
SEVENTH FRAMEWORK PROGRAMME
Theme ICT-1-1.4 (Secure, dependable and trusted infrastructures)

WORLDWIDE OBSERVATORY OF
MALICIOUS BEHAVIORS AND ATTACK THREATS

D16 (D4.2) Analysis Report of Behavioral
Features

Contract No. FP7-ICT-216026-WOMBAT

Workpackage WP4 - Data Enrichment and Characterization
Author Herbert Bos
Version 1.0
Date of delivery M27
Actual Date of Delivery M28
Dissemination level Public
Responsible VU

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°216026.

SEVENTH FRAMEWORK PROGRAMME
Theme ICT-1-1.4 (Secure, dependable and trusted infrastructures)

The WOMBAT Consortium consists of:

France Telecom Project coordinator France
Institut Eurecom France
Technical University Vienna Austria
Politecnico di Milano Italy
Vrije Universiteit Amsterdam The Netherlands
Foundation for Research and Technology Greece
Hispasec Spain
Research and Academic Computer Network Poland
Symantec Ltd. Ireland
Institute for Infocomm Research Singapore

Contact information:
Dr. Marc Dacier
2229 Route des Cretes
06560 Sophia Antipolis
France

e-mail: Marc Dacier@symantec.com
Phone: +33 4 93 00 82 17

Marc_Dacier@symantec.com

Contents

1 Introduction 8

2 A Survey of Current Malware Behavior 11
2.1 Introduction . 11
2.2 Dataset . 12

2.2.1 Submissions . 13
2.2.2 Submitted file types . 14
2.2.3 Submission sources . 17

2.3 Observed Malicious Behavior . 17
2.3.1 File system activity . 18
2.3.2 Registry activity . 20
2.3.3 Network activity . 20
2.3.4 GUI windows . 22
2.3.5 Botnet activity . 23
2.3.6 Sandbox detection . 27

2.4 Conclusion . 29

3 Scalable, Behavior-Based Malware Clustering 30
3.1 Quality . 30
3.2 Comparative Evaluation . 33
3.3 Performance . 35
3.4 Qualitative Discussion of Clustering Results 36
3.5 Limitations and Future Work . 39

4 Effective and Efficient Malware Detection at the End Host 41
4.1 System Overview . 41
4.2 System Details . 44

4.2.1 Behavior Graphs: Specifying Program Activity 44
4.2.2 Extracting Behavior Graphs . 46
4.2.3 Matching Behavior Graphs . 47

4.3 Evaluation . 49

4

4.3.1 Detection Effectiveness . 49
4.3.2 System Efficiency . 52
4.3.3 Examples of Behavior Graphs . 54

5 System Call Analysis 57
5.1 Motivation and introduction . 57
5.2 Architecture and implementation of S2A2DE 58
5.3 Experimental setup . 64

6 Behavioral detection by grammar-based signatures 68
6.1 Detection by parsing automata . 69

6.1.1 Semantic prerequisites and consequences 71
6.1.2 Ambiguity support . 73
6.1.3 Time and space complexity . 74

6.2 Profiling the main classes of malware . 75
6.3 Prototype implementation . 76

6.3.1 Analyzer of process traces . 78
6.3.2 Analyzer of Visual Basic Scripts 81
6.3.3 Detection automata . 84
6.3.4 Malware profiler . 87

6.4 Experimentation and discussions . 87
6.4.1 Coverage . 88
6.4.2 Limitations in trace collection . 91
6.4.3 Behavior relevance . 93
6.4.4 Profiles adequacy . 94
6.4.5 Performance . 96

7 Exploit Behaviour and Shellcode Analysis 98
7.1 Analysis of shellcode behavior . 98
7.2 Advanced use of shellcode analysis in WOMBAT 99

7.2.1 Extending SGNet . 99
7.2.2 Joining forces: automatic analysis using Argos, SGNet, Nemu and

Anubis . 100

8 Conclusion 102

5

6

Abstract

This deliverable provides a discussion of the features used to characterize the behavior
of code, and a discussion of preliminary results of applying these features to a set of
malicious code. It discusses the project’s results in behavior-based clustering, malware
detection at end hosts in different ways, system call analysis, but also our work on
shellcode behavior.

1 Introduction

This deliverable provides a discussion of the features used to characterize the behavior
of code, and a discussion of preliminary results of applying these features to a set of
malicious code.

We describe techniques to enrich and characterize the malicious code that is collected
in WP3. The main idea is to enrich the collected code - with the help of metadata that
might provide insights into the origin of the code, as well as the intentions of those that
created, released or used it. In this deliverable and indeed the entire work package, we
deliberately use the term ‘code’ in a relatively broad sense. It is not limited to malware
samples that are available as binary executables, but also takes into account any other
element that is sent as part of an attack process. The reason is that all these elements
share a common characteristic. They aim at having certain actions performed for the
benefit of an adversary, without the conscious consent of the use. The form in which
the malicious code is delivered is not particularly relevant, and our techniques can be
equally applied to malicious code in different forms.

In this deliverable we are interested in the code’s behavior. Models of program behav-
ior are used frequently in host-based intrusion detection - e.g., in the form of system call
anomaly detection. In this context, behavioral models are used to protect the program
against code-injection attacks, by comparing the program execution with the expected
behavior. Models that embody the permitted behavior of the program can be derived
through static analysis [39, 50, 94] or learning from dynamic traces [40, 44]. As current
system typically do not take into account order, dependency, or data flow information
regarding system calls is, it is difficult to distinguish between malicious and benign pro-
grams in many circumstances. This is confirmed by the high false positive rate that is
reported in these approaches.

We define the behavior of a piece of code as the observable effect this code has on its
environment. Code behavior can be defined at different levels of granularity, depending
on what is considered the program’s environment. We have looked at two approaches,
one that only considers the effects of code within a process, and one that monitors the
interaction of a process and the underlying operating system. Note that in both cases,
it is desirable to formalize code behavior (using a formal model or language) in order to
precisely describe and reason about malicious actions.

8

Intra-process Behavior The first approach is to define behavior as the effects a code
sequence has on the state of a process. For our purpose, the state of a process is defined
as the content of the memory address space. The effect on this state are modifications
to the contents of the address space. Characterizing intra-process behavior is useful for
the following reasons:

� Exploit payload detection: By analyzing the actions of a piece of code on the
process memory space, we can identify the actual, nefarious actions within a given
exploit payload. This allows us to generate more precise signatures, also in case of
polymorphic attacks.

� Malware characterization: We can analyze a code sequence for the occurrence
of instructions that modify certain memory locations in a fashion that is indicative
of a nefarious purpose. For example, we can identify decryption routines in which
a number of consecutive locations in memory are modified, a technique often used
by viruses and worms.

Interaction with Operating System An alternative approach to specify code behavior
is to view the program as a black-box, focusing only on its interaction with the operating
system. Such monitoring can be performed by the observation of the operating system
calls invoked by this process. One way to use system call information is to characterize
code behavior based on the type of system calls this code performs, as well as an analysis
of the function arguments.

In addition to the knowledge of the type of operating system calls that are invoked
and the arguments that are used, it is also important to have access to a mechanism
that provides precise information about data flow dependencies between arguments. To
see why this might be important, consider a worm that spreads by sending mails with
its own executable as attachment. When analyzing the system calls that this worm
performs, we will observe a set of calls that read a file (i.e., the worm program) and a
set of calls that send data over the network (to the mail server). Given the additional
information that the data sent over the network was previously read from the program’s
own executable provides additional information that helps to distinguish this suspicious
worm behavior from the behavior of a mail client. The reason is that a mail client might
also read files (e.g., to load attachments) and send data over the network. Thus, the
mail client and the worm cannot be distinguished by looking at the system calls alone.

Outline The remainder of this deliverable is structured as follows. In Chapter 2, we will
present a survey of current malware behavior, which serves both as concrete result and
as context for the remaining chapters. In Chapter 3, we present evaluation results for

FP7-ICT-216026-WOMBAT 9

1 Introduction

the behavioral malware clustering techniques introduced in Deliverable D08 (D4.1). In
Chapter 4, we discuss how we improved a scanner and detection system that worked by
way of information flow analysis in the end host. Chapter 5 explains how we monitor the
behavior of malware by analysis of the system calls. In Chapter 6, we present malware
behavioral detection by grammar-based signatures. Besides the eventual malware we
also study the behavior of shellcode. Our progress in this area is presented in Chapter 7.
Finally, we conclude this deliverable in Chapter 8.

