compromised computer is clean). For example, some applications will launch pop-up

windows that, if any of the options presented are clicked, will download malicious code to the victim's computer.17 This will

occur even if the option chosen is the close window "X" or the negative response option.

Another potential risk involved with rogue security software is that the scam perpetrators will use the personal

information gained from the victim to commit fraud and/or identity theft. Thus, not only can these programs cheat the

user out of money, but the personal details and credit card information that are provided during the purchase (figure 5)

can be used in additional fraud or else sold on black market forums, where credit card data is advertised for as much as

$30 per card.18

17-http://www.messagelabs.com/mlireport/MLIReport_Annual_2008_FINAL.pdf : pp. 31, 35
18-Underground economy servers are black market forums for the promotion and trade of stolen information and services, such as credit card numbers and bank accounts. See the Symantec Report on the Underground

Economy, http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf

Symantec Report on Rogue Security Software
July 08 – June 09

5

Figure 5. AntiVirus 2009 payment page (with option for "Premium Support" and "upgrade to fileShredder")

Courtesy: Symantec

Some versions of rogue security software include keystroke loggers as well as backdoor functionality, allowing potential

access to personal information and other stored information on the user's computer such as stored passwords and other

sensitive information. For example, figure 6 shows the administrative interface to the Bakasoftware back-end

management system. This administrative tool allows the Bakasoftware administrator to load new and additional software

(for example, "cosma bot") on a computer already compromised with rogue security software.

Symantec Report on Rogue Security Software
July 08 – June 09

6

Figure 6. Bakasoftware administrative control panel

Courtesy: Symantec

Just as legitimate security software needs to contact a manufacturer's servers to obtain signature updates and other

functions, the rogue security software may also contact the scam perpetrator's servers for updates and added

functionality. In this case, though, the update results in the further compromise of the user's computer. In this way, rogue

security software could represent a greater risk than expected if it is possible for a computer compromised with rogue

security software to be used in a larger bot network that is maintained by structured updates from control servers.

Advertising methods

Attackers use many methods to tempt users into downloading and installing rogue security software programs. Along with

employing a number of standard methods similar to legitimate Internet advertising campaigns, scam perpetrators also

employ fear tactics and other social engineering techniques to sell their products. This section discusses some of the main

advertising methods used to market rogue security software programs.

Spam

Spam is an easy way to advertise rogue security software programs because it is relatively quick and inexpensive to send a

large number of email messages, especially if a spammer uses a botnet to do the work. For example, in 2008, spam for

AntiVirus XP 2008 was sent out from botnets such as Peacomm,19 Srizbi,20 Rustock,21 and Ozdok22.23 Email addresses

suitable for spam are inexpensive, costing as little as $0.33/MB (with one MB containing as many as 40,000 email

addresses).24

Some spam is sent with executable file attachments that, if opened, will install the rogue security software program.

Because many security software programs and upstream providers now guard against this with spam filters that flag email

containing suspicious attachments, spam distributors instead send email with messages that are worded to lure users into

following a link to the associated website for the fraudulent program.

19-http://www.symantec.com/security_response/writeup.jsp?docid=2007-011917-1403-99

Symantec Report on Rogue Security Software
July 08 – June 09

7

Advertisements on websites

Rogue security software programs are advertised on a variety of both malicious and legitimate websites, including blogs,

forums, social networking sites, and adult sites.25 These advertisements typically prey on users' fears of malicious code,

with claims such as, "If this ad is flashing, your computer may be at risk or infected," and will urge users to follow a link

that will provide the software to remove the threats.

Link spamming packages (also known as auto-submitters) are also often used to place links pointing to rogue security

application websites. One example is the Xrumer software package. Xrumer can bypass CATCHA protections,

automatically register and confirm email activation requests, and is capable of quickly spamming large numbers of

websites.26 By using such tools, scam distributors can increase their search engine rankings and place links on thousands

of websites to drive victims to a rogue security application website.

To increase exposure and add an air of legitimacy, scam distributors also place Web banner advertisements on major

Internet advertising networks and with advertising brokers of legitimate sites.27 This is possible because administrators of

legitimate websites often link to feed services that control the dispersal of these advertisements and the administrators

usually have no control what content is displayed in the advertisements.28 Moreover, the feed service distributors may not

be able to control content either, because they are often a middle ground between feed subscribers and the actual

advertisers. If an advertiser pays the distributor to display advertisements, the distributor may have very little control over

the data displayed in the advertisements. This makes mitigating deceptive or malicious advertisements very difficult.

Tracking down the original source of the malicious or deceptive content can also be very challenging.

Search engine results seeding

Another method of advertising rogue security software programs is to seed search engine results by capitalizing on

popular news items, events, or celebrities.29 Scam creators use a range of black hat search engine optimization (SEO)

techniques to effectively poison search engine results and increase the ranking of their scam sites whenever any topical

news event is searched.30 For example, the Downadup31 worm (also known as Conficker) emerged and spread rapidly in the

latter months of 2008, with well over a million individual computers affected by the end of that year.32 To play on

consumers' fears of the worm, scam perpetrators created website pages full of terms such as "remove virus" or "free anti-

virus," etc. This increased the keyword count of the pages, thus making them seem more relevant to search engine

relevancy algorithms.33

Browser helper objects

Another method recently observed by Symantec for advertising rogue security applications was used in the promotion of

AntiVirus 2009, one of the most widely reported of these programs during this reporting period.34 In this approach, once

AntiVirus 2009 is installed on a computer, it creates a browser helper object (BHO) that modifies all pages from a search

engine by adding a fake "security tip" that appears to originate from the search engine company, complete with legitimate

logos (figure 7).35 In reality, this tip service is non-existent. The purpose of the tip on the Web page is to entice the user of

the compromised computer to click on the link to "activate" Antivirus 2009.

20-http://www.symantec.com/security_response/writeup.jsp?docid=2007-062007-0946-99
21-http://www.symantec.com/security_response/writeup.jsp?docid=2006-011309-5412-99
22-http://www.symantec.com/security_response/writeup.jsp?docid=2008-021215-0628-99
23-http://www.messagelabs.com/mlireport/MLIReport_Annual_2008_FINAL.pdf : p. 31
24-http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiv_04-2009.en-us.pdf : p. 82

Symantec Report on Rogue Security Software
July 08 – June 09

8

Figure 7. Fake tip page

Courtesy: Symantec

Installation techniques

Rogue security software programs can get onto a user's computer either by being manually installed by the user, who has

been fooled into thinking that he or she is downloading a legitimate program; or it is unknowingly downloaded and

installed by the user without his or her consent or knowledge. This section will discuss delivery methods and strategies

used by scam distributors. (For best practices to safeguard against these threats, please see Appendix A of this report.)

Emailed executable files

One of the simplest ways to distribute rogue security software programs is through executable files attached to spam. The

malicious attachments are typically disguised as executable files with false file extensions, such as music, media, or

compressed (that is, .zip) files. If opened, these attachments will instead either install a rogue security software program

directly, or else will load malicious code onto the computer that subsequently installs the rogue software. As mentioned,

many security software programs and ISPs now have extensive safeguards to protect against potentially malicious

attachments.

Malicious code

Rogue security software programs can be installed onto a user's computer by malicious code such as staged downloaders.

Staged downloaders are threats that, once on a computer, will download and install other malicious code. This is typically

done without the user's knowledge or consent. One of the more popular methods of getting malicious code onto a victim's

computer is through drive-by download attacks. Drive-by downloads occur when a user visits a malicious website or a

legitimate website that has been compromised and malicious code is downloaded onto the user's computer without the

user's interaction or authorization. The attacks attempt to gain access to a user's system by exploiting vulnerabilities in

browsers, browser plug-ins and applications, or desktop applications. The download is typically an executable file

containing malicious code that then attempts to download additional threats, such as rogue security software programs.

Because the user is usually oblivious to these occurrences, such attacks can be difficult to mitigate. Drive-by downloads

25-http://www.symantec.com/norton/theme.jsp?themeid=mislead
26-http://blog.washingtonpost.com/securityfix/2007/01/scary_blogspam_automation_tool_1.html
27-An advertising network is a distributor of advertisements to websites that want to host them; they typically have a large inventory of advertisements that get displayed each time a Web page is loaded or refreshed; the

website often will not have control over the content of these advertisements.
28-See http://www.eweek.com/c/a/Security/DoubleClick-Serves-Up-Vast-Malware-Blitz/ and http://www.theregister.co.uk/2008/02/21/itv_scareware_peril/
29-http://www.symantec.com/connect/blogs/misleading-applications-show-me-money-part-2
30-SEO is a process for making websites more popular in search engine results; black hat SEO uses search optimization techniques that are considered unethical by the mainstream SEO community, which may include

spamming and other questionable practices.
31-http://www.symantec.com/security_response/writeup.jsp?docid=2009-040823-4919-99
32-http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_downadup_codex_ed2.pdf
33-http://www.symantec.com/connect/blogs/downadup-related-search-indexes-poisoned-fake-av-sites
34-http://www.symantec.com/security_response/writeup.jsp?docid=2008-082521-2037-99
35-http://www.symantec.com/connect/blogs/misleading-applications-start-tipping

Symantec Report on Rogue Security Software
July 08 – June 09

9

are becoming an increasingly dominant vector of attack, as discussed in Volume 14 of the Symantec Internet Security

Threat Report, especially since such attacks can be launched from both legitimate and malicious websites.36

A specific example of malicious code associated with rogue security software is the Zlob Trojan.37First identified in 2005,

Zlob was the third most common staged downloader component observed by Symantec in 2008.38 One of its primary

attack vectors to get onto a user's computer is disguised as a video codec installer. A video codec is a type of software that

supports the compression (or decompression) of digital video. Because additional codecs are often required to play a

specific video format, depending on how the video in question was created, users may be more likely to trust such prompts

and download the files. This type of Web-based attack follows a trend of attackers inserting malicious code into legitimate

high-traffic websites where users are likely to be more trusting of the content, rather than attempting to lure users to visit

specifically designed, malicious sites.39

Once embedded onto a compromised computer, one particular function of Zlob is to display fake security alerts and pop-

ups claiming that the computer is infected with spyware. If a user clicks on the alert, Zlob will redirect the user's Web

browser to a website containing malicious code, at which point the computer will be attacked further. The top three

reported rogue security applications observed by Symantec during this reporting period (discussed below in "Top reported

rogue security software") were all distributed in part by Zlob, as were a number of others, including PrivacyCenter,40

Malware Defender 2009,41 VirusProtectPro,42 and IE Defender.43

IE Defender is worth noting further because, once installed on a computer, the program performs a scan that

automatically detects the presence of malicious code, including Zlob. Thus, IE Defender prompts the user to pay for a full

license of itself in order to remove Zlob, which is responsible for IE Defender being installed on the user's computer in the

first place.

Another example of malicious code associated with rogue security software is the Vundo Trojan, which is a component of

an adware program that exploits a browser vulnerability.44 Vundo was the top-ranked malicious code sample observed by

Symantec globally in both 2007 and 2008.45 It typically infects computers through links to malicious websites from spam

or email attachments that, in reality, also contain the malicious code. The compromise may also occur via a drive-by

download, as described above.46 As a staged downloader, once Vundo is installed on a computer, it attempts to contact

certain IP addresses to download additional components, including the adware downloader component of the Trojan that,

once executed, is used to display pop-up advertisements.

Rogue security software website downloads

Websites created to market rogue security software programs are designed to look as legitimate as possible so that users

will be convinced that the products are authentic and will download them. As such, they often include the logos and

formatting typical of the websites of legitimate security vendors, testimonials from satisfied customers, and other

seemingly genuine techniques. One rogue security application site, for Green Antivirus 2009,47 even claims to be the

"world's first antivirus that cares about the environment," pledging that "$2 from every sale will be sent on saving green

forests in Amazonia" [sic].48 To trick users into downloading their products, some rogue security websites offer free trials

or free system scans. In fact, MessageLabs Intelligence observed that, of the most frequent rogue security applications

blocked through MessageLabs Web Security Service (WSS), 95 percent contained the generic "freescan.php" filename.