10 SEVENTH FRAMEWORK PROGRAMME

2 A Survey of Current Malware Behavior

2.1 Introduction

Malicious software (or malware) is one of the most pressing and major security threats
facing the Internet today. Anti-virus companies typically have to deal with tens of
thousands of new malware samples every day. Because of the limitations of static anal-
ysis, dynamic analysis tools are typically used to analyze these samples, with the aim
of understanding how they behave and how they launch attacks. This understanding
is important to be able to develop effective malware countermeasures and mitigation
techniques.

In this survey, we set out to provide insights into common malware behaviors. Our
analysis and experiences are based on the malicious code samples that were collected
by Anubis [12, 21], our dynamic malware analysis platform. When it receives a sam-
ple, Anubis executes the binary and monitors the invocation of important system and
Windows API calls, records the network traffic, and tracks data flows. This provides a
comprehensive view of malicious activity that is typically not possible when monitoring
network traffic alone.

Anubis receives malware samples through a public web interface and a number of feeds
from security organizations and anti-malware companies. These samples are collected by
honeypots, web crawlers, spam traps, and by security analysts from infected machines.
Thus, they represent a comprehensive and diverse mix of malware found in the wild.
Our system has been live for a period of about two years. During this time, Anubis has
analyzed almost one million unique binaries (based on their MD5 file hashes). Given
that processing each malware program is a time consuming task that can take up to
several minutes, this amounts to more than twelve CPU years worth of analysis.

When compiling statistics about the behaviors of malicious code, one has to consider
that certain malware families make use of polymorphism. Since samples are identified
based on their MD5 file hashes, this means that any malware collection typically con-
tains more samples of polymorphic malware programs than of non-polymorphic families.
Unfortunately, this might skew the results so that the behavior (or certain actions) of a
single, polymorphic family can completely dominate the statistics. To compensate for
this, we analyze behaviors not only based on individual samples in our database but also

11

2 A Survey of Current Malware Behavior

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

Mar
07

May
07

Jul
07

Sep
07

Nov
07

Jan
08

Mar
08

May
08

Jul
08

Sep
08

Nov
08

Submitted
New

Analyzed

Figure 2.1: Anubis submission statistics.

based on malware families (clusters).
For this survey, we performed an analysis of almost one million malware samples. The

main contribution are statistics about and insights into malicious behaviors that are
common among a diverse range of malware programs. We also consider the influence
of code polymorphism on malware statistics. To this end, we compare analysis results
based on individual samples to results based on malware families.

2.2 Dataset

In this section, we give a brief overview of the data that Anubis collects. As mentioned
previously, a binary under analysis is run in an emulated operating system environment
(a modified version of Qemu [23]) and its (security-relevant) actions are monitored. In
particular, we record the Windows native system calls and Windows API functions that

12 SEVENTH FRAMEWORK PROGRAMME

2.2 Dataset

the program invokes. One important feature of our system is that it does not modify
the program that it executes (e.g., through API call hooking or breakpoints), making it
more difficult to detect by malicious code. Also, our tool runs binaries in an unmodified
Windows environment, which leads to good emulation accuracy. Each sample is run until
all processes are terminated or a timeout of four minutes expires. Once the analysis is
finished, the observed actions are compiled in a report and saved to a database.

Our dataset covers the analysis reports of all files that were submitted to Anubis in
the period from February 7th 2007 to December 31st 2008, and that were subsequently
analyzed by our dynamic analysis system in the time period between February 7th 2007
and January 14th 2009. This dataset contains 901,294 unique samples (based on their
MD5 hashes) and covers a total of 1,167,542 submissions. Typically, a given sample is
only analyzed once by our analysis system. That is, when a sample is submitted again,
we return the already existing analysis report without doing an actual analysis.

Figure 2.1 shows the number of total samples, the number of new samples, and the
number of actually analyzed samples submitted to Anubis, grouped by months. We
consider a file as being new when, at the time of its submission, we do not have a
file with the same MD5 hash in our repository. As one can see, we have analyzed
about fifty thousand samples on average per month in the year 2008. When we first
launched the Anubis online analysis service, we received only few samples. However,
as the popularity of Anubis increased, it was soon the computing power that became
the bottleneck. In fact, in July and August 2008, we had to temporarily stop some
automatic batch processing to allow our system to handle the backlog of samples.

Naturally, the Anubis tool has evolved over time. We fixed bugs in later versions or
added new features. Given that there is a constant stream of new malware samples
arriving and the analysis process is costly, we typically do not rerun old samples with
each new Anubis version. Unfortunately, this makes it a bit more difficult to combine
analysis results that were produced by different versions of Anubis into consolidated
statistics. In some cases, it is possible to work around such differences. In other cases
(in particular, for the analysis of anti-sandbox techniques presented Section 2.3.6), we
had to confine ourselves to results for a smaller subset of 330,088 analyzed PE files. The
reason is that necessary information was not present in older reports.

2.2.1 Submissions

Figure 2.2 shows the number of different sources that submit a particular sample to
Anubis. The graph illustrates that most of the samples we receive are submitted by one
source only. Even though the curve decreases quickly, there is still a significant number
of samples that are submitted by 10 to 30 different sources.

FP7-ICT-216026-WOMBAT 13

2 A Survey of Current Malware Behavior

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 30 40 50 60 70

N
um

be
r

of
 s

am
pl

es

Number of distinct sources

Figure 2.2: Number of distinct sources for each sample.

We have made the experience that measuring the number of sources that submit a
certain sample tends to indicate how widespread a certain malware sample is in the wild.
In fact, this premise is supported by the results of the anti-virus scans that we run on
each sample that we receive. For example, if we consider the samples submitted by one
source, 73% of the submissions are categorized by two out of five anti-virus scanners as
being malicious. In comparison, 81% of the submissions that are submitted by at least
3 different sources are identified as being malicious by anti-virus software. Furthermore,
among the samples that are submitted by 10 or more sources, 91% are identified as being
malicious.

2.2.2 Submitted file types

One problem with running an online, public malware analysis service is that one can
receive all sorts of data, not only malware. In fact, users might even try to submit

14 SEVENTH FRAMEWORK PROGRAMME

2.2 Dataset

UPX
Allaple

FSG
PECom

pact

ASPack

Unknown_33

Them
ida

ASProtect

Upack

NsPack

Expressor

others

P
er

ce
nt

ag
e

of
 s

am
pl

es
 p

ac
ke

d

15.61

12.28

5.69

3.62

2.46

1.17 1.04 0.91 0.85 0.77 0.54

3.98

Figure 2.3: Overview of used packers

applications such as Microsoft Word or Microsoft Internet Explorer just to see how
the system reacts. Furthermore, unfortunately, not all the submitted samples are valid
Windows PE executables [71] (around 14% are not). Table 2.1 shows a breakdown of
the different file types submitted to Anubis. As can be seen from this table, fortunately
for us, most of the files that are sent to Anubis can be analyzed. The category of
non PE files includes mostly different archive formats (ZIP and RAR archives) and MS
Office documents (such as Word and Excel), but also a small number of shell scripts
and executables for different operating systems (such as DOS, Linux). According to
SigBuster, a signature-based scanner for packers, 40.64% of the analyzed PE files are
packed. Figure 2.3 provides an overview of the most common packers.

FP7-ICT-216026-WOMBAT 15

2 A Survey of Current Malware Behavior

PE files (770,960) DLL files (75,505)
Drivers (4,298)
Executables (691,057)

Non PE files (130, 334) ZIP archives (17,059)
RAR archives (25,127)
HTML files (27,813)
Other (60,335)

Table 2.1: File types submitted to Anubis.

Observed Behavior Percentage of Percentage of
Samples Clusters

Installation of a Windows kernel driver: 3.34% 4.24%
Installation of a Windows service: 12.12% 7.96%
Modifying the hosts file: 1.97% 2.47%
Creating a file: 70.78% 69.90%
Deleting a file: 42.57% 43.43%
Modifying a file: 79.87% 75.62%
Installation of an IE BHO: 1.72% 1.75%
Installation of an IE Toolbar: 0.07% 0.18%
Display a GUI window: 33.26% 42.54%
Network Traffic: 55.18% 45.12%
Writing to stderr: 0.78% 0.37%
Writing to stdout: 1.09% 1.04%
Modifying a registry value: 74.59% 69.92%
Creating a registry key: 64.71% 52.25%
Creating a process: 52.19% 50.64%

Table 2.2: Overview of observed behavior.