36-http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiv_04-2009.en-us.pdf : p. 52
37-http://www.symantec.com/security_response/writeup.jsp?docid=2005-042316-2917-99

Symantec Report on Rogue Security Software
July 08 – June 09

10

Many rogue security software websites are associated with more than one domain name so that, if one server is taken

offline to evade detection by authorities or shutdown by upstream ISPs, redundancies exist to keep the scam running. In

Symantec's research on servers hosting rogue security software, discussed further below in this report, over 194,000

domain names were observed associated with these false applications over a two-month period.

Rogue security software distributors

The creators of rogue security software often use an affiliate-based, pay-per-install model to distribute their misleading

applications. Users who wish to participate in a rogue security software scam can register as an affiliate on a distribution

site, such as TrafficConverter.biz, where they can obtain the appropriate files and links to market the scam.49 Typically,

these websites offer free registration and the affiliates then carry out all of the marketing for the product. The main

purpose of these distribution websites is to recruit affiliates to sell the rogue security software programs.

The creators of the distribution websites provide affiliates with the support and the tools required to distribute and market

the scams, such as fake codec links, fake scanner links, and malicious code executable files. They may also provide

affiliates with promotional and marketing materials, as well as obfuscation tools such as packers and binders (used to

create versions of the code in order to evade detection by legitimate security software).

Another evasive maneuver is the use of polymorphic techniques. Polymorphic obfuscation modifies program code, as

often as every five minutes, to alter the digital signatures of the code while keeping the underlying functionality intact.

This makes polymorphic threats difficult to detect since they are constantly changing. These services and tools are usually

provided to the scam distributors for free or for a nominal fee.

Affiliates are paid a predetermined amount for every successful installation, ranging from $0.01 to $0.55.50 This per-

installation payment is dependent on the type of installation and the distribution site, with malicious code installations

returning the highest commission. The price is also dependent on the country of the computer on which the rogue security

software program has been installed. For example, one distribution site paid $0.55 per installation on computers in the

United States, but only $0.05 per installation on computers in Mexico (table 1).51 The site also gave installation incentives

to affiliates through additional bonuses, such as a 10 percent bonus for more than 500 installations per day and a 20

percent bonus for over 2,500 installations per day. The per-installation price variations from country to country may

depend on the likelihood of a user in that country paying for either a subscription to, or a fully registered version of the

rogue security software. Basically, the higher the percentage of users in a certain country that pays, the higher the per-

installation payment.

38-http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiv_04-2009.en-us.pdf : p. 62
39-Ibid: p. 31
40-http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-050702-2910-99
41-http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-033012-2224-99
42-http://www.symantec.com/business/security_response/writeup.jsp?docid=2007-070323-1203-99
43-http://www.symantec.com/security_response/writeup.jsp?docid=2007-111420-0754-99
44-http://www.symantec.com/security_response/writeup.jsp?docid=2004-112111-3912-99
45-http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiv_04-2009.en-us.pdf : p. 60
46-http://www.securityfocus.com/bid/11515
47-http://safeweb.norton.com/report/show?name=green-av-pro.com
48-http://www.411-spyware.com/tag/green-anti-virus-2009
49-http://voices.washingtonpost.com/securityfix/2009/03/obscene_profits_fuel_rogue_ant.html
50-http://www.symantec.com/connect/blogs/misleading-applications-show-me-money-part-3
51-Ibid.

Symantec Report on Rogue Security Software
July 08 – June 09

11

Table 1. Examples of per-installation prices for rogue security software, by country52

Source: Symantec

In the case of TrafficConverter.biz, the website was associated with the Downadup worm as a URL from which Downadup

attempted to download its payload.53 The site was shut down in November 2008 before the worm could download the

unknown payload. TrafficConverter.biz and other reincarnations of the website paid affiliates $30 per sale of their rogue

security software programs, such as XP Antivirus.54 The site purported to have at least 500 active affiliates, with top

affiliates earning as much as $332,000 in a month for installing and selling security risks—including rogue security

software programs—onto users' computers.55 The top 10 earning affiliates purportedly each earned $23,000 per week, on

average. The website even kept statistics on their top sellers, including listing percentages on the conversion of

installations-to-sales per day (figure 8). In addition, the website offered "VIP-points" contests to top-selling affiliates,

complete with prizes such as electronics and a luxury car (figure 9).

Figure 8. TrafficConverter.biz sample earnings per day

Courtesy: Symantec

52-NAM = North America, EMEA = Europe, the Middle East, and Africa, APJ = Asia-Pacific/Japan, LAM = Latin America
53-http://www.symantec.com/connect/blogs/downadup-motivations
54-http://www.symantec.com/security_response/writeup.jsp?docid=2007-101010-0713-99

Symantec Report on Rogue Security Software
July 08 – June 09

12

Figure 9. TrafficConverter.biz website with contest announcement

Courtesy: Symantec

Dogma Software was yet another rogue affiliate program that offered incentives to install their scareware on victim

computers. The Dogma affiliate program claims to be "cleaning software" and offers up to $30 per installation (figure 10).

55-http://voices.washingtonpost.com/securityfix/2009/03/obscene_profits_fuel_rogue_ant.html

Symantec Report on Rogue Security Software
July 08 – June 09

13

Figure 10. Dogma Software website

Courtesy: Symantec

These affiliate "master sites" such as Bakasoftware, TrafficConverter and Dogma Software seem to be the drivers for the

associated domain names, websites, and malicious advertising behind many rogue security software scams. Without the

affiliate commission payouts and back-end billing systems in place, there would likely be fewer scams perpetuated. Many

in the security community have realized this and have refocused their efforts on identifying and shutting down the scam

creators instead of trying to track down and identify the myriad domain names used to offer rogue security software.

Legal actions and noteworthy scam convictions

Attackers who create and distribute rogue security software programs can make a significant amount of money through

these scams. They can also use the credit card information obtained from the victims to commit further fraud or to sell the

data on black market forums.56 This section will discuss several notable scams and the actions that government

organizations have taken to combat perpetrators of rogue software security scams.

Legal actions taken against this type of scam include charges of fraud, deceptive advertising, misrepresentation, and in

some cases, spam distribution (in cases where the software itself may not be illegal). For example, in 2006, the Attorney

General for Washington State obtained a $1 million settlement from a New York-based company through a combination of

56-http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiv_04-2009.en-us.pdf : p. 83

Symantec Report on Rogue Security Software
July 08 – June 09

14

the state's 2005 Computer Spyware Act, federal and state spam laws, and the U.S. Consumer Protection Act.57 The

company fined was distributing the rogue security software program, Spyware Cleaner.58 The state sued the company for

marketing software that falsely made claims of threats on users' computers.

The Attorney General for Washington State has also filed lawsuits against a Texas-based company and its owner for

misrepresentation of Registry Cleaner XP.59 The lawsuit has asked for restitution for the victims of the scam, fines for the

defendants, and recovery for damages for each violation.60

Under the Washington State Computer Spyware Act it is illegal to persuade a user to download software under the guise

that it is necessary for the safe operation of his or her computer. In addition to requesting that the rogue security software

creators and distributors cease all operations, the state also asks for monetary compensation to be provided for all victims

of these scams.

In another case, in 2008 the head of a South Korean-based computer security company was charged with fraud by the

Seoul Metropolitan Police Agency for the distribution of the rogue security software program Doctor Virus to over four

million users.61 The company is alleged to have made over $9.8 million over the course of three years in the scam.

In June 2009, a U.S.-based defendant and his company were required to pay more than $1.9 million to settle fraud

charges with the Federal Trade Commission stemming from a rogue security software scam.62 The defendants used

deceptive advertising to mislead more than 1 million people into purchasing their rogue security applications, including

such titles as WinFixer,63 WinAntivirus, DriveCleaner,64 XP Antivirus 2008 and ErrorSafe.65

The defendants placed advertisements for their rogue security software program on popular legitimate websites and on a

major Internet advertising network and with brokers.66 After receiving complaints that the banner ads contained code that

would automatically install malicious software, the advertising network stopped placing advertisements for all security

products. To bypass this, the operators created advertisements for legitimate companies, including a charity, and these

advertisements were displayed for an IP address range associated with the advertising network company. For all other IP

addresses outside of the range, it displayed the advertisement for the rogue security software program that contained

code that automatically performed fake scans on the users' computers. The scan would report threats of spyware and

illegal pornography, and then urge users to download and install the rogue security software program so that it could

perform a more detailed scan. This second scan would also report that the computer was infected by the same threats as

the first scan. Users were then directed to purchase a full copy for $39.95 to "fix" these false threats. In reality, no

computer scans were conducted at any point and the threats that they detected were false and non-existent.

The settlement amount of $1.9 million represented the total gross revenue that the company realized from the scam.

Moreover, the court order prohibited the defendants from engaging in deceptive advertising tactics and installing

programs on consumers' computers.

In addition to government actions, some companies have also been effective in taking actions against rogue security

software distributors and hosts. In August 2009, a Latvian ISP associated with rogue security software programs and the

hosting of malicious activities (such as websites responsible for Web-based attacks and phishing sites) was taken offline

after being disconnected by its upstream provider.67 The ISP allowed customers to remain online even after they were

57-http://www.atg.wa.gov/pressrelease.aspx?&id=5926
58-http://www.symantec.com/security_response/writeup.jsp?docid=2006-041017-1914-99
59-http://news.bbc.co.uk/2/hi/technology/7645420.stm
60-http://www.pcworld.com/businesscenter/article/151640/washington_state_pursues_scareware_distributors.html

Symantec Report on Rogue Security Software
July 08 – June 09

15

linked to malicious activities. As such, following complaints from Internet security researchers, the main provider

informed the upstream provider to cease operations with the ISP or face sanctions.

61-http://www.theregister.co.uk/2008/03/04/south_korea_scareware_fraud_charges/
62-http://www.ftc.gov/opa/2009/06/winsoftware.shtm
63-http://www.symantec.com/business/security_response/writeup.jsp?docid=2005-120121-2151-99
64-http://www.symantec.com/business/security_response/writeup.jsp?docid=2006-062217-0726-99
65-http://www.symantec.com/business/security_response/writeup.jsp?docid=2006-012017-0346-99
66-http://www.ftc.gov/os/caselist/0723137/081202innovativemrktgcmplt.pdf
67-http://www.messagelabs.co.uk/download.get?filename=MLIReport_2009.08_Aug_FINAL.pdf

Symantec Report on Rogue Security Software
July 08 – June 09

16

Prevalence of Rogue Security Software

To date, Symantec has detected over 250 distinct rogue security software programs. The following discussions are based

on the top reported rogue security software programs that Symantec observed between July 1, 2008, and June 30, 2009.

Of the top 50 most reported rogue security software programs that have been analyzed for this report, 38 of the programs

were detected prior to July 1, 2008. The continued prevalence of these programs emphasizes the ongoing threat they pose

to potential victims despite efforts to shut them down and raise public awareness. Each consumer report is considered to

be an attempted and potentially successful scam. For example, during the period of this report, Symantec received reports

of 43 million rogue security software installation attempts from the 250+ distinct samples. The results have been analyzed

to provide insight into how certain aspects of the programs, such as advertising methods and regional distribution, may

contribute to their prevalence.67

Top reported rogue security software

This section will discuss the top five of the most reported rogue security software programs observed by Symantec during

this reporting period (table 2). The intention is to provide insight into methods of distribution of rogue security software

for prevalence, examine related applications, discuss incidents related to the applications, and to highlight malicious

activity originating from sites hosting the rogue security applications.