16 SEVENTH FRAMEWORK PROGRAMME

2.3 Observed Malicious Behavior

Submitter Category % of total tasks
Category Members submitted
Large (1000-*) 20 89.1%
Medium (100-1000) 112 3.8%
Small (10-100) 1279 2.5%
Single (1-10) 30944 4.5%

Table 2.3: Submission sources.

2.2.3 Submission sources

Over the two-year time period that we have provided the service, Anubis received samples
from more than 120 different countries. Depending on the number of samples submitted,
we have grouped the Anubis submitters into four different categories: large, medium,
small, single. We define a large submitter as an entity (i.e., a person, an organization)
that has submitted more than one thousand different (per MD5 hash) samples. A
medium submitter is an entity that has submitted between 100 and 1,000 different
samples. A small submitter is an entity that has submitted between 10 and 100 different
samples, and finally, a single submitter is an entity that has submitted less than 10
samples. Table 2.3 summarizes our findings.

Note that there are 20 large submitters (with more than one thousand different samples
submitted) who account for almost 90% of the Anubis submissions. Interestingly, the
number of single submitters is very high. However, these users are only responsible for
about 5% of the total submissions. According to anti-virus results that we run on every
submitted sample, the medium submitters (probably represented by malware analysts)
are more reliable in submitting malicious samples (i.e., 75% of their submissions are
flagged as being malicious). In comparison, only 50% of the samples submitted by
single submitters are identified as being malicious, suggesting that single individuals are
probably more likely to submit random files, possibly to test the Anubis system.

2.3 Observed Malicious Behavior

In this section, we present detailed discussions on the file, registry, network, and botnet
activity that we observed when analyzing the Anubis submissions. The goal is to provide
insights into malicious behaviors that are common among a diverse range of malware
programs. An overview of interesting activity is shown in Table 2.2. In this table, we
show the fraction of samples that perform certain high-level activity. We also provide the
behavioral information with respect to the number of malware families, approximated

FP7-ICT-216026-WOMBAT 17

2 A Survey of Current Malware Behavior

Autostart Location Percentage Percentage
of Samples of Clusters

HKLM\System\Currentcontrolset\Services\%\Imagepath 17.53% 11.67%
HKLM\Software\Microsoft\Windows\Currentversion\Run% 16.00% 17.80%
HKLM\Software\Microsoft\Active Setup\Installed Components% 2.50% 2.79%
HKLM\Software\Microsoft\Windows\Currentversion\Explorer\Browser Helper Objects% 1.72% 1.75%
HKLM\Software\Microsoft\Windows\Currentversion\Runonce% 1.60% 3.07%
HKLM\Software\Microsoft\Windows\Currentversion\Explorer\Shellexecutehooks% 1.30% 2.29 %
HKLM\Software\Microsoft\Windows NT\Currentversion\Windows\Appinit Dlls 1.09% 0.89%
HKLM\Software\Microsoft\Windows NT\Currentversion\Winlogon\Notify% 1.04% 1.89%
HKLM\Software\Microsoft\Windows\Currentversion\Policies\Explorer\Run% 0.67% 1.04%
C:\Documents and Settings\%\Start Menu\Programs\Startup\% 0.20% 0.95%

Table 2.4: Top 10 Autostart locations.

as clusters of samples that exhibit similar behaviors [22]. It is interesting to observe
that the differences are often not very pronounced. One reason is that the clustering
process was using a tight threshold. That is, samples are only grouped when they
exhibit very similar activity, resulting in a large number of clusters. Another reason is
that the activity in Table 2.2 is quite generic, and there is not much difference at this
level between individual samples and families. The situation changes when looking at
activity at a level where individual resources (such as files, registry keys) are considered.
For example, 4.49% of all samples create the file C:\WINDOWS\system32\urdvxc.exe,
but this is true for only 0.54% of all clusters. This file is created by the well-known,
polymorphic allaple worm, and many of its instances are grouped in a few clusters.
Another example can be seen in Table 2.4. Here, 17.53% of all samples use a specific
registry key for making the malware persistent. When looking at the granularity of
clusters (families), this number drops to 11.67%. Again, the drop is due to the way in
which allaple operates. It also demonstrates that using statistics based on malware
clusters is more robust when large clusters of polymorphic malware samples are present
in the dataset.

2.3.1 File system activity

Looking at Table 2.2, we can see that, unsurprisingly, the execution of a large number
of malware samples (70.8% of all binaries) lead to changes on the file system. That is,
new files are created and existing files are modified.

When analyzing the created files in more detail, we observe that they mostly belong
to two main groups: One group contains executable files, typically because the malware
copies or moves its binary to a known location (such as the Windows system folder).
Often, this binary is a new polymorphic variant. In total, 37.2% of all samples create

18 SEVENTH FRAMEWORK PROGRAMME

2.3 Observed Malicious Behavior

at least one executable file. Interestingly, however, only 23.2% of all samples (or 62% of
those that drop an executable) choose the Windows directory or one of its sub-folders as
the target. A large fraction – 15.1% – create the executable in the user’s folder (under
Document and Settings). This is interesting, and might indicate that, increasingly,
malware is developed to run successfully with the permissions of a normal user (and
hence, cannot modify the system folder).

The second group of files contains non-executables, and 63.8% of all samples are
responsible for creating at least one. This group contains a diverse mix of temporary
data files, necessary libraries (DLLs), and batch scripts. Most of the files are either
in the Windows directory (53% of all samples) or in the user folder (61.3%1). One
aspect that stands out is the significant amount of temporary Internet files created by
Internet Explorer (in fact, the execution of 21.3% of the samples resulted in at least
one of such files). These files are created when Internet Explorer (or, more precisely,
functions exported by iertutil.dll) are used to download content from the Internet.
This is frequently used by malware to load additional components. Most of the DLLs
are dropped into the Windows system folder.

The modifications to existing files are less interesting. An overwhelming majority of
this activity is due to Windows recording events in the system audit file system32\config\SysEvent.Evt.
In a small number of cases, the malware programs infect utilities in the system folder or
well-known programs (such as Internet Explorer or the Windows media player).

In the next step, we examined the deleted files in more detail. We found that most
delete operations target (temporary) files that the malware code has created previously.
Hence, we explicitly checked for delete operations that target log files and Windows
event audit files. Interestingly, Windows malware does not typically attempt to clear
any records of its activity from log data (maybe assuming that users will not check these
logs). More precisely, we find that 0.26% of the samples delete a *log file, and only
0.0018% target *evt files.

We also checked for specific files or file types that malware programs might look for on
an infected machine. To this end, we analyzed the file parameter to the NtQueryDirectoryFile
system call, which allows a user (or program) to specify file masks. We found a number
of interesting patterns. For example, a few hundred samples queried for files with the
ending .pbk. These files store the dial-up phone books and are typically accessed by
dialers. Another group of samples checked for files ending with .pbx, which are Outlook
Express message folder.

1Note that the numbers exceed 100% as a sample can create multiple files in different locations.

FP7-ICT-216026-WOMBAT 19

2 A Survey of Current Malware Behavior

2.3.2 Registry activity

A significant number of samples (62.7%) create registry entries. In most cases (37.7 % of
those samples), the registry entries are related to control settings for the network adapter.
Another large fraction – 22.7% of the samples – creates a registry key that is related to
the unique identifiers (CLSIDs) of COM objects that are registered with Windows. These
entries are also benign. But since some malware programs do not change the CLSIDs of
their components, these IDs are frequently used to detect the presence of certain malware
families. We did also find two malicious behaviors that are related to the creation of
registry entries. More precisely, a fraction (1.59%) of malware programs creates an
entry under the key SystemCertificates\TrustedPublisher\Certifi- cates. Here,
the malware installs its own certificate as trusted. Another group of samples (1.01 %)
created the Windows\CurrentVersion\Policies\System key, which prevents users from
invoking the task manager.