Table 2. Top reported rogue security software

Source: Symantec

Spyware Guard 2008

Spyware Guard 200868 was the most prevalent rogue security application that Symantec observed during this reporting

period. First detected in October 2008, Spyware Guard 2008 uses deceptive Web advertisements that inform users that

they have supposedly been exposed to malicious code threats. The advertisements advise users to "turn on protection,"

which will instead download and install the program if chosen. The downloaded program presents itself as a trial version

that scans for and reports various threats (figure 11). After reporting false or exaggerated scan results, the software then

asks the user to register and pay for a software license, purportedly enabling the removal of the reported threats. The

website for Spyware Guard 2008 offers three different licenses, with costs marked at $49.95, $69.95, and $89.95.

Symantec Report on Rogue Security Software
July 08 – June 09

17

Another distribution technique used by Spyware Guard 2008 is to inject links in innocuous search results for domains that

redirect to websites for the rogue application.69

Figure 11. Spyware Guard 2008 fake scan results screen

Courtesy: Symantec

Spyware Guard 2008 was created by Pandora Software,70 which has been identified as being responsible for a number of

other rogue security applications, such as AntiVirus XP 2008, EasySpywareCleaner,71 InfeStop,72 Malware Protector 2008,

SpyRid,73 and WinIFixer. Pandora Software is believed to be associated with Bakasoftware, an affiliate network based in

Russia.74Bakasoftware provides various services for its affiliates, including a range of installation methods to aid in scam

distributions such as ActiveX controls, fake codecs, and fake online scanners. A list of earnings for Bakasoftware affiliates

was published for a one-week period and the top earners purportedly made between $58,000 and $158,000.75 Pandora is

also reputed to act as a payment processor for purchases of misleading applications.76

Symantec also observed some unusual behavior on the part of Spyware Guard 2008 in that it was directing users to

purchase legitimate software titles (figure 12).77 This is also a scam, however, because the Web-based storefront is

fraudulent and the software, if purchased, is never shipped to the victim. Symantec speculates that this may have been an

attempt to gather credit card information. An additional possibility is that the scammers intended to sell pirated software,

or did so for a short period, but subsequently stopped shipping the goods.

68-http://www.symantec.com/security_response/writeup.jsp?docid=2008-100114-4845-99
69-http://community.ca.com/blogs/securityadvisor/archive/2009/01/09/unabated-fraud-spyware-guard-2008.aspx
70-Note: The Pandora Software company mentioned in this report is solely affiliated with the distribution, publishing, and/or payment processing of misleading applications such rogue security software and is in no away

affiliated with similarly named companies.
71-http://www.symantec.com/security_response/writeup.jsp?docid=2008-022916-2526-99
72-http://www.symantec.com/security_response/writeup.jsp?docid=2008-022916-3210-99
73-http://www.symantec.com/security_response/writeup.jsp?docid=2008-012117-0229-99
74-http://www.secureworks.com/research/threats/rogue-antivirus-part-2/
75-http://www.nytimes.com/2008/10/30/technology/internet/30virus.html?_r=1
76-http://ddanchev.blogspot.com/2009/06/diverse-portfolio-of-fake-security.html
77-http://www.symantec.com/connect/blogs/misleading-applications-supposedly-reselling-popular-software-titles

Symantec Report on Rogue Security Software
July 08 – June 09

18

Figure 12. Spyware Guard 2008 advertising legitimate software

Courtesy: Symantec

Spyware Guard 2008 is not hosted on as many domains as has been observed with other samples (Symantec has observed

four domains hosting Spyware Guard 2008 executables); however, other distribution methods have been noted. In

particular, it was distributed by the Downadup.E worm (a variant of the original Downadup.C).78 Additionally, Downadup.E

was also observed to be distributing variants of Spyware Guard 2008.79

AntiVirus 2008 and AntiVirus 2009

AntiVirus 200880 was the second most reported rogue security application observed by Symantec during this reporting

period, while AntiVirus 2009 was the third most reported. Because they are nearly identical variants from the same

source, they will be addressed together here and referred to as AntiVirus 200X for the sake of discussion.

Antivirus 200X is designed to get installed on target computers a number of ways, including intentional downloads,

misleading Web advertisements, drive-by downloads, and installation through malicious code. Once installed on a user's

computer, AntiVirus 200X then performs a pseudo-scan of the system and falsely reports the discovery of numerous

security threats (figure 13). The reported threats range from adware applications and spyware, to Trojans and viruses.

AntiVirus 200X even reports the detection of rogue security software.

78-http://blogs.zdnet.com/hardware/?p=4131
79-Ibid.
80-http://www.symantec.com/security_response/writeup.jsp?docid=2008-050906-3727-99

Symantec Report on Rogue Security Software
July 08 – June 09

19

Figure 13. Antivirus 2009 scan result page

Courtesy: Symantec

Upon completion of the mock scan, the user is presented with options to deal with these threats, including to "Remove all

threats now" or to "Continue unprotected." Selecting the threat removal option will result in the user being presented with

a prompt to purchase and to enter a registration key to fully activate and unlock the threat removal features; choosing not

to pay will result in AntiVirus 200X continually bombarding the computer desktop with alarmist messages (figure 14).

Figure 14. AntiVirus 2009 taskbar alert

Courtesy: Symantec

Furthermore, AntiVirus 200X incorporates a window that closely mimics the legitimate Microsoft®Windows® Security

Center service (figure 15). When the software is unregistered, the false security center lists virus protection as "not found,"

even if there actually is a legitimate security application enabled, and explains that AntiVirus 200X is not fully enabled. It

also presents a link for the user to click in order to purchase a license.

Symantec Report on Rogue Security Software
July 08 – June 09

20

Figure 15. AntiVirus 200X Security Center (left) vs. Microsoft Windows Security Center (right)

Courtesy: Symantec

In addition to the described methods used by AntiVirus 200X to appear legitimate, the application will prompt

unregistered users that a new database of threat signatures should be downloaded to update the software (figure 16).

Choosing to update the program presents the previously described registration window.

Figure 16. AntiVirus 2009 software update alert

Courtesy: Symantec

AntiVirus 2008 was identified in May 2008, while Antivirus 2009 was detected just two months later, in July. Efforts by

legitimate security firms to raise awareness and reduce the number of potential victims of the original program may have

been cause for the scam authors to release a rebranded version. The rebranding may also have been an attempt to seem

as though an upgraded version was available. This may suggest that the scam authors actively monitor the success of their

scams and modify them accordingly. This level of involvement may be a contributing factor in the relative success of the

scams as well.

Symantec has observed 218 unique domains hosting AntiVirus 2008 executables. Sites hosting AntiVirus 2008 were also

observed to be hosting these other threats and rogue applications:

Symantec Report on Rogue Security Software
July 08 – June 09

21

• AntiVirus 2009

• Bloodhound.Exploit.19681

• Downloader.Psyme82

• InternetAntivirus83

• SecureExpertCleaner84

• Trojan.Fakeavalert

• WinFixer85

A number of the threats detected on sites hosting AntiVirus 2008 are noteworthy because of their involvement in

malicious activity. Bloodhound.Exploit.196 is a Symantec heuristic signature that detects exploits for a series of

vulnerabilities in Adobe® Acrobat® and Adobe Reader®. The first series of vulnerabilities was discovered in February,

2008.86 The second series of vulnerabilities was discovered in May, 2009.87 (Both series have since been patched.)

Downloader.Psyme is a downloader that attempts to transfer various malicious executables to the affected computer.

InternetAntivirus, SecureExpertCleaner, and WinReanimator are other rogue security applications. The sites hosting

AntiVirus 200X have also been observed to be distributing other forms of malicious code. Thus, in addition to the risk

posed by the rogue security applications, visitors to these sites could be exposed to exploitation by client-side

vulnerabilities or be the target of drive-by downloads.

One of the threats identified on sites hosting AntiVirus 2008 is the Trojan Fakeavalert.88FakeAvalert was discovered in

October, 2007. Once on a victim's computer, it produces prompts with false alerts about the security status of the

compromised computer and prompts the user to run a full scan. If the user authorizes the scan, Fakeavalert launches the

user's browser and directs it to a site that tells the user that his or her computer is "infected," along with containing a "Fix

now" button that, if clicked, will prompt a download of the rogue security software program, AVSystemCare.89

Some characteristics of AVSystemCare that make it appear legitimate are worth noting. This includes the presence of an

installation wizard and an End-User License Agreement (EULA), to which the user actually must agree to in order to

proceed with the installation. Symantec has observed over 100 clones of this program, with names such as

Antispywaresuite, Antiworm2008, and so on. In addition to disabling access to websites of legitimate security vendors,

AVSystemCare also disables access to adware sites, which may be an attempt by it to obstruct access to its competitors.

Symantec has observed 179 unique domains hosting AntiVirus 2009 executables. Sites hosting AntiVirus 2009 have also

been observed to host the following threats and rogue applications:

• AntiVirus 2008

• Bloodhound.Exploit.196

• Bloodhound.Exploit.21390

• IEDefender

• Trojan.Blusod91

• Trojan.Fakeavalert

• Trojan.Virantix92

• Trojan.Virantix.C93

81-http://www.symantec.com/security_response/writeup.jsp?docid=2008-080702-2357-99

Symantec Report on Rogue Security Software
July 08 – June 09

22

In many cases, other misleading applications and threats may be hosted together. This may indicate that the website has

been used to launch various attacks and scams. In some cases, malicious software and exploits are hosted on the same

website for the purpose of distributing scams. Some of the threats and rogue applications that have been hosted on the

same sites as AntiVirus 2009 are worth noting further: Bloodhound.Exploit.213 is a Symantec heuristic signature that

detects exploits for a vulnerability in Adobe Acrobat;94 Trojan.Blusod displays a "blue screen of death" screensaver and

false warnings about security threats on the computer and also attempts to download a variant of Zlob from malicious

sites; the Trojans Virantix and Virantix.C display false security warnings and also attempt to download additional software

to affected computers; Virantix.C also attempts to install the WinReanimator rogue security application on computers.

Spyware Secure

Spyware Secure95 was the fourth most prevalent rogue security application that Symantec observed during this reporting

period. Spyware Secure has been distributed mainly through a single domain that hosts installation executables.

Symantec first discovered Spyware Secure in September, 2007. The length of time that the scam has been distributed, in

addition to the fact that the main site hosting the executables is still operational, may be contributing factors to the

prevalence of this sample.

Spyware Secure is a good example of a scam that tries to socially engineer users into downloading a rogue security

application by convincing them that their computers are not protected from, as the ad reads, "spywares" (figure 17). The

interface cites statistics from a legitimate security software company in an attempt to scare users into installing the

program. It also list common occurrences that many computer or Internet users are likely to encounter such as occasional

crashes, slow navigation, and unwanted pop-ups.

Figure 17. SpywareSecure registration screen

Courtesy: Symantec

82-http://www.symantec.com/security_response/writeup.jsp?docid=2004-040112-5204-99
83-http://www.symantec.com/security_response/writeup.jsp?docid=2008-081212-1113-99
84-http://www.symantec.com/security_response/writeup.jsp?docid=2008-072807-2626-99
85-http://www.symantec.com/security_response/writeup.jsp?docid=2005-120121-2151-99
86-http://www.securityfocus.com/bid/27641
87-http://www.securityfocus.com/bid/34169
88-http://www.symantec.com/security_response/writeup.jsp?docid=2007-101013-3606-99
89-http://www.symantec.com/security_response/writeup.jsp?docid=2007-061509-3222-99
90-http://www.symantec.com/security_response/writeup.jsp?docid=2008-110718-2219-99
91-http://www.symantec.com/security_response/writeup.jsp?docid=2008-062711-5534-99
92-http://www.symantec.com/security_response/writeup.jsp?docid=2007-073011-3204-99
93-http://www.symantec.com/security_response/writeup.jsp?docid=2008-050916-1055-99
94-http://www.securityfocus.com/bid/30035
95-http://www.symantec.com/security_response/writeup.jsp?docid=2007-091719-0351-99

Symantec Report on Rogue Security Software
July 08 – June 09

23

Once a rogue application becomes prevalent, there is also a risk that scam distributors may capitalize on its popularity to

advertise other scams that purport to remove the now widespread application. For example, searches for Spyware Secure

return a sponsored link that advertises applications that claim to remove the threat (figure 18).