We also examined the registry entries that malware programs typically modify. Here,
one of the most-commonly-observed malicious behavior is the disabling of the Windows
firewall – in total, 33.7% of all samples, or almost half of those that modify Windows keys,
perform this action. Also, 8.97% of the binaries tamper with the Windows security set-
tings (more precisely, the MSWindows\Security key). Another important set of registry
keys is related to the programs that are automatically launched at startup. This allows
the malware to survive a reboot. We found that 35.8% of all samples modify registry
keys to get launched at startup. We list that Top 10 Autostart locations in Table 2.4.
As can be seen, the most common keys used for that purpose are Currentversion\Run
with 16.0% of all samples and Services\Imagepath with 17.53%. The Services reg-
istry key contains all configuration information related to Windows services. Programs
that explicitly create a Windows service via the Windows API implicitly also modify
the registry entries under this key.

2.3.3 Network activity

Table 2.5 provides an overview of the network activities that we observed during analysis.
Figure 2.4 depicts the use of the HTTP, IRC, and SMTP protocols by individual samples
over a one and a half year period. In contrast, Figure 2.5 shows the usage of the HTTP,
IRC, and SMTP protocols once families of malware samples are clustered together (using
our clustering approach presented in [22]). These two graphs clearly demonstrate the
usefulness of clustering in certain cases. That is, when the first graph is observed, one
would tend to think that there is an increase in the number of samples that use the
HTTP protocol. However, after the samples are clustered, one realizes that the use

20 SEVENTH FRAMEWORK PROGRAMME

2.3 Observed Malicious Behavior

Observed Behavior Percentage of Percentage of
Samples Clusters

Listen on a port: 1.88% 4.39%
TCP traffic: 45.74% 41.84%
UDP traffic: 27.34 % 25.40%
DNS requests: 24.53% 28.42%
ICMP-traffic: 7.58% 8.19%
HTTP-traffic: 20.75% 16.28%
IRC-traffic: 1.72% 4.37%
SMTP-traffic: 0.89% 1.57%
SSL: 0.23% 0.18%
Address scan: 19.08% 16.32%
Port scan: 0.01% 0.15%

Table 2.5: Overview of network activities.

of the HTTP protocol remains more or less constant. Hence, the belief that there is
an increase in HTTP usage is not justified, and is probably caused by an increase in
the number of polymorphic samples. However, the graph in Figure 2.5 supports the
assumption that IRC is becoming less popular.

Moreover, we observed that 796 (i.e., 0.23%) of the samples used SSL to protect the
communication. Almost all use of SSL was associated to HTTPS connections. However,
8 samples adopted SSL to encrypt traffic targeting the non-standard SSL port (443).
Interestingly, most of the time the client attempted to initiate an SSL connection, it
could not finish the handshake.

In the samples that we analyzed, only half of the samples (47.3%) that show some
network activity also query the DNS server to resolve a domain name. These queries
were successful most of the time. However, in 9.2% of the cases, no result was returned.
Also, 19% of the samples that we observed engaged in scanning activity. These scans
were mostly initiated by worms that scan specific Windows ports (e.g., 139, 445) or ports
related to backdoors (e.g., 9988 – Trojan Dropper Agent). Finally, 8.9% of the samples
connected to a remote site to download another executable. Figure 2.6 shows the file
sizes of these second stage malware programs, compared with the size of the executable
samples submitted to Anubis. As one may expect, the second stage executables are in
average smaller than the first stage malware.

Note that over 70% of the samples that downloaded an executable actually downloaded
more than one. In fact, we observed one sample that downloaded the same file 178 times

FP7-ICT-216026-WOMBAT 21

2 A Survey of Current Malware Behavior

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Mar
07

May
07

Jul
07

Sep
07

Nov
07

Jan
08

Mar
08

May
08

Jul
08

Sep
08

Nov
08

HTTP
SMTP

IRC

Figure 2.4: Network protocols (by samples).

during the analysis time of four minutes (i.e., the download was corrupted with each
download, so the sample immediately attempted another download).

2.3.4 GUI windows

Table 2.2 shows that a surprising fraction of samples (33.26%) display a GUI window.
Closer analysis reveals that only a small set (2.2%) is due to program crashes. The
largest fraction (4.47%) is due to GUI windows that come without the usual window
title and contain no window text. Although we were able to extract window titles or
window text in the remaining cases, it is difficult to discover similarities. Window names
and texts are quite diverse, as a manual analysis of several dozens of reports confirmed.
The majority of GUI windows are in fact simple message boxes, often pretending to
convey an error of some kind. We believe that their main purpose lies in minimizing
user suspicion. An error message draws less attention than a file that does not react

22 SEVENTH FRAMEWORK PROGRAMME

2.3 Observed Malicious Behavior

 0

 5

 10

 15

 20

 25

 30

Mar
07

May
07

Jul
07

Sep
07

Nov
07

Jan
08

Mar
08

May
08

Jul
08

Sep
08

Nov
08

HTTP
SMTP

IRC

Figure 2.5: Network protocols (by families/clusters).

at all when being double clicked. For example, 1.7% of the samples show a fabricated
message box that claims that a required DLL was not found. However, if this error
message was authentic, it would be created on behalf of the csrss.exe process.

2.3.5 Botnet activity

Although a relative recent phenomenon, botnets have quickly become one of the most
significant threats to the security of the Internet. Recent research efforts have led to
mechanisms to detect and disrupt botnets [53]. To determine how prevalent bots are
among our submissions, we analyzed the network traffic dumps that Anubis has recorded.
For this, we were interested in detecting three bot families: IRC, HTTP, and P2P.

The first step in identifying a bot based on an analysis report is to determine the
network protocol that is being used. Of course, the protocol detection needs to be
done in a port-independent fashion, as a bot often communicates over a non-standard

FP7-ICT-216026-WOMBAT 23

2 A Survey of Current Malware Behavior

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 50 100 150 200 250

N
um

be
r

of
 s

am
pl

es

Size (KB)

Anubis Samples
Second Stage Malware

Figure 2.6: Sample sizes.

port. To this end, we implemented detectors for IRC, HTTP, and the following P2P
protocols: BitTorrent, DirectConnect, EDonkey, EmuleExtension, FastTrack, Gnutella,
and Overnet.

In the next step, we need to define traffic profiles that capture expected, bot-like
behaviors. Such profiles are based on the observation that bots are usually used to
perform distributed denial-of-service (DDoS) attacks, send out many spam e-mails, or
download malicious executables. Hence, if we see signs for any such known activity in
a report (e.g., address scans, port scans, DNS MX queries, a high number of SMTP
connections, etc.), we consider this sample a bot candidate. In addition, we use some
heuristics to detect known malicious bot conversations such as typical NICKNAME,
PRIVMSG, and TOPIC patterns used in IRC communication, or common HTTP bot
patterns used in URL requests. The bot analysis is also used to create a blacklist of
identified command and control servers. This blacklist is constantly updated and is also
used to identify and verify new bot samples.

24 SEVENTH FRAMEWORK PROGRAMME

2.3 Observed Malicious Behavior

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Mar
07

May
07

Jul
07

Sep
07

Nov
07

Jan
08

Mar
08

May
08

Jul
08

Sep
08

S
am

pl
es

 [%
]

IRC
HTTP
Storm

Storm (Encrypted)

Figure 2.7: Botnet submissions (by samples).

Our analysis identified 36,500 samples (i.e., 5.8%) as being bots (i.e., 30,059 IRC bots,
4,722 HTTP bots, and 1,719 P2P bots). Out of the identified samples, 97.5% were later
correctly recognized by at least two anti-virus as malware. However, it was often the
case that anti-virus programs misclassified the sample, e.g. by flagging a storm worm
variation as an HTTP Trojan. Also, all P2P bots we detected were variations of the
Storm worm.

Figure 2.7 and 2.8 show the bot submission (grouped by type) based on unique samples
and unique clusters, respectively. By comparing the IRC botnet submissions in the two
graphs, we can observe that, in 2007, most of IRC botnets were belonging to different
clusters. In 2008 instead, we still received an high number of IRC bots, but they were
mostly polymorphic variations of the same family. As an example, the peak that we
observed in May 2008 is due to a large number of polymorphic variations of W32.Virut.

Interestingly, we are able to identify samples that, months after their first appearance,
are still not recognized by any anti-virus software. This is probably due to the polymor-

FP7-ICT-216026-WOMBAT 25

2 A Survey of Current Malware Behavior

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Mar
07

May
07

Jul
07

Sep
07

Nov
07

Jan
08

Mar
08

May
08

Jul
08

Sep
08

C
lu

st
er

s
[%

]
IRC

HTTP
Storm

Storm (Encrypted)

Figure 2.8: Botnet submissions (by families/clusters).

phism and metamorphism techniques used in the malware code. We also verified how
many samples were identified by one anti-virus vendor as being a bot and cross-checked
these samples with our detection technique. We missed 105 samples that the anti-virus
software was able to detect. One reason for this could be the four-minute maximum
runtime limit for the samples emulated in the Anubis system.