Figure 18. SpywareSecure search results

Courtesy: Symantec

Similar cases have been reported where scam distributors have advertised software that purports to remove rogue

security software offered by competitors.96 Some scams even purport to remove rebranded versions of the same program.97

This demonstrates competition between scam authors and that they may not be concerned with creating the illusion of a

trustworthy brand identity, but instead are attempting to capitalize on the confusion resulting from the distribution of

multiple rogue products with similar names and interfaces.

As individual rogue applications are deemed untrustworthy, new versions are often cloned by the same developers and

distributed with the promise of removing the old versions. By disassociating themselves from other rogue applications, the

scam authors can create confusion and make it difficult to discern which security software programs are authentic.

Furthermore, cautious users may be led to distrust advertisements for security applications in general due to the

prevalence of false and malicious advertising. This could adversely affect the ability of new, legitimate security software

products to establish a trustworthy brand in the marketplace.

XP Antivirus

XP AntiVirus was the fifth most observed rogue security application by Symantec during this reporting period. XP AntiVirus

was, at one point, distributed by the Russian Business Network (RBN),98 and was also one of the rogue security

applications targeted by the FTC complaint against Innovative Marketing, Inc. and ByteHosting Internet Services, LLC.99

These companies were also responsible for distributing other rogue applications including WinAntivirus, DriveCleaner,

ErrorSafe, and WinFixer. WinFixer and ErrorSafe are noteworthy because of an incident where they were distributed

through banner advertisements in Windows Live™ Messenger.100

96-http://ddanchev.blogspot.com/2008/11/diverse-portfolio-of-fake-security_12.html
97-http://ddanchev.blogspot.com/2009/04/diverse-portfolio-of-fake-security_16.html
98-http://ddanchev.blogspot.com/2008/03/rogue-rbn-software-pushed-through.html
99-http://ftc.gov/opa/2008/12/winsoftware.shtm

100-http://msmvps.com/blogs/spywaresucks/archive/2007/02/18/591493.aspx

Symantec Report on Rogue Security Software
July 08 – June 09

24

Figure 19. XP AntiVirus interface

Courtesy: Symantec

XP AntiVirus was observed by Symantec to be hosted on 73 unique domains. Sites hosting XP Antivirus have also been

observed to host the following threats and rogue applications:

• AntiVirus 2008

• AntiVirus XP 2008

• Trojan.Fakeavalert

• Trojan.Galapoper.A101

• Trojan.Zlob

A few of the rogue applications and threats listed above are worthy of discussion. AntiVirus XP 2008 was implicated in an

incident where search engine advertisements were poisoned with a number of client-side exploits to install AntiVirus XP

2008.102 Trojan.Zlob was also found on sites that were hosting XP AntiVirus.

Many of the samples discussed here are hosted on sites that website reputation services have flagged as having a

reputation for malicious activity.103 While this malicious activity is not necessarily directly associated with rogue security

applications, it is likely that scam distributors are reusing these domains for various rogue software and malicious code

distribution operations. This may be to extract the maximum value from the domains under their control. Exploits

targeting client-side vulnerabilities are also present on some sites, which aid in drive-by downloads of malicious software

and rogue security applications. In particular, browser plug-in vulnerabilities are often exploited in such attacks. These

vulnerabilities are a potent means of distributing rogue security software due to the large number of users affected.

Symantec discusses the prevalence of browser plug-in vulnerabilities in Volume 14 of the Symantec Internet Security

Threat Report.104

Additional noteworthy rogue security software samples

As well as the discussion above on the most widely reported rogue security samples observed by Symantec, there are two

other examples worth additional mention that Symantec observed during this reporting period.

101-http://www.symantec.com/security_response/writeup.jsp?docid=2006-042013-1813-99
102-http://sunbeltblog.blogspot.com/2008/08/xp-antivirus-2008-now-with-sploits.html
103-http://safeweb.norton.com/
104-http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiv_04-2009.en-us.pdf : p. 40

Symantec Report on Rogue Security Software
July 08 – June 09

25

FileFix Professional

FileFix Professional105 is a rogue security application that is installed by the Trojan Xrupter.106Xrupter is a malicious

executable that is installed by Vundo Trojan variants.107 The rogue security application works in tandem with Xrupter.

When Xrupter is installed on a victim's computer, it encrypts personal documents. The Trojan then displays warnings to

the user about corrupt documents with a button to repair them (figure 20).

Figure 20. Trojan.Xrupter results detecting corrupted files

Courtesy: Symantec

When the "Repair" button is clicked, the user is directed to obtain FileFix Professional (figure 21). However, if the user opts

to obtain FileFix Professional, a demo version is instead presented and the user must pay to register for a full version in

order to recover the files. Instead of attempting to sway the user with false security alerts, this variation of the rogue

security software business model attempts to extort money from affected users in return for decrypting their documents,

which were initially encrypted when Xrupter was installed.

Figure 21. FileFix Professional

Courtesy: Symantec

The connection to the Vundo Trojan is noteworthy. Once computers are affected by Vundo, a number of misleading

applications and threats may be installed. Vundo itself has been distributed by other malicious code samples. In February

105-http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-032209-4419-99

Symantec Report on Rogue Security Software
July 08 – June 09

26

2009, Symantec observed a spike of Vundo infections as a result of the W32.Ackantta.B@mm mass-mailing worm.108 These

multiple layers of misdirection help Vundo variants, related threats, and misleading applications evade detection. Vundo

variants have also been detected exploiting vulnerabilities as a means of propagating, such as a vulnerability in Microsoft

Internet Explorer®.109

Malicious software such as the Vundo and Zlob Trojans that are used to distribute rogue security software are effectively

acting as affiliates. This implies that their revenue generation model is similar to other affiliate programs, whereby

commissions are generated on a per-install basis. As noted earlier, Vundo was listed as the most prevalent malicious code

sample for 2007 and 2008 in Volume 14 of the Symantec Internet Security Threat Report.110 One of the reasons Zlob and

Vundo were originally created was to download and install adware onto users' computers, likely earning money for the

creators through adware affiliate programs. Legislative measures have reduced the profitability of adware scams and may

have led to the modification of these Trojans for rogue security software scams instead. This may have contributed to the

success of numerous misleading applications that have been associated with Zlob and Vundo. Through these methods, it

is possible for malicious code authors to monetize their creations.

Mac OS X rogue security applications

Rogue security applications have not been limited to Microsoft Windows operating systems. In January, 2008, a rogue

security application targeting Mac OS® X users named MacSweeper111 was discovered (figure 22). Symantec believes that

MacSweeper is a Mac OS X clone of the MalwareAlarm Scanner rogue security application that runs on Microsoft

Windows.112

Figure 22. MacSweeper "scan" results page

Courtesy: Symantec

A further variant was released for Mac OS X entitled iMunizator.113 When run, iMunizator flags a number of safe system

binaries as problematic and prompts the user to pay a licensing fee to fix the problems on the computer. iMunizator is a

fairly simple rogue security application that uses UNIX command-line utilities to find random files on the computer that it

106-http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-032207-0838-99
107-http://www.symantec.com/connect/blogs/offer-too-good-refuse-courtesy-vundo

Symantec Report on Rogue Security Software
July 08 – June 09

27

will flag as problematic. This is in contrast to many rogue security software applications that purport to remove specific

well-known security risks and malicious code.

These Mac OS X samples lack the degree of social engineering and functionality demonstrated in other prevalent samples

targeting Microsoft Windows users. It is apparent that scam developers are experimenting with the Mac OS X platform, but

that the observed samples lack the sophistication of those targeting Microsoft Windows users, which have generated far

more success and revenue.

Innovations such as encrypting the user's data in exchange for a ransom payment and targeting Mac OS X users have not

resulted in rogue security applications that are highly prevalent. Neither FileFix Professional nor MacSweeper/iMunizator

rank among the top reported samples observed by Symantec. While this may be a matter of distribution, it is also likely

that conventional tactics are profitable enough that novel techniques are not required to increase the revenue of

scammers.

Top rogue security software by region

For this measurement, Symantec analyzed the regional distribution of the consumer reports between July 1, 2008, and

June 30, 2009 of the top 50 rogue security software programs (figure 23). During this period, 61 percent of rogue security

software scams observed by Symantec were attempted on users in the North America (NAM) region, 31 percent occurred

in the Europe, the Middle East, and Africa (EMEA) region, six percent occurred in the Asia-Pacific/Japan (APJ) region, and

two percent occurred in the Latin America (LAM) region.

Figure 23. Percentage of rogue security software distribution, by region

Courtesy: Symantec

The variance in the percentages of reported scams between each region suggests that regional boundaries affect the

distribution of rogue security software. This may be related to the amount of malicious activity in general that affects

these regions. As discussed in Volume 14 the Symantec Internet Security Threat Report, the majority of malicious activity

globally is detected in the NAM and EMEA regions.114 Considering that rogue security software is often installed on

computers by malicious code or through drive-by download attacks, the prevalence of malicious activity in NAM and EMEA

may be a contributing factor in the distribution of rogue security software programs.

108-http://www.symantec.com/security_response/writeup.jsp?docid=2009-022520-1425-99
109-http://www.securityfocus.com/bid/11515
110-http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiv_04-2009.en-us.pdf : p. 60
111-http://www.symantec.com/security_response/writeup.jsp?docid=2008-011613-5206-99
112-http://www.symantec.com/connect/blogs/attack-clones-ii
113-http://www.symantec.com/connect/blogs/cloning-shop-mac-users-now-open
114-http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiv_04-2009.en-us.pdf : p. 17 and 31

Symantec Report on Rogue Security Software
July 08 – June 09

28

An additional factor contributing to the prominence of NAM and EMEA in this measurement may be the regional difference

in per-installation prices paid for affiliate distribution, as discussed earlier in this report. For example, the price-per-install

for North America is as much as 10 times that of the price-per-install for Latin America, which would likely incline scam

distributors toward distributing these programs where the returns will be greater.

The overwhelming number of attempted rogue security software scams reported in North America may also be due to the

majority of programs being created in English, the primary language for the majority of people in the region. Although

some programs target other languages—such as CodeClean,115 which targets Korean users (figure 24)—the majority of the

programs that Symantec observed during this reporting period have been developed and distributed in English.

Figure 24. CodeClean rogue security application that targets Korean language users

Courtesy: Symantec

Top rogue security software installation methods

There are two main ways that rogue security software programs can get onto a user's computer, as described earlier in

this report. This is either through an intentional download, where the user is persuaded to download and install the

program, or via an unintentional download, where the download occurs without the user's permission or knowledge. This

section will examine the prevalence of the distribution methods used by the top 50 rogue security software programs

observed by Symantec during the period of this report. It is worth noting that distribution methods are not mutually

exclusive and that, in nearly 70 percent of reports for the top 50 programs, both distribution methods were employed.

The most common distribution method observed by Symantec during this reporting period was intentional downloads,

which were employed in 93 percent of the attempts of the top 50 rogue security software scams. One reason that this

method of distribution is popular may be because many users are suspicious of unauthorized installation procedures or

programs that appear on their computers without their interaction.

Legal implications could also be a factor that makes intentional downloads a popular distribution method. Downloading

and installing a program onto a computer without the user's consent is illegal in some countries. However, if a program is

115-http://www.symantec.com/security_response/writeup.jsp?docid=2007-013111-5717-99

Symantec Report on Rogue Security Software
July 08 – June 09

29

downloaded and installed intentionally, the onus could fall on the user and not the scam distributor. Scam perpetrators

operating where such restrictions exist may opt to reduce legal liability as much as possible and rely on intentional

downloads. Some rogue security software programs implement EULAs that must be accepted during installation; by

accepting a EULA, the consumer may potentially be releasing the scam distributor from legal implications.