The Storm worm began infecting thousands of computers in Europe and the United
States on Friday, January 19, 2007. However, Anubis received the first storm collection
(96 samples) in April 2007. Note that most of the submitted samples of Storm after
October 1st are dominated by variants with the encryption capability (i.e., 93%). We
obtained the first sample using encrypted communication in October 2007.

When IRC bots are analyzed in more detail, one observes that the channel topic is
base64-encoded 13% of the time. During the time in which the samples were executed
in Anubis, we also collected over 13,000 real commands that the bot master sent to
malware under analysis. In 88% of the cases, the commands were instructing the client

26 SEVENTH FRAMEWORK PROGRAMME

2.3 Observed Malicious Behavior

Observed Comparison with Number of Number of
Samples Clusters

Windows Product Id of Anubis: 55 28
Windows Product Id of CWSandbox: 32 14
Windows Product Id of Joebox: 32 14
Executable name of sample.exe: 35 17
Computer name of Anubis: 4 4
Qemu’s HD name: 2 2
VMWare’s HD name: 1 1
Windows user name of ’user’: 2 2
Any Anti-Anubis comparison: 99 54
Any Anti-Sandbox comparison: 100 55

Table 2.6: Overview of observed comparisons.

to download some file (e.g., get and download commands). Some other interesting
commands that we observed were ipscan, login, keylog, scan, msn, and visit.

We also analyzed how many samples tried to disguise their activities by using standard
protocols on non-standard ports. For the HTTP bots, 99.5% of the samples connected
to the ports 80 and 8080. Only 62 samples were using non-standard ports. However, for
the IRC bots, the picture is quite different. 92% of the samples were connecting to an
IRC server running on a non-standard port. For example, the ports 80 and 1863 (i.e.,
Microsoft Messenger) are very common alternatives, often used to bypass firewalls.

Finally, we can classify the 1,719 Storm samples that have been submitted to Anubis
into two classes: variants that use encrypted communication channels, and those that
do not support encryption. As far as the decryption key is concerned, we only observe
one symmetric key consistently being used to encrypt Storm traffic.

2.3.6 Sandbox detection

Another interesting aspect of malware behavior is its capability to detect the presence
of an analysis environment such as Anubis. Dynamic analysis systems are a popular
means to gather data about malicious code, and it is not surprising that malware is
using techniques to thwart such analysis. When a malware program detects a sandbox,
it typically alters its behavior - most of the time, it just quits. In this section, we attempt
to estimate the number of samples that use (general and Anubis specific) anti-sandbox
techniques.

FP7-ICT-216026-WOMBAT 27

2 A Survey of Current Malware Behavior

Sandbox detection techniques fall into two main classes: One class is comprised of
instruction-level detection techniques, which are techniques that determine the difference
between a real CPU and an emulated one by only making use of CPU instructions. The
second class are API-level detection methods, which query the environment by calling
one or several (Windows) API functions.

Unfortunately, we have currently no good way to detect instruction-level detection
attempts. While it is theoretically possible to monitor single instructions in a full system
emulator, for performance reasons, Anubis essentially works at the API (and system call)
level. Since Anubis leverages Qemu for its full system emulation, it is susceptible to the
same detection methods as Qemu is. In particular, several of the detection strategies (all
of them are instruction-level detections) outlined in [41] and [80] also work for Anubis.

Since we do monitor Windows API calls, we are in a better position to check for pos-
sible API-level detection methods. At the time of writing this survey, several Anubis-
specific detections have been published [15] on the Internet. All of them work by com-
paring the return value of a Windows API function such as GetComputerName to a a
hard-coded value that is known to identify Anubis. Our system includes a data taint-
ing component that allows us to detect when the output of an interesting function is
subsequently used as an operand in a comparison operation [22]. Thus, we were able
to analyze our sample set for specific comparisons that represent known Anubis checks
published in forum postings or blogs. Table 2.6 summarizes our findings. A couple of
checks deserve more discussion. Our system names each analyzed sample sample.exe.
Thus, a well-known Anubis detection routine compares the return value of the Windows
API function GetCommandLine with that string. Similarly, in the past, every sample
was executed as a Windows user with the name “user.” Consequently, it was possible
to compare the result of NtQuerySystemInformation with the string “user” to detect
Anubis (as a side note, we have since changed this username to “Administrator”).

In total, we have found that only 0.03% of the samples (99 distinct malware programs)
contain a known Anubis check. Most of these samples perform the check in the beginning
of their execution, and immediately exit if they detect the presence of our sandbox.
Of course, it is possible that malware samples perform a wide range of other checks.
Moreover, as mentioned previously, we have no good way to identify instruction-level
detections or timing-based detection attempts. Thus, the reported numbers are a clear
lower bound.

Under the assumption that a sample that detects Anubis (or a sandbox) does not
perform much activity, we can also provide an upper bound for the samples that do
sandbox detection. Based on our experience with Anubis, we consider a behavioral
report (a profile [22]) to contain “not much activity” when it contains less than 150
features. For comparison, the average profile has 1,465 features. Using this definition,

28 SEVENTH FRAMEWORK PROGRAMME

2.4 Conclusion

we found that 12.45 % of the executable samples (13.57 % of the clusters) show not
much activity.

Of course, not of all these samples really contain anti-sandbox routines, as there
are multiple reasons why Anubis might not be able to produce a good report. For
example, GUI programs that require user input (such as installers) cannot be analyzed
sufficiently. Anubis only has a very limited user input simulation, which simply closes
opened windows. Moreover, some programs require non-existing components at runtime
(note, though, that programs that fail because of unsatisfied, static DLL dependencies
are not included in the 12.45 %). In addition, at least 0.51% of the reports with not much
activity can be attributed to samples that are protected with a packer that is known
to be not correctly emulated in Qemu (such as Telock and specific packer versions of
Armadillo and PE Compact). Last but not least, bugs in Anubis and Qemu are also a
possible cause.

2.4 Conclusion

Malware is one of the most important problems on the Internet today. Although much
research has been conducted on many aspects of malicious code, little has been reported
in literature on the (host-based) activity of malicious programs once they have infected
a machine.

In this survey, we aim to shed light on common malware behaviors. We perform
a comprehensive analysis of almost one million malware samples and determine the
influence of code polymorphism on malware statistics. Understanding common malware
behaviors is important to enable the development of effective malware countermeasures
and mitigation techniques.

FP7-ICT-216026-WOMBAT 29

3 Scalable, Behavior-Based Malware Clustering

In this chapter, we present evaluation results for the behavioral malware clustering tech-
niques introduced in Deliverable D08 (D4.1): “Specification language for code behavior”.
Results from this chapter have been accepted for publication and presented at the Sym-
posium on Network and Distributed System Security (NDSS) [20]. Furthermore, the
results of applying these techniques to the Anubis [12] malware dataset have been made
available to the public through a dedicated section of the Anubis web interface, that has
been online since February 2009. Operation of this service has led us to perform further
optimizations of the clustering implementation, to allow us to cluster ever-increasing
numbers of malware samples. The final version takes advantage of parallelism and is
able to cluster one million distinct malware samples in about six hours using 8 CPU
cores..

To verify the effectiveness of our clustering approach, we used our system to cluster
real-world malware data sets. In the next section, we discuss the quality of the gener-
ated clusters. Then, in Section 3.2, we compare our solution with previously-proposed
clustering techniques [19, 64]. In Section 3.3, we present performance measurements of
running our prototype on a very large data set. Finally, in Section 3.4, we discuss some
examples of the clusters produced by our tool and of the insight they provide to the
malware analyst.

3.1 Quality

Assessing the quality of the results that are produced by a clustering algorithm is an
inherently difficult task. Obviously, it is possible to quantify the number of clusters,
the average number of samples per cluster, or the relative sum of all pairwise distances
for a cluster. Alternatively, one could randomly pick a few clusters and manually verify
that the samples in these clusters are similar. The best option for demonstrating the
correctness of a produced clustering, however, is to compare it with an existing reference
clustering. Unfortunately, no such reference clustering exists for malware samples1. As

1In fact, providing a reference clustering for a set of malware samples is a difficult problem by itself,
mostly because it requires human expertise to compile such a clustering or confirm the correctness
of existing results.