Unintentional downloads were employed in 76 percent of the attempts in the top 50 rogue security software scams

observed by Symantec during this reporting period. As noted earlier, an unintentional download occurs when malicious

code is downloaded onto a computer without the interaction or knowledge of the victims, such as via drive-by download

attacks, or when users have been duped into downloading and installing what they think are legitimate applications, such

as missing video codecs. These downloads often contain staged downloaders that, once the user's computer is

compromised, download and install additional programs such as rogue security applications.

The lower percentages for unintentional downloads compared to intentional downloads as a distribution method may also

be a reflection of the relative skill levels of some scam authors or distributors. The development of the code required for

intrusive distribution might require a deeper technical ability than some of these people are able to learn or care to use.

Although scam distributors may pay malicious code developers per install to distribute rogue security software, some of

them might not have the desire or necessary contacts to do so. Additionally, some scammers may be effective at using

other means to lure in users, such as social engineering skills, and thus do not require the technical demands of

programming code.

Additionally, some malicious code authors may have been slow to realize the revenue generating potential of rogue

security software scams. With Trojans such as Zlob and Vundo being successful and effective affiliates for rogue security

software, there may be an increase in malicious code as a distribution method in the future as other authors realize the

earning potential from these scams.

Top rogue security software advertising methods

Scam distributors use many methods to tempt users into downloading and installing rogue security software. This section

examines the prevalence of certain advertising methods used in the top 50 rogue security software programs that

Symantec observed during this reporting period.

The most common advertising method used by the top 50 rogue security software programs that Symantec observed

during this reporting period was through dedicated websites, which were used in 93 percent of scams. It should be noted

that although the percentage of advertising using scam websites is the same as the percentage of distribution by

intentional downloading, discussed in "Top rogue security software installation methods," above (with both being 93

percent), the results are coincidental. While this method of advertising is closely related to distribution by intentional

downloads (that is, if a website exists, the program can most likely be downloaded there), the ability to also download

programs from third-party hosts means that a particular scam does not necessarily require a website in order to be

intentionally downloaded. Also, some websites dedicated to rogue security software act solely as a launching point for

drive-by download attacks, forgoing the use of distribution by intentional download altogether.

The second most common advertising method for rogue security software observed by Symantec during this reporting

period was Web advertising, which was used in 52 percent of the attempted rogue security software scams. While this may

Symantec Report on Rogue Security Software
July 08 – June 09

30

suggest that Web advertisements are not as effective as dedicated websites for promoting rogue security software, more

Web advertisements were observed for the top 10 programs than in the remaining 40 of the top 50 programs combined.

This may indicate that well-deployed Web advertisements can be a very effective method of distributing rogue security

software.

Although the reverse is not true, nearly all of the programs that use Web advertisements also use malicious code and

drive-by downloads (or both) as a distribution method. For example, the WinFixer scam—the sixth most reported scam

observed by Symantec during this reporting period—uses both a website and Web advertisements in addition to being

distributed by malicious code, including by the Vundo Trojan, and by both intentional and drive-by downloads. This may

indicate that Web advertisements are more effective as launch points for intrusive distribution tactics than they are for

luring intentional downloads. This may also explain why the percentage of rogue security software programs that use Web

advertisements is similar to the distribution method percentages of malicious code and drive-by downloads.

Symantec Report on Rogue Security Software
July 08 – June 09

31

Analysis of Rogue Security Software Distribution

This section of the Symantec Report on Rogue Security Software will expand on the overview of this topic earlier in this

report. It will discuss specific examples of how rogue security software applications are distributed, presenting more

information about specific incidents and insight into the infrastructure of rogue security software distribution.

Given that profit is a motive behind most rogue security software scams, the success of these scams depends on

convincing consumers to purchase the fake software. To do so, scam creators try to convince users of exaggerated or non-

existent threats on their computers and that the fake security software is a valid solution. As such, scam software often

mimics the appearance of legitimate security software. A common tactic is to present an interface that is similar to the

Microsoft Windows Security Center, as is shown in the discussion on AntiVirus 2008 and AntiVirus 2009, above (figure

15).116 The Security Center has been a feature of Windows since the release of XP Service Pack 2, with minor changes to

the interface in Windows Vista®; users are likely to be familiar with this interface and might consider the false applications

that mimic its appearance to be the real thing.

As noted, other scam software may mimic the appearance of well-known, genuine security software. To facilitate this,

scam authors create user-interface templates that can be reused and modified to create new variations of the scam. The

templates enable the customization of various aspects of the scam, such as the title of the rogue application, the text to

display, and the appearance of the interface. This helps scam creators to easily re-brand rogue applications once they are

identified and exposed as scams. Templates also often incorporate social engineering tactics to scare users. In one

example, a fake "blue screen of death" interface is presented that urges the user to solve this critical issue by installing a

rogue security application named SystemSecurity.117 Templates also allow for easy localization of scams for distribution in

new markets. For example, the fake "blue screen of death" template has also been observed localized into Arabic.118

Making the rogue software modular and comprised of re-usable components to perpetrate different variations of scams

reduces the time required to develop and deploy new scams. Additionally, it allows different skills to be outsourced, such

as the design of templates and social engineering angles. Symantec observed similar behavior with phishing scams in its

study of the underground economy.119 It was observed that different individuals and groups may develop modular

components of phishing methods such as scam letters and phishing website templates, which may then be sold as part of

a customized package to scam distributors. This tactic is also used by websites designed to deliver malicious code.120 The

same principle can be applied not only to the applications themselves, but also to the websites that distribute the

applications.

Scam distributors also attempt to have the websites for their rogue security applications appear at the top of search

engine results to increase the chances of being noticed—and considered genuine—by users. If these websites can appear

among legitimate websites in search results for malicious code and security-related search queries, it may be more

difficult for users to distinguish legitimate sites from those that are malicious. For example, in March 2009, distributors of

rogue security applications employed this tactic by injecting links to their software in Downadup-related search results.121

In the same month, scam distributors also manipulated search results for a number of keywords related to antivirus and

desktop applications.122

116-http://www.microsoft.com/windowsxp/using/security/internet/sp2_wscintro.mspx
117-http://blogs.zdnet.com/security/?p=3912
118-http://ddanchev.blogspot.com/2009/08/scareware-template-localized-to-arabic.html
119-http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf : p. 30
120-http://ddanchev.blogspot.com/2008/07/template-ization-of-malware-serving.html

Symantec Report on Rogue Security Software
July 08 – June 09

32

Scam distributors also capitalize upon interest in current events to lure users into visiting websites that host rogue

security software. For example, in May, 2009, one scam attempted to exploit public interest in the H1N1 virus outbreak as

a means to distribute rogue security software.123 Symantec also observed malicious code authors exploiting interest in the

H1N1 virus by developing and distributing a PDF with FAQs on the flu that also included a payload of malicious code.124

Spam distributors were also observed exploiting the headlines about H1N1.125 This demonstrates that rogue security

software scam perpetrators are willing to use the similar social engineering tactics employed by spammers and malicious

code authors.

Search engines are a common means of distributing rogue security software. Black hat SEO operations are conducted to

push sites that host rogue security applications to the top of search engine indexes.126 A common black hat SEO tactic

involves planting links to rogue security software websites on legitimate websites, such as blogging services, wikis,

forums, and social networking sites. This tactic exploits search engine indexing algorithms that determine the relevancy of

a website by the number of links that point to it. This process is typically automated by software that can visit these

various Internet locations and add content. Because this activity is considered a form of spam, many websites implement

measures such as CAPTCHA schemes to prevent content from being added automatically.127 CAPTCHA schemes are used to

ensure that human users, and not automated systems, are adding the content. This in turn has resulted in a number of

efforts to bypass CAPTCHA that range from exploiting weaknesses in CAPTCHA algorithms to outsourcing the task of

manually solving CAPTCHA challenges.128

Other black hat SEO tactics include link farming, keyword stuffing, and cloaking: link farming is an SEO tactic used to

increase search rankings by having a large group of websites include reciprocal links to each other; keyword stuffing

involves placing long lists of often irrelevant keywords into Web page content; cloaking involves creating website content

specifically for search engine website crawlers and which is different than the content accessible to users, which may

cause search engines to index the site based on misleading content and potentially improve search rankings. Black hat

SEO campaigns have also been known to exploit vulnerabilities in websites such as cross-site scripting.129 In one reported

example, vulnerabilities in a popular blogging platform were exploited to promote rogue security software.130 Scam

distributors also purchase keywords from search engines in order to boost the ranking of their scam websites and so that

the websites will appear as valid, "sponsored" results.131

Rogue security software distributors use these black hat SEO tactics in combination with other techniques such as typo-

squatting. Typo-squatting involves hosting sites with domain names that are similar to sites the scan authors are trying to

spoof. Mistyping a URL may lead a user to the spoofed site instead of the legitimate website the user is trying to reach.

Malicious or false search engines have also been employed. To get users to use the illegitimate search engine, they are

enticed to search for a special file, usually a topical video or the like. When the user searches with one of these fake search

engines, the results instead mislead the user to websites that host malicious code and rogue security software.132

Affiliate networks can provide the scam developers with the talent and resources necessary to distribute their software

using the tactics discussed above. In turn they may rely on resources in the underground economy to launch spam and

black hat SEO campaigns. This may include purchasing lists of email addresses in bulk, spam proxies, credit cards to

register domains in bulk, etc. When activities such as the development and distribution of rogue security software are

121-http://www.symantec.com/connect/blogs/downadup-related-search-indexes-poisoned-fake-av-sites
122-http://www.symantec.com/connect/blogs/yahoo-sponsored-search-results-leads-misleading-websites
123-http://ddanchev.blogspot.com/2009/05/dissecting-swine-flu-black-seo-campaign.html
124-http://www.symantec.com/connect/blogs/malicious-code-authors-jump-swine-flu-bandwagon

Symantec Report on Rogue Security Software
July 08 – June 09

33

monetized and begin to generate revenue, the demand for other products and services in the underground economy

increases as well.

Internet advertising networks have been used as a means to distribute scams. The legitimate appearance of rogue security

applications may allow scam distributors to penetrate Internet advertising networks. The advertisements are likely to

remain on the networks until the software being advertised is exposed as fraudulent. Additionally, scam distributors have

also employed "malvertising" tactics.133 In one observed attack, malicious advertisements were found to be exploiting a

client-side vulnerability.134 The advertisement redirected users to a site that exploited a vulnerability in Adobe Reader

(since patched) via a malicious PDF document. Upon exploitation, the rogue security application Anti Virus 1 was installed.

The attack also changed the system "hosts" file to redirect users to a site advertising further rogue applications.135 In

another attack, a malicious Flash advertisement that exploited a client-side vulnerability was distributed through an

advertising network to a number of high-profile websites.136 In one additional example, the advertising network for a news

site was serving advertisements that prompted users to install rogue applications.137

Such attacks damage the reputation of not only the advertising networks, but potentially of the websites that circulate the

malicious advertisements. In addition to the negative press surrounding such incidents, website reputation services may

flag these sites as disreputable or suspect. Some browsers and security software will check website reputation databases

before letting users browse to a website, thus potentially affecting legitimate traffic to flagged sites. Additionally,

advertising revenue could be lost as users begin to distrust the advertising networks and implement security measures to

block their advertisements.

In order to collect registration and/or subscription fees from consumers who have purchased rogue security software,

scam perpetrators need online payment processing services. Since the payment services used are often legitimate, there is

a constant threat that the payment service provider will discover that its service is being used for fraud. This is one reason

why rogue applications are often re-branded, to avoid credit card chargebacks and payment reversals that may ultimately

draw attention to the scam. However, rogue payment processors have also been established to serve affiliate networks

who distribute rogue security software.138 Due to their illicit nature, these rogue payment processing services run the risk

of being shut down once their activities are discovered and are often short-lived.