30

3.1 Quality

a result, to verify that our clustering approach is meaningful, we first needed to create
a reference clustering.

Reference Clustering. To create a reference clustering, we took the following ap-
proach: First, we obtained a set of 14,212 malware samples that were submitted to
ANUBIS [12] in the period from October 27, 2007 to January 31, 2008. These sam-
ples were contributed by a number of security organizations and individuals, spanning
a wide range of sources (such as web infections, honeypots, botnet monitoring, peer-
to-peer systems, and URLs extracted from other malware analysis services). Then, we
scanned each sample with six different anti-virus programs. For the initial reference clus-
tering, we selected only those samples for which the majority of the anti-virus programs
reported the same malware family (this required us to define a mapping between the
different labels that are used by different anti-virus products). This resulted in a total
of 2,658 samples. For each sample, we examined the corresponding ANUBIS [12] report
and manually corrected classification problems.

Precision and Recall. To evaluate the quality of the clustering produced by our
algorithm, we compared it to the reference clustering described above. To quantify the
differences between the two clusterings, we introduce two metrics, precision and recall.

The goal of precision is to measure how well a clustering algorithm can distinguish
between samples that are different. That is, precision captures how well a clustering
algorithm assigns samples of different types to different clusters. Intuitively, we strive for
results where each cluster contains only elements of one particular type. More formally,
precision is defined as follows: Assume we have a reference clustering T = T1, T2, .., Tt

with t clusters and a clustering C = C1, C2, .., Cc with c clusters (for a sample set
A = a1, a2, .., an). For each Cj ∈ C, we calculate a cluster precision value as:

Pj = max(|Cj ∩ T1|, |Cj ∩ T2|, .., |Cj ∩ Tt|)

The overall precision value is:

P =
(P1 + P2 + .. + Pc)

n

In addition to precision, we use recall to measure how well a clustering algorithm
recognizes similar samples. That is, recall captures how well an algorithm assigns samples
of the same type to the same cluster. Clearly, we prefer a clustering where all elements
of one type are assigned to the same cluster. We formally define recall as follows:
Assume we have a reference clustering T = T1, T2, .., Tt with t clusters and a clustering
C = C1, C2, .., Cc with c clusters. For each Tj ∈ T , we calculate a cluster recall value as:

Rj = max(|C1 ∩ Tj |, |C2 ∩ Tj |, .., |Cc ∩ Tj |)

FP7-ICT-216026-WOMBAT 31

3 Scalable, Behavior-Based Malware Clustering

The overall recall value is:
R =

(R1 + R2 + .. + Rr)
n

The primitive algorithm that creates a cluster for each sample achieves optimal pre-
cision, but the worst recall. The algorithm that combines all samples in a single cluster,
instead, achieves optimal recall but the worst precision. In practice, an algorithm should
provide both high precision and recall. That is, each cluster should contain all samples
of one type, but no more.
Clustering Results. We have run our clustering algorithm on the reference set of 2,658
samples. For this run, we selected a similarity threshold of t = 0.7. The value of this
threshold was determined based on our experience with initial experiments on a small
malware sample set with less than a hundred programs. Later in this section, we discuss
in more detail the considerations for selecting an appropriate threshold. Moreover, we
will show that the algorithm is quite robust with regard to the choice of the concrete
threshold value.

Our system produced 87 clusters, while the reference clustering consists of 84 clusters.
For our results, we derived a precision of 0.984 and a recall of 0.930. This demonstrates
that our approach has produced a clustering that is very close to the reference set.
The excellent precision shows that the system was able to differentiate well between
different malware classes. The recall shows that, in almost all cases, samples of the same
class were grouped in the same cluster. A quantitative comparison to other clustering
techniques is presented in the following Section 3.2. In Section 3.4, we discuss a number
of interesting, qualitative observations about the clustering that our system produced.
Threshold Selection. The value of the similarity threshold t determines how aggres-
sively the clustering algorithm considers two different profiles as similar. Therefore,
selecting a correct threshold often depends on the desired level of granularity of the
clustering. For example, an analyst might be interested only in a rough partitioning of
a set of malware samples into a few high-level categories (such as dialer, worm, or bot).
Another analyst, instead, could be more interested in splitting a single malware family
into different variants. In these cases, the first analyst would select a small t, while the
second one would use a larger value for t.

For our experiments, we decided to use a threshold value such that our results would
differentiate between malware families (that is, only similar variants of the same family
should be clustered). As mentioned previously, a concrete value of t = 0.7 was selected,
based on our experience with initial, small-scale experiments. However, the selection of
the correct value of t is quite robust. Figure 3.1 shows how precision and recall vary
with respect to different choices of t. One can see that a broad range of choices for
t ∈ [0.6, 0.9] yield good results for both precision and recall.

32 SEVENTH FRAMEWORK PROGRAMME

3.2 Comparative Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
lu

st
er

 M
et

ric
s

Number of clusters

Precision

Recall

Figure 3.1: Precision and recall.

3.2 Comparative Evaluation

In the previous section, we have shown that our system has performed accurate cluster-
ing. However, we need to put these numbers into context with other approaches to be
able to better assess the quality of our results. In this section, we present a comparative
evaluation with the current state-of-the-art clustering approach, introduced by Bailey
et al. [19]. Moreover, we analyze the impact of our behavioral abstraction and compare
our clustering to one that is directly based on system call traces [64].

Bailey et al. [19] proposed a system for clustering malware based on the Normalized
Compression Distance (NCD), using zlib-compression. NCD is based on the Kolmogorov
complexity theory [66] and exploits the fact that similar data, when concatenated, com-
presses better than more differing data. Moreover, Bailey performs a coarse-grain ab-
straction from system calls and also uses profiles to represent malware behavior (we refer
to these profiles as Bailey-profiles from now on). The difference to our approach is that
Bailey-profiles contain only behavior in terms of non-transient state changes that a mal-
ware sample causes on the system (i.e., changes to the file-system, registry), as well as
names of spawned processes and some basic information about network connections and
scans. A detailed impression of the contents of Bailey-profiles can be gained from [17].

FP7-ICT-216026-WOMBAT 33

3 Scalable, Behavior-Based Malware Clustering

To evaluate Bailey’s system on our reference data set, we adapted our dynamic anal-
ysis system to generate Bailey-profiles. Concerning NCD, we made use of the library
provided by the Complearn-Toolkit [34].

A number of previous systems (e.g., [64]) based their behavioral profiles essentially on
the raw system call traces. Thus, to evaluate the performance of such systems, and to
obtain a baseline that shows the improvements due to generalized behavior profiles, we
also performed clustering on the raw system call traces.

We used our reference clustering and the precision and recall metrics to directly com-
pare the quality of the produced clusters for the different techniques. As an overall
measure of clustering quality, we use the product of precision ∗ recall. For each of the
combinations of profile-types, similarity measures, and clustering methods presented in
Table 3.1, we selected the threshold value which produces the highest quality score. In
the clustering column, “exact” means that all n∗n/2 distances between pairs of samples
were computed, while “LSH” means that locality sensitive hashing was used. The last
two rows show that the difference between exact and LSH-based clustering is minimal,
demonstrating the effectiveness of LSH-based clustering as an approximation.

Behavioral Profile Similarity
Measure

Clustering Optimal
Thresh

Quality Precision Recall

Bailey-profile [19] NCD exact 0.75 0.916 0.979 0.935
Bailey-profile [19] Jaccard Index exact 0.63 0.801 0.971 0.825
Syscalls [64] Jaccard Index exact 0.19 0.656 0.874 0.750
Our profile Jaccard Index exact 0.61 0.959 0.977 0.981
Our profile Jaccard Index LSH 0.60 0.959 0.979 0.980

Table 3.1: Comparative evaluation of different clustering methods.

As can be seen in Table 3.1, the quality of our clustering approach (last two rows)
outperforms the clustering proposed by Bailey et al. (first row). This is because our
profiles represent the actual behavior of a malware sample in a more comprehensive and
accurate way. For example, certain samples exhibit behavior that cannot be captured
using Bailey-profiles. As a result, such profiles remain empty, or almost empty. Even
more troublesome is the fact that Bailey’s approach produces significantly worse results
when using the Jaccard index as a similarity metric instead of NCD (second row). Un-
fortunately, a clustering algorithm based on NCD cannot take advantage of LSH to avoid
computing all n2 distances. Thus, a clustering approach that uses Bailey-profiles [19]
either produces results that are significantly less precise than ours (by using the Jaccard

34 SEVENTH FRAMEWORK PROGRAMME

3.3 Performance

index and LSH), or it does not scale to real-world datasets (when using NCD). When
analyzing the results for raw system call traces (third row), the results are significantly
worse than for the other two techniques. This is not surprising, since the traces contain
far too much noise to effectively find similarities between even closely-related malware
instances.

3.3 Performance

To demonstrate the scalability of our clustering algorithm, we ran our system on a
set of 75,692 malware samples (obtained from the complete database of ANUBIS). We
performed our experiments on a XEN virtual machine that was hosted on a PowerEdge
2950 server equipped with two Quad-Core Xeon 1.86 GHz CPUs and 8 GB of RAM. We
allocated about 7GB RAM and one physical CPU to the XEN VM.

As shown in Table 3.2, our prototype implementation succeeded to cluster the set
of 75,692 samples in 2 hours and 18 minutes. This time could be further reduced by
exploiting the inherent parallelism: Both the LSH hashing and the distance calculation
step can be easily performed in parallel. The memory requirements of our prototype
never exceeded 3.7 GB of virtual memory. For each sample, we store a behavioral profile
on disk, which consumes about 96 KB of disk space on average. To load the samples,
the clustering algorithm had to read and process 6.9GB of behavioral profiles.

We ran the clustering algorithm with the same threshold value t = 0.7. The LSH
algorithm computed a set S, our approximation of the set of near pairs, that contained
66,528,049 pairs. Only 57,024,374 pairs were indeed above the similarity threshold t,
i.e., LSH hashing resulted in about 14% false positives. Nevertheless, employing LSH
hashing allowed us to calculate only 66,528,049 instead of (75, 6922)/2 = 2, 864, 639, 432
distances. Thus, LSh reduced the number of necessary distance calculations by a factor
of approximately 43.

Algorithm Step Time (Virt.) Mem. Used
Loading the samples 58m 1.6 GB
l iterations of LSH hashing 1h 0m 3.6 GB
Distance calculation 16m 3.7 GB
Sorting all pairs 1m 3.7 GB
Hierarchical clustering 3m 3.7 GB
Total 2h 18m 3.7 GB

Table 3.2: Runtime performance for 75K samples.

FP7-ICT-216026-WOMBAT 35

3 Scalable, Behavior-Based Malware Clustering

Compared to previous work, our prototype shows significantly improved performance.
To classify malware based on NCD as in Bailey et al. [19], all of the n2/2 distances
between the n samples need to be computed. Moreover, it is possible to derive from
the run-time graphs presented in their paper that a single distance calculation between
two pairs takes about 1.25 milliseconds. As a result, the distance calculation step of
their algorithm would require 995 hours (almost 6 weeks) to perform the necessary
75, 6922/2 distance calculations. This is despite the fact that Bailey profiles are rather
small (about 1KB on average). Applying our NCD implementation to the (much larger)
behavioral profiles produced by our tool yields even more prohibitive computation times:
a single NCD computation takes on average 43 milliseconds. Therefore, clustering 75, 692
samples would take at least 6 months, even if the implementation were parallelized to
run on 8 CPUs.

3.4 Qualitative Discussion of Clustering Results

In this section, we present a number of observations on the quality of our clustering
techniques. First, we discuss the four largest clusters (with regard to the number of
samples that they contain). These are Allaple.1 (1289 samples), Allaple.2 (717 samples),
DOS (179 samples), and GBDialer.j (106 samples). Together, they account for 86% of
all samples.

Allaple.1 and Allaple.2 are two different variants of the Allaple worm [14]. Allaple is
a polymorphic malware, which explains why there are so many different samples in each
cluster. It also demonstrates the ability of our system to quickly dispose of polymorphic
malware instances that appear different but exhibit the same behavior. Interestingly, we
found that virus scanners were inconsistently assigning different variant names to sam-
ples in both clusters (recall that we only used the malware family names that the virus
scanners reported to perform the initial reference clustering). However, closer manual
analysis showed that our clustering correctly identified two different Allaple variants.
While all of the samples in both clusters perform ICMP scans, the Allaple.2 variant is
much more aggressive at immediately attempting to exploit the target systems using a
wider variety of propagation vectors. For instance, almost all Allaple.2 samples perform
DNS lookups for the addresses of hosts they have successfully scanned, and attempt to
connect to TCP port 9988, which corresponds to the Windows remote administration
service. On the other hand, in none of the samples in the Allaple.1 cluster is there any
DNS or port 9988 activity. Furthermore, all samples in Allaple.1 make a copy of them-
selves to the file “C:\WINDOWS\system32\urdvxc.exe,” while none of the samples in
Allaple.2 do. Moreover, in the Allaple.1 cluster, we observe the following, interesting

36 SEVENTH FRAMEWORK PROGRAMME

3.4 Qualitative Discussion of Clustering Results

object dependences:

Section|C:\sample.exe->Network|TCP
File|C:\WINDOWS\system32\urdvxc.exe ->
File|C:\(..)\Temporary Internet Files\
\(..)\ccxebztz.exe

Random|Random Value Generator ->
File|C:\(..)\Temporary Internet Files\
\(..)\ccxebztz.exe

The first dependency indicates that the sample has succeeded in propagating itself
over the network (to our nepenthes honeypot). Since our taint-system correctly handles
memory-mapped files we see that the malware propagates by reading a memory-mapped
file and writing it to the network. The second and third dependences provide a strong
indication that this is polymorphic malware, since data from the malware sample and
from a random number generation API is written to the new file “ccxebztz.exe.” This
shows how system call dependences can provide valuable insight on malware behavior.

GBDialer.J is the biggest of several dialer clusters in our sample set. It is interesting
that we were able to correctly group the samples in this cluster, because our analy-
sis environment does not directly support the analysis of dialers. That is, there is no
modem (emulation) present, which would allow dialers to perform their main task. Nev-
ertheless, the remaining behavior (such as startup actions and system modifications)
was sufficiently characterizing to differentiate between the various dialer variants. This
is not the case for the forth cluster, called “DOS.” This cluster contains various DOS
malware samples. The reason for not being able to distinguish between different DOS
variants is that our analysis environment can only execute Windows PE executables. The
Windows loader treats all non-Windows PE files as DOS executables, and attempts to
execute them by emulating them in the ntvdm.exe process. This activity was recognized
as similar behavior.

In addition to the four large clusters, there are several interesting, smaller clusters. For
example, there is a cluster of only two samples that are labeled as “Keylogger.Ghostbot”
by the Kaspersky virus scanner. Our dynamic analysis discovered that this malware
constantly checks for key presses using the Windows API function GetKeyState. The
profile contains the following interesting comparisons:

cmp_val|registry|HKLM\SOFTWARE\MICROSOFT\
\WINDOWS\CURRENTVERSION\RUN
NtEnumerateValueKey-KeyValueInformation
- PCCNTMON

FP7-ICT-216026-WOMBAT 37

3 Scalable, Behavior-Based Malware Clustering

This tells us that the malware looks for known anti-virus and firewall programs in the
list of autostart registry values. Please note that the above is only an excerpt. In
total, the profile lists 98 different program names that are compared against the result
of NtEnumerateValueKey. We also have a cluster that consists of four samples that
are recognized as “Mabezat” by the majority of virus scanners. Our behavioral profile
shows that it is a file infector that searches for executable files on the local hard disk and
infects them. This characteristic behavior was correctly identified and resulted in one
cluster that precisely captured all four samples in the data set. We also discovered, with
the help of control flow dependences, that the program is searching for different kinds of
document files in the directory that Windows uses for temporarily storing data that is
scheduled to be written to a CD. Again, we show only parts of the list of comparisons.

cmp_val|file|
C:\Documents and Settings\user\Local
Settings\Application Data\Microsoft\
\CD Burning\
NtQueryDirectoryFile-FileInformation
- .TXT

According to the virus description database of AVG [13], the malware program checks
whether the current date is greater then 2012/10/16, and if so, starts encrypting user
documents. Our system was only partly able to find this date check. Our profile is
shown below:

cmp_val|time|System Time
GetSystemTime-
lpSystemTime.struct _SYSTEMTIME.wYear
-2012

As one can see, the system correctly recognizes the fact that a comparison between
the current year and the value 2012 takes place. As this comparison already fails, the
rest of the date is not further checked. That is why we cannot determine the complete
date. However, we are considering to improve our system with the ability to read the
entire data structure from the main memory (in a fashion that is similar to our current
approach for strings).