In order to further evade discovery, scam payment processing often occurs through a number of gateway websites

registered under different domain names that will redirect to the actual payment processor for the scam.139 The domains

are registered under a variety of email addresses to make it appear as though multiple individuals own the domains.

Scammers can acquire email addresses by means such as purchasing them in bulk in the underground economy or by the

automated generation of email accounts through popular Web-based email services. Similar approaches are used to

register domain names for hosting the scam software, as is discussed next in "Analysis of rogue security software servers."

Distributors of rogue security software may register domains with domain registrars in places where enforcement is

perceived to be weak or where anonymous registration services are offered.140 Rogue ISPs such as the RBN have also been

125-http://www.symantec.com/connect/blogs/swine-flu-outbreak-headlines-used-spammer-s-gain
126-SEO (Search Engine Optimization) is a process for making websites more popular in search engine results. Black hat SEO uses search optimization techniques that are considered unethical by the mainstream SEO

community, which may include spamming and other questionable practices. For an overview of SEO techniques and guidelines, please see: http://www.google.com/support/webmasters/bin/
answer.py?hl=en&answer=35291

127-CAPTCHA stands for “Completely Automated Public Turing test to tell Computers and Humans Apart”. CAPTCHA schemes often take the form of an image containing characters that must be entered before the user can
perform an action such as creating an account or submitting content on a website.

128-http://ddanchev.blogspot.com/2008/08/exposing-indias-captcha-solving-economy.html
129-http://ha.ckers.org/blog/20060608/xss-redirects-and-seo/
130-http://pandalabs.pandasecurity.com/archive/New-Blackhat-SEO-attack-exploits-vulnerabilities-in-Wordpress-to-distribute-rogue-antivirus-software.aspx
131-http://blogs.zdnet.com/security/?p=1995
132-http://www.computerweekly.com/Articles/2009/05/07/235935/cybercrooks-develop-own-search-engines-to-burgle-users.htm
133-Malvertising is a term to describe the practice of malicious advertising which includes tactics such as obfuscating malicious content in Flash advertisements or embedded exploit code into advertising content
134-http://www.eweek.com/c/a/Security/Attackers-Infect-Ads-With-Old-Adobe-Vulnerability-Exploit/

Symantec Report on Rogue Security Software
July 08 – June 09

34

involved in various aspects of scam development and distribution. This includes hosting domains that distribute rogue

security applications.141

Scammers also benefit by phishing personal information from users who register rogue applications. Information such as

email addresses, credit card details, and payment processing credentials can be used for further fraudulent activities or

sold in the underground economy. In this manner, a single scam can be used to generate revenue in different ways.

Furthermore, fraudulent activities such as credit card and payment processing fraud can help to finance the startup costs

of additional scams.

135-The system hosts file maps IP addresses to hostnames. The system hosts file is often consulted before domain name server lookups to resolve a hostname. This means that mappings in the hosts file often take precedence
over DNS lookups; malicious code often employs the tactic of changing hostname to IP address mappings so that users are redirected to malicious sites or blocked from visiting sites where security updates and security
software are available.

136-http://blogs.zdnet.com/security/?p=1815
137-http://blogs.zdnet.com/security/?p=3140
138-http://ddanchev.blogspot.com/2009/01/diverse-portfolio-of-fake-security.html
139-http://ddanchev.blogspot.com/2009/07/diverse-portfolio-of-fake-security.html
140-http://voices.washingtonpost.com/securityfix/2008/09/estdomains.html
141-http://rbnexploit.blogspot.com/2007/10/rbn-top-20-fake-anti-spyware-and-anti.html

Symantec Report on Rogue Security Software
July 08 – June 09

35

Analysis of Rogue Security Software Servers

In this section, Symantec conducted a geographic analysis of servers hosting rogue security software. This analysis is not

meant to represent all rogue security software servers; instead the goal was to identify any emerging patterns in the way

these servers are created, managed, and interconnected with each other. The data was collected in a two-month period

over July and August 2009.

For this measurement, Symantec analyzed 6,500 DNS entries pointing to 4,305 distinct IP addresses hosting rogue

security software servers.142 At least 45 percent of these domains were registered through just 29 out of several hundred

existing domain registrars. This may indicate that rogue security software distributors are choosing specific registrars,

possibly because of perceived lax security or oversight of the registration of names.

The DNS entries resolving to these IP addresses were first identified by monitoring DNS activity across the servers. From

this, an additional 187,514 DNS entries associated with rogue security applications were observed, for a total of 194,014

domain names. In total, 2,677 Web servers hosting domains (as identified by their unique IP addresses) were identified as

dedicated to serving only rogue security software, an additional 118 Web servers hosted rogue security software along

with domains that served malicious code, and the remaining 1,510 IP addresses served malicious code along with

innocuous domains.

Of the servers hosting rogue security software that Symantec geographically located, 53 percent were in the United States,

far more than any other country (table 3 and figure 25). The high ranking of the United States may be due to the methods

for identifying rogue security software sites, which more easily identified English-language sites than sites marketing

scams in other languages. Germany ranked second in this survey, accounting for 11 percent of the total servers hosting

rogue security software identified by Symantec. This ranking may be due to Germany being the top country in EMEA for

broadband subscribers and a major broadband connection hub.

Table 3. Servers hosting rogue security software, by country

Source: Symantec

142-The Domain Name System (DNS) is a hierarchical naming system for computers, services, or any resource connected to the Internet or a private network.

Symantec Report on Rogue Security Software
July 08 – June 09

36

Figure 25. Global distribution of rogue security software servers143

Source: Symantec

After analyzing the distribution of the servers hosting rogue security software and their corresponding DNS servers, there

appears to be a high degree of correlation between the two (figure 26). As such, it is likely that distributors of rogue

security software are not using botnets as part of their hosting infrastructure, although some malicious code, such as

Downadup, attempts to download rogue security software onto compromised computers.144 Since botnets can be easily

operated from home computers, the use of botnets as rogue security software servers would likely have resulted in a more

even distribution of server IP addresses across the entire address space, instead of the concentration that was observed.

This correlation of servers indicates that many rogue security software distributors are likely just using commercial Web

server hosting providers.

Figure 26. Distribution of rogue security software server IP addresses and their DNS servers

Source: Symantec

143-Each red dot represents a distinct server, while the different gradients on the background underline the areas with highest density of deployed servers.
144-Downadup is associated with rogue security distribution scams such as TrafficConverter.biz, as discussed above.

Symantec Report on Rogue Security Software
July 08 – June 09

37

To determine the relationship between servers (IP addresses) and domain names for rogue security software, a subset of

the total analyzed domains has been graphically represented as clusters (figure 27). This subset represents 174 servers

that were hosting a total of 30,632 distinct domain names.145 The relationship between domains (dots in the figure) that

were associated with servers is represented by the connecting lines. Clusters are formed when one server has multiple

domains associated with it.

Of this observed domain set, those that hosted rogue security software accounted for 15 percent of the total (shown as

red in the figure). Nine percent of the total domains were observed to host malware such as malicious executables, scripts,

and documents, but may not be hosting rogue security software (shown as orange), and domains that are not malicious

accounted for 76 percent of the total observed servers (shown as green).

Figure 27. Observed servers and domain name cluster relationships

Source: Symantec

145-For representation purposes, only servers that were observed hosting at least 100 distinct domains are shown in the figure; although the figure does not show all domains, all were used in the analysis.

Symantec Report on Rogue Security Software
July 08 – June 09

38

While most domain names are linked to a single Web server (shown as an isolated cluster), some rogue security software

networks span multiple Web servers. Also, some domains were observed as being hosted on more than one server, which

may be an attempt to reduce the effectiveness of mitigation measures such as IP blocking or blacklisting servers.

Figure 28, below, highlights the domain clusters that hosted rogue security software. In other words, non-malicious

servers (the green in figure 27, above) and servers hosting malicious code (orange, above) have been removed to show just

the rogue security software domain clusters.146 The figure represents 416 servers (IP addresses) hosting 9,964 rogue

security software domains (shown in red). Their relationship is shown by a connecting line.

Figure 28. Observed servers and domain name clusters hosting only rogue security software

Source: Symantec

Although a majority of the servers are not malicious, Symantec did observe a number of highly malicious servers. Of the

observed rogue security software domains, 26 percent of the total served malicious content of various types (table 4). In

Symantec Report on Rogue Security Software
July 08 – June 09

39

addition, 13 percent of the domains attempted to use browser exploits, one percent attempted to perform drive-by

downloads, which seek to infect client computers by forcing them to download and execute malware, without requiring

further action (such as a confirmation prompt) by the user, and less than one percent led to the installation of spyware on

the user's computer. (Note that a given Web server could belong to several of these categories.)

Table 4. Percentage of rogue security software domains serving malicious activity, by type

Source: Symantec

Two specific clusters of rogue security software servers from figure 28 were analyzed in detail (figures 29 and 30).

Although the two clusters initially appear to be distinct, they have a number of similarities:

• Both clusters use the exact same domain naming scheme (except that one uses “spyware” while the other

uses “virus”)

• All of the domains in each cluster use the same registrar and are serviced by the same two ISPs

• All domains within each cluster were registered in a single day and became active (serving software) at nearly

the same time

• The email addresses of all domain registrants are in “.ru” domains;

• The servers were on consecutive IP addresses

• The content of these sites was identical, with the exception of one differing image

These similarities strongly suggest that the task of registering, creating, and hosting these rogue security software

domains was automated and that the same entity may be responsible for both clusters. Also worth noting is that both

clusters are split between two different ISPs, suggesting an attempt to provide some level of redundancy in case a cluster

is taken offline by the ISP.

146-As with figure 27, for graphical clarity in figure 28, only rogue security software domain clusters containing at least 10 observed domains are shown.

Symantec Report on Rogue Security Software
July 08 – June 09

40

Figure 29. Example cluster 1147Source: Symantec

147-DNS domains are shown in light blue, DNS servers in purple, the Web server /24 subnets in yellow, and the email address of the registrant in red. Double-edged purple boxes indicate servers with co-located DNS and Web
servers.

Symantec Report on Rogue Security Software
July 08 – June 09

41

Figure 30. Example cluster 2148Source: Symantec

A commonly observed characteristic of rogue security software operations was that domain names are registered in large

groups within a span of a few days. Symantec observed one site that registered 310 .cn top-level domain names in three

days (represented in Figure 31), The 310 domain names (in blue) point to 13 IP addresses residing in five subnets (yellow)

and were registered by a number of Web-based email addresses (red) in three days (purple). The prevalent use of popular

Web-based email accounts to register these domains is assumed to be because these email services are easily

anonymized. These registrants also make use of domain registration services that can either protect registrant privacy or

ones that do not verify identities and email addresses.

148-DNS domains are shown in light blue, DNS servers in purple, the Web server /24 subnets in yellow, and the email address of the registrant in red. Double-edged purple boxes indicate servers with co-located DNS and Web
servers.

Symantec Report on Rogue Security Software
July 08 – June 09

42

Figure 31. Cluster of 310 domain names registered within three days

Source: Symantec

In another example, 750 .cn top-level domain names (resolving to 135 IP addresses in 14 subnets) were registered on

eight specific dates over a span of eight months (figure 32). It should be noted that the .cn top-level domain has no

registration restrictions and non-Chinese based operators can register a domain name. For example, of the 750 domains

registered in the second example, the majority of the IP addresses of the hosting servers (pointed to by these domains)

Symantec Report on Rogue Security Software
July 08 – June 09

43

were hosted in the United States, Germany, and Belarus. No servers could be identified as being located in China (.cn is

the domain designation for China).

Figure 32. Cluster of 750 domain names

Source: Symantec

Symantec Report on Rogue Security Software
July 08 – June 09

44

Appendix A: Protection and Mitigation

There are a number of general measures that enterprises, administrators, and end users can employ to protect against

fraud-related activities such as rogue security software scams.

Enterprise

Administrators should update antivirus definitions regularly and ensure that all desktop, laptop, and server computers are

updated with all necessary security patches from their operating system vendor. Also, computers should use the latest

protection from spyware and other security risks, such as Norton Internet Security. As compromised computers can be a

threat to other systems, Symantec also recommends that enterprises notify their ISPs of any potentially malicious activity,

such as bots. Symantec recommends that organizations perform both ingress and egress filtering on all network traffic to

ensure that malicious activity and unauthorized communications are not taking place. Organizations should also filter out

potentially malicious email attachments to reduce exposure to enterprises and end users.

Organizations should monitor all network-connected computers for signs of malicious activity including bot activity and

potential security breaches, ensuring that any infected computers are removed from the network and disinfected as soon

as possible. Organizations should employ defense-in-depth strategies, including the deployment of antivirus software and

a firewall.149

To protect against potential rogue security software scam activity, organizations should educate their end users about

these scams. They should keep their employees notified of the latest scams and how to avoid falling victim to them, as well

as provide a means to report suspected malicious rogue security software websites. By creating and enforcing policies that

identify and restrict applications that can access the network, organizations can minimize the effect of malicious activity,

and hence, minimize the effect on day-to-day operations.

Administrators can use a number of measures to protect against the effects of vulnerabilities. They should employ a good

asset management system to track what assets are deployed on the network and to determine which ones may be affected

by the discovery of new vulnerabilities. Vulnerability management technologies should also be used to detect known

vulnerabilities in deployed assets. Administrators should monitor vulnerability mailing lists and security websites to keep

abreast of new vulnerabilities in Web applications.

Website maintainers can reduce their exposure to site-specific vulnerabilities by conducting a security audit for common

vulnerabilities affecting their sites. Web application code should be audited prior to being released to production systems.

When developing Web applications, organizations should investigate the availability and applicability of secure libraries to

perform validation of user-supplied input. Secure development practices and threat modeling should also be employed

when developing Web-based applications. Web-application firewalls may also detect and prevent exploitation of Web-

based vulnerabilities on production sites.

To protect against successful exploitation of Web browser vulnerabilities, Symantec advises users and administrators to

upgrade all browsers to the latest, patched versions. Symantec recommends that organizations educate users to be

extremely cautious about visiting unknown or untrusted websites and viewing or following links in unsolicited emails.

Administrators should also deploy Web proxies in order to block potentially malicious script code. While attacks are likely

Symantec Report on Rogue Security Software
July 08 – June 09

45

to originate from websites that are trusted as well as those that are not, Web browser security features can help reduce

exposure to browser plug-in exploits, as can whitelisting. Specifically, administrators and end users should actively

maintain a whitelist of trusted websites, and should disable individual plug-ins and scripting capabilities for all other sites.

This will not prevent exploitation attempts from whitelisted sites, but may aid in preventing exploits from all other sites.

Only plug-ins that have been audited and certified should be installed on workstations throughout the organization.

Symantec recommends that certain best security practices always be followed to protect against malicious code infection.

Administrators should keep patch levels up to date, especially on computers that host public services and applications-

such as HTTP, FTP, SMTP, and DNS servers-and that are accessible through a firewall or placed in a DMZ. Email servers

should be configured to only allow file attachment types that are required for business needs and to block email that

appears to come from within the company, but that actually originates from external sources. Additionally, Symantec

recommends that ingress and egress filtering be put in place on perimeter devices to prevent unwanted activity.

Administrators should ensure that all email attachments are scanned at the gateway to limit the propagation of email-

borne threats. Additionally, all executable files originating from external sources, such as email attachments or

downloaded from websites should be treated as suspicious. All executable files should be checked by antivirus scanners

using the most current definitions.

Enterprises should take measures to prevent P2P clients from being installed on any computers on the network. They

should also block any ports used by these applications at the network boundary. End users who download files from P2P

networks should scan all such files with a regularly updated antivirus product.

End user

In addition to the protection and mitigation measures recommended for enterprises, end users could also take more

security precautions when conducting Internet activities to ensure that their computer will not be compromised and their

information will not be compromised and used for identity fraud. Users should also avoid following links from emails, as

these may be links to spoofed or malicious websites. Instead, they should manually type in the URL of the website.

Symantec also advises that users never view, open, or execute any email attachment unless the attachment is expected

and comes from a known and trusted source, and unless the purpose of the attachment is known. Also, users should be

suspicious by an email that is not directly addressed to their email address.

Users should be cautious of pop-up displays and banner advertisements that mimic legitimate displays or try to promote

security products. Also, users should not accept or open suspicious error displays from within their Web browser as these

are often methods rogue security software scams use to lure users into downloading and installing their fake product. In

addition, users should only purchase security software from reputable and trusted sources and only download

applications directly from the vendor's website or legitimate partners.

Individual Web users should also exercise caution when browsing the Web. Since malicious attacks can result in hijacking

of open sessions, users should make sure to log out of websites when their session is complete. Users should also be wary

of visiting untrusted or unfamiliar sites. Scripting and active content can also be disabled when casually browsing the

Web.

Symantec Report on Rogue Security Software
July 08 – June 09

46

Users should regularly review credit card and other financial information as this can provide information on any irregular

activities. For further information, the Internet Fraud Complaint Center (IFCC) has also released a set of guidelines on how

to avoid Internet-related scams.149 Additionally, network administrators can review Web proxy logs to determine if any

users have visited known phishing sites.

149-Defense-in-depth emphasizes multiple, overlapping, and mutually supportive defensive systems to guard against single-point failures in any specific technology or protection methodology. Defense-in-depth should
include the deployment of antivirus, firewalls, and intrusion detection systems, among other security measures.

Symantec Report on Rogue Security Software
July 08 – June 09

47

Appendix B: Methodologies

Top reported rogue security software

This metric will determine the most prevalent rogue security software programs based on the number of consumer reports

for each rogue security software program observed during the reporting period. The top five applications will be discussed,

including analysis of their affects and features. This will provide insight into which rogue security software scams have

been the most successful and may indicate prevailing attributes that will continue to be employed or enhanced in future

scams.

Top rogue security software by region

Using the top 50 rogue security software programs, as determined by the number of consumer reports per program, this

metric will discuss the geographic location of rogue security software reports. The percentage of reports in each of the

regions (NAM, LAM, EMEA, and APJ) will be examined to determine whether or not geographic boundaries affect the

distribution of software and to provide insight about whether or not these scams are tailored for specific regions or

languages.

Rogue security software distribution methods

Using the top 50 rogue security software programs, as determined by the number of consumer reports per program, this

metric will discuss how rogue security software gets onto a user's system. Information about each of the top 50 programs

will be analyzed to determine which distribution methods each program uses. The resulting data will be combined with the

number of consumer reports to determine the prevalence of each distribution method during the reporting period.

Distribution methods will include intentional downloads and unintentional downloads.

Rogue security software advertising methods

Using the top 50 rogue security software programs, as determined by the number of consumer reports per program, this

metric will discuss how attackers lure users into downloading the rogue security software. Information about each of the

top 50 programs will be analyzed to determine which advertising methods each program uses. The resulting data will be

combined with the number of consumer reports to determine the prevalence of each advertising method during the

reporting period. Advertising methods will include dedicated websites and advertisements on websites (either legitimate

or illegitimate) such as social networking sites or blogs.

Rogue security software servers

The data collection and analysis for this section occurred over a period of two months in July and August, 2009. For the

servers, data was collected and analyzed on "network observables" including IP addresses, DNS domain names, other DNS

entries pointing to the same IP, geolocation information on IP addresses, server identification string and version number,

ISP identity, DNS Registrar, DNS registrant information, uptime, and DNS-to-IP resolution changes and the speed with

which such changes occurred. In total, 6,500 DNS entries pointing to 4,305 distinct IP addresses hosting rogue security

software servers were analyzed.

Symantec Report on Rogue Security Software
July 08 – June 09

48

Using a novel attack attribution method based on a multi-criteria fusion algorithm developed by Symantec and six other

academic and industrial external partners as part of a research project, known as the Worldwide Observatory of Malicious

Behaviors and Attack Threats (WOMBAT),150 rogue security software domains were automatically grouped together based

upon common elements likely due to the same root cause.151 This method was used to identify patterns of various types of

relationships among rogue security domains and the manner in which they operate, resulting in the creation of domain

clusters.

150-WOMBAT is a three-year European Commission-funded project, which aims at providing new means to understand the existing and emerging threats that are targeting the Internet economy and its users. See
http://www.wombat-project.eu/

151-For further details on this attack attribution method, please see "Addressing the attack attribution problem using knowledge discovery and multi-criteria fuzzy decision-making", http://www.eurecom.fr/util/
publidownload.en.htm?id=2806

Symantec Report on Rogue Security Software
July 08 – June 09

49

Credits

Marc Fossi

Executive Editor

Manager, Development

Security Technology and Response

Dean Turner

Director,

Global Intelligence Network

Security Technology and Response

Eric Johnson

Editor

Security Technology and Response

Trevor Mack

Editor

Security Technology and Response

Téo Adams

Threat Analyst

Security Technology and Response

Joseph Blackbird

Threat Analyst

Security Technology and Response

Mo King Low

Threat Analyst

Security Technology and Response

David McKinney

Threat Analyst

Security Technology and Response

Marc Dacier

Senior Director

Symantec Research Labs Europe

Angelos D. Keromytis

Senior Principal Software Engineer

Symantec Research Labs Europe

Corrado Leita

Senior Research Engineer

Symantec Research Labs Europe

Marco Cova

Ph.D. candidate

University of California Santa Barbara

Jon Orbeton

Independent analyst

Olivier Thonnard

Royal Military Academy, Belgium

Symantec Report on Rogue Security Software
July 08 – June 09

50

Symantec Report on Rogue Security Software
July 08 – June 09

51

About Symantec

Symantec is a global leader in providing security,

storage and systems management solutions to help

consumers and organizations secure and manage

their information-driven world. Our software and

services protect against more risks at more points,

more completely and efficiently, enabling

confidence wherever information is used or stored.

For specific country offices

and contact numbers, please

visit our website.

Symantec World Headquarters

350 Ellis St.

Mountain View, CA 94043 USA

+1 (650) 527 8000

1 (800) 721 3934

www.symantec.com

Copyright © 2009 Symantec Corporation. All rights
reserved. Symantec and the Symantec Logo are
trademarks or registered trademarks of Symantec
Corporation or its affiliates in the U.S. and other
countries. Other names may be trademarks of their
respective owners.
10/2009 20100385

4 Conclusion

This deliverable aimed at giving an overview of existing techniques for root cause anal-
ysis, and provided some preliminary results with respect to the root cause analysis work
performed in the project so far.

We listed 6 papers that have been published at well-known, peer-reviewed workshops
and conferences. Furthermore, we included the Symantec threats intelligence report that
was partially-based on the work performed in WP5.

204

Bibliography

[1] J. Armin, J. McQuaid, and M. Jonkman. Atrivo - Cyber Crime USA. http:
//hostexploit.com/downloads/Atrivowhitepaper082808ac.pdf, 2008.

[2] D. Barbará, J. Couto, S. Jajodia, L. Popyack, and N. Wu. Adam: A testbed for
exploring the use of data mining in intrusion detection. In ACM SIGMOD Record,
30(4), pages 15–24, 2001.

[3] D. Barbará and S. J. (Eds), editors. Applications of Data Mining in Computer
Security, volume 6 of Advances in Information Security. Springer, 2002.

[4] D. Barbará and S. Jajodia, editors. Applications of Data Mining in Computer
Security, volume 6 of Advances in Information Security, chapter Data Mining For
Intrusion Detection - A Critical Review (K. Julisch). Springer, 2002.

[5] T. Bass. Intrusion detection systems and multisensor data fusion. Communications
of the ACM, 43(4):99–105, 2000.

[6] A. Belenky and N. Ansari. On deterministic packet marking. Comput. Netw.,
51(10):2677–2700, 2007.

[7] G. Beliakov, A. Pradera, and T. Calvo. Aggregation Functions: A Guide for Prac-
titioners. Springer, Berlin, New York, 2007.

[8] D. Bizeul. Russian Business Network Study. http://www.bizeul.org/files/
RBN study.pdf, 2007.

[9] S. T. Brugger. Data Mining Methods for Network Intrusion Detection. In dis-
sertation proposal, submitted to ACM Computer Surveys (under revision), 2009,
2009.

[10] H. Burch and B. Cheswick. Tracing anonymous packets to their approximate source.
In LISA’00: Proceedings of the 14th USENIX conference on System administration,
pages 319–328, Berkeley, CA, USA, 2000. USENIX Association.

205

http://hostexploit.com/downloads/Atrivo white paper 082808ac.pdf
http://hostexploit.com/downloads/Atrivo white paper 082808ac.pdf
http://www.bizeul.org/files/RBN_study.pdf
http://www.bizeul.org/files/RBN_study.pdf

Bibliography

[11] V. Chatzigiannakis, G. Androulidakis, K. Pelechrinis, S. Papavassiliou, and
V. Maglaris. Data fusion algorithms for network anomaly detection: classification
and evaluation. In IEEE International Conference on Networking and Services,
ICNS’07, Athens, Greece, June 2007, June 2007.

[12] H. Chen, W. Chung, Y. Qin, M. Chau, J. J. Xu, G. Wang, R. Zheng, and
H. Atabakhsh. Crime data mining: an overview and case studies. In Proceed-
ings of the 2003 annual national conference on Digital government research, pages
1–5. Digital Government Society of North America, 2003.

[13] Z. Chen, C. Ji, and P. Barford. Spatial-temporal characteristics of internet malicious
sources. In Proceedings of INFOCOM, 2008.

[14] S. I. Cyber-Threat Analytics (Cyber-TA). www.cyber-ta.org, [sep 2009].

[15] D. Dagon, G. Gu, C. Lee, and W. Lee. A Taxonomy of Botnet Structures. In
Annual Computer Security Applications Conference (ACSAC), 2007.

[16] H. Debar and A. Wespi. Aggregation and correlation of intrusion-detection alerts.
In RAID ’00: Proceedings of the 4th International Symposium on Recent Advances
in Intrusion Detection, pages 85–103, London, UK, 2001. Springer-Verlag.

[17] dn1nj4. The Shadowserver Foundation: RBN ”Rizing”. http://www.
shadowserver.org/wiki/uploads/Information/RBN Rizing.pdf, 2008.

[18] Ertoz, Eilertson, Lazarevic, Tan, Kumar, Srivastava, and Dokas. MINDS - Min-
nesota Intrusion Detection System. In Next Generation Data Mining, MIT Press,
2004, 2004.

[19] F-Secure Blog. Mass SQL Injcetion. http://www.f-secure.com/weblog/
archives/00001427.html, 2008.

[20] J. Figueira, S. Greco, and M. E. Ehrgott. Multiple Criteria Decision Analysis:State
of the Art Surveys. Springer, International Series in Operations Research & Man-
agement Science , Vol. 78, 2005.

[21] V. Hanna. Spamhaus: Cybercrime’s U.S. Hosts. http://www.spamhaus.org/news.
lasso?article=636, 2008.

[22] T. Holz, C. Gorecki, F. Freiling, and K. Rieck. Detection and Mitigation of Fast-
Flux Service Networks. In Network and Distributed System Security Symposium
(NDSS), 2008.

206 SEVENTH FRAMEWORK PROGRAMME

http://www.shadowserver.org/wiki/uploads/Information/RBN_Rizing.pdf
http://www.shadowserver.org/wiki/uploads/Information/RBN_Rizing.pdf
http://www.f-secure.com/weblog/archives/00001427.html
http://www.f-secure.com/weblog/archives/00001427.html
http://www.spamhaus.org/news.lasso?article=636
http://www.spamhaus.org/news.lasso?article=636

Bibliography

[23] Honeynet Project. Know Your Enemy: Fast-Flux Service Networks. http://www.
honeynet.org/papers/ff/fast-flux.html, 2007.

[24] K. Julisch and M. Dacier. Mining intrusion detection alarms for actionable knowl-
edge. In Proceedings of the 8th ACM International Conference on Knowledge Dis-
covery and Data Mining, 2002.

[25] B. Krebs. Taking on the Russian Business Network. http://voices.
washingtonpost.com/securityfix/2007/10/taking on the russian
business.html, 2007.

[26] B. Krebs. Report Slams U.S. Host as Major Source of Badware. http://voices.
washingtonpost.com/securityfix/2008/08/report slams us host as major.
html, 2008.

[27] W. Lee, S. Stolfo, and K. Mok. A data mining framework for building intrusion
detection models. In Proceedings of the 1999 IEEE Symposium on Security and
Privacy, pages 120–132, 1999.

[28] W. Lee and S. J. Stolfo. Combining knowledge discovery and knowledge engineering
to build IDSs. In RAID ’99: Proceedings of the 3th International Symposium on
Recent Advances in Intrusion Detection, 1999.

[29] McCue. Data Mining and Predictive Analysis: Intelligence Gathering and Crime
Analysis. Butterworth-Heinemann (Elsevier), May 2007, 2007.

[30] J. Mena. Investigative Data Mining for Security and Criminal Detection.
Butterworth-Heinemann (Elsevier,) Avril 2003, 2003.

[31] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson. Characteristics
of Internet Background Radiation. In Proceedings of the 4th ACM SIGCOMM
conference on the Internet Measurement, 2004.

[32] V.-H. Pham and M. Dacier. Honeypot traces forensics : the observation view
point matters. In NSS 2009, 3rd International Conference on Network and System
Security, October 19-21, 2009, Gold Coast, Australia, Dec 2009.

[33] V.-H. Pham, M. Dacier, G. Urvoy Keller, and T. En Najjary. The quest for multi-
headed worms. In DIMVA 2008, 5th Conference on Detection of Intrusions and
Malware & Vulnerability Assessment, July 10-11th, 2008, Paris, France, Jul 2008.

FP7-ICT-216026-WOMBAT 207

http://www.honeynet.org/papers/ff/fast-flux.html
http://www.honeynet.org/papers/ff/fast-flux.html
http://voices.washingtonpost.com/securityfix/2007/10/taking_on_the_russian_business.html
http://voices.washingtonpost.com/securityfix/2007/10/taking_on_the_russian_business.html
http://voices.washingtonpost.com/securityfix/2007/10/taking_on_the_russian_business.html
http://voices.washingtonpost.com/securityfix/2008/08/report_slams_us_host_as_major.html
http://voices.washingtonpost.com/securityfix/2008/08/report_slams_us_host_as_major.html
http://voices.washingtonpost.com/securityfix/2008/08/report_slams_us_host_as_major.html

Bibliography

[34] J. P.Scott. Social Network Analysis: A Handbook. Sage Publications Ltd; 2nd
edition (March 25, 2000), 2000.

[35] S. Savage, S. Savage, D. Wetherall, D. Wetherall, A. Karlin, A. Karlin, T. Anderson,
and T. Anderson. Practical network support for ip traceback. In In Proceedings of
the 2000 ACM SIGCOMM Conference, pages 295–306, 2000.

[36] C. Seifert. Capture-HPC - Honeypot Client. https://projects.honeynet.org/
capture-hpc, 2008.

[37] G. Shafer. A mathematical theory of evidence. Princeton university press, 1976.

[38] S.Jajodia, P.Liu, V.Swarup, and C.Wang, editors. Cyber Situational Awareness:
Issues and Research, volume 46 of Advances in Information Security. Springer, Nov
2009.

[39] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
B. Schwartz, S. T. Kent, and W. T. Strayer. Single-packet ip traceback. IEEE/ACM
Trans. Netw., 10(6):721–734, 2002.

[40] D. X. Song and A. Perrig. Advanced and authenticated marking schemes for IP
traceback. In Proceedings IEEE Infocomm 2001, 2001.

[41] S.Wasserman and K. Faust. Social Network Analysis: Methods and Applications.
Cambridge University Press; 1 edition (November 25, 1994), 1994.

[42] O. Thonnard and M. Dacier. A framework for attack patterns’ discovery in honeynet
data. DFRWS 2008, 8th Digital Forensics Research Conference, August 11- 13,
2008, Baltimore, USA, 2008.

[43] O. Thonnard and M. Dacier. Actionable knowledge discovery for threats intelligence
support using a multi-dimensional data mining methodology. In ICDM’08, 8th
IEEE International Conference on Data Mining series, December 15-19, 2008, Pisa,
Italy, Dec 2008.

[44] O. Thonnard, W. Mees, and M. Dacier. Addressing the attack attribution problem
using knowledge discovery and multi-criteria fuzzy decision-making. In KDD’09,
15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Work-
shop on CyberSecurity and Intelligence Informatics, June 28th - July 1st, 2009,
Paris, France, Dec 2009.

208 SEVENTH FRAMEWORK PROGRAMME

https://projects.honeynet.org/capture-hpc
https://projects.honeynet.org/capture-hpc

Bibliography

[45] X. Wang, X. Wang, D. S. Reeves, D. S. Reeves, S. F. Wu, S. F. Wu, J. Yuill, and
J. Yuill. Sleepy watermark tracing: An active network-based intrusion response
framework. In in Proc. of the 16th International Information Security Conference,
pages 369–384, 2001.

[46] C. Westphal. Data Mining for Intelligence, Fraud & Criminal Detection: Advanced
Analytics & Information Sharing Technologies. CRC Press, 1st edition (December
22, 2008), 2008.

[47] K. J. Wheaton. Top 5 intelligence analysis methods,
http://sourcesandmethods.blogspot.com, [sep 2009].

[48] D. Wheeler and G. Larsen. Techniques for Cyber Attack Attribution. Institute for
Defense Analyses, Oct 2003, 2008.

[49] R. R. Yager. On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Trans. Syst. Man Cybern., 18(1):183–190, 1988.

[50] Yegneswaran, Barford, and Johannes. Internet intrusions: global characteristics
and prevalence. In SIGMETRICS, pages 138–147, 2003.

[51] V. Yegneswaran, P. Barford, and V. Paxson. Using honeynets for internet situa-
tional awareness. In Fourth ACM Sigcomm Workshop on Hot Topics in Networking
(Hotnets IV), 2005.

[52] K. P. Yoon and C.-L. Hwang. Multiple Attribute Decision Making: An Introduction.
SAGE Publications, Quantitative Applications in the Social Sciences, 1995.

[53] Y. C. Z. Li, A. Goyal and V. Paxson. Automating analysis of large-scale botnet
probing events. In Proc. of ASIACCS, March 2009.

FP7-ICT-216026-WOMBAT 209

	Introduction
	Technical Survey of Root Cause Analysis
	Introduction
	Investigative and security data mining
	Security data mining
	Crime data mining

	Multicriteria decision analysis
	MCDA applied to security problems

	Malicious traffic analysis
	Research on monitoring darknet traffic

	Research on identifying malicious networks

	Preliminary Results (Published Papers)
	Actionable Knowledge Discovery for Threats Intelligence Support using a Multi-Dimensional Data Mining Methodology
	Addressing the Attack Attribution Problem using Knowledge Discovery and Multi-criteria Fuzzy Decision-Making
	Learning More About the Underground Economy: A Case-Study of Keyloggers and Dropzones
	Assessing Cybercrime Through the Eyes of the WOMBAT
	Honeypot traces forensics : the observation view point matters
	FIRE: FInding Rogue nEtworks
	The WOMBAT Attack Attribution method: some results
	The Symantec Public Report on Rogue Security Software

	Conclusion