Of course, there are also malware programs for which our system did not produce the
correct results. One common case is when a sample did not show any suspicious activity
in our analysis environment. This could be because the malware program is damaged,
or because it detects the presence of the analysis environment and exits prematurely. In

38 SEVENTH FRAMEWORK PROGRAMME

3.5 Limitations and Future Work

any case, it underlines the dependence of our system on the quality of the behavioral
profiles. One cluster in particular is composed of 25 samples which belong to 10 different
clusters according to the reference clustering. Manual analysis reveals that these samples
all crash, which causes the Dr. Watson debugger application to be executed, generate a
crash report and display a pop-up window asking the user permission to send the report
to Microsoft. Clearly, this behavior is not specific to the malware family and it leads to
misclassification.

3.5 Limitations and Future Work

Trace Dependence. A limitation of any dynamic approach to the analysis of malware
is that it is trace-dependent. Analysis results will be based only on the sample’s behavior
during one (or more) specific execution runs. Unfortunately, some of a malware’s behav-
ior may be triggered only under specific conditions. A simple example of trigger-based
behavior is a time-bomb. That is, a malware that only exhibits its malicious behavior on
a specific date. Another examples is a bot, that only performs malicious actions when
it receives specific commands through a command and control channel. Also, malware
aimed at identity theft may only exhibit certain behavior when the user performs certain
actions, such as logging in to specific electronic banking websites. Since we run malware
samples automatically with no human interaction, such behavior will not occur in our
traces.

Interestingly, our clustering may still succeed in grouping similar samples even when
their most significant malicious behavior is not triggered, as is the case for the GBDialer.J
cluster discussed in Section 3.4. The reason is that the behavioral features used for
clustering encompass all malware behavior, not just malicious actions.

Evasion. Clearly, a malware author could manually modify a malware sample until
its behavior is different enough from the original that the two are assigned to different
clusters by our tool. We are not interested in this kind of labour-intensive, manual
evasion. Instead, we consider an adversary who attempts to automatically produce an
arbitrary number of mutations of a malware sample in such a way that all (or most)
such mutations are assigned to different clusters by our tool. To this end, a malware
author could randomly mutate parts of the malware’s behavior that are not essential to
its functionality. An example would be the often arbitrary file names under which the
malware copies itself on the file system. These could be replaced with random strings,
hardcoded into each malware instance. Nonetheless, adding enough randomness to make
each mutation different is not a simple task. A sample in our dataset has more than
one thousand features on average, many of which represent behavior from inside system

FP7-ICT-216026-WOMBAT 39

3 Scalable, Behavior-Based Malware Clustering

libraries that is only indirectly a consequence of the malware writer’s intent. Also, since
our tool discards features that are unique to a single malware instance, simple random
variations would just lead to these features being discarded.

To make our tool more robust against this type of evasion, we could add more ag-
gressive generalization to our algorithm for extracting behavioral profiles from execution
traces. As an example we could consider the name of any file created by the malware
irrelevant, and replace it with a special token as we do for the names of temporary
files. Greater generalization of course loses some information, so it may be desirable to
perform multiple clusterings using different levels of generalization.

Another issue is that dynamic data tainting of untrusted software is vulnerable to
evasion. A malicious binary could easily inject fake data dependencies, using NOP-
equivalent operations to taint clean data without modifying its value. Furthermore,
it could hide data dependencies from our tool, using implicit flows to ”clean” tainted
data [31]. Unfortunately, there is no robust defense against such techniques. To address
this issue we would therefore have to disable dynamic data tainiting, sacrificing some of
the accuracy of our tool.

40 SEVENTH FRAMEWORK PROGRAMME

4 Effective and Efficient Malware Detection at the
End Host

In Deliverable D08 (D4.1): “Specification language for code behavior”, we already intro-
duced the basics of our approach to detect malware based on information flow inside a
malicious program. Furthermore, we presented implementation details of the prototype
available at that time. Over the course of the project, we slightly modified the prototype.
While the process of extracting behavior signatures (in the current system denoted as
behavior graphs) through the means of binary slicing has not changed significantly, the
design of the scanner/detection component has been improved in various ways.

In the following two sections, we briefly recapitulate the system overview and detail
the new detection mechanism. In a third part, we present an evaluation we conducted
using a set of six current malware families. Further, we show two sample behavior graphs
extracted from malware used for the evaluation.

4.1 System Overview

The goal of our system is to effectively and efficiently detect malicious code at the end
host. Moreover, the system should be general and not incorporate a priori knowledge
about a particular malware class. Given the freedom that malware authors have when
crafting malicious code, this is a challenging problem. To attack this problem, our system
operates by generating detection models based on the observation of the execution of
malware programs. That is, the system executes and monitors a malware program in
a controlled analysis environment. Based on this observation, it extracts the behavior
that characterizes the execution of this program. The behavior is then automatically
translated into detection models that operate at the host level.

Our approach allows the system to quickly detect and eliminate novel malware vari-
ants. However, it is reactive in the sense that it must observe a certain, malicious
behavior before it can properly respond. This introduces a small delay between the ap-
pearance of a new malware family and the availability of appropriate detection models.
We believe that this is a trade-off that is necessary for a general system that aims to
detect and mitigate malicious code with a priori unknown behavior. In some sense, the
system can be compared to the human immune system, which also reacts to threats by

41

4 Effective and Efficient Malware Detection at the End Host

first detecting intruders and then building appropriate antibodies. Also, it is important
to recognize that it is not required to observe every malware instance before it can be de-
tected. Instead, the proposed system abstracts (to some extent) program behavior from
a single, observed execution trace. This allows the detection of all malware instances
that implement similar functionality.

Modeling program behavior. To model the behavior of a program and its security-
relevant activity, we rely on system calls. Since system calls capture the interactions of
a program with its environment, we assume that any relevant security violation is visible
as one or more unintended interactions.

Of course, a significant amount of research has focused on modeling legitimate program
behavior by specifying permissible sequences of system calls [44, 94]. Unfortunately,
these techniques cannot be directly applied to our problem. The reason is that malware
authors have a large degree of freedom in rearranging the code to achieve their goals. For
example, it is very easy to reorder independent system calls or to add irrelevant calls.
Thus, we cannot represent suspicious activity as system call sequences that we have
observed. Instead, a more flexible representation is needed. This representation must
capture true relationships between system calls but allow independent calls to appear
in any order. For this, we represent program behavior as a behavior graph where nodes
are (interesting) system calls. An edge is introduced from a node x to node y when the
system call associated with y uses as argument some output that is produced by system
call x. That is, an edge represents a data dependency between system calls x and y.
Moreover, we only focus on a subset of interesting system calls that can be used to carry
out malicious activity.

At a conceptual level, the idea of monitoring a piece of malware and extracting a
model for it bears some resemblance to previous signature generation systems [76, 91].
In both cases, malicious activity is recorded, and this activity is then used to generate
detection models. In the case of signature generation systems, network packets sent by
worms are compared to traffic from benign applications. The goal is to extract tokens
that are unique to worm flows and, thus, can be used for network-based detection.
At a closer look, however, the differences between previous work and our approach are
significant. While signature generation systems extract specific, byte-level descriptions of
malicious traffic (similar to virus scanners), the proposed approach targets the semantics
of program executions. This requires different means to observe and model program
behavior. Moreover, our techniques to identify malicious activity and then perform
detection differ as well.

42 SEVENTH FRAMEWORK PROGRAMME

4.1 System Overview

Making detection efficient. In principle, we can directly use the behavior graph to
detect malicious activity at the end host. For this, we monitor the system calls that an
unknown program issues and match these calls with nodes in the graph. When enough
of the graph has been matched, we conclude that the running program exhibits behavior
that is similar to previously-observed, malicious activity. At this point, the running
process can be terminated and its previous, persistent modifications to the system can
be undone.

Unfortunately, there is a problem with the previously sketched approach. The reason
is that, for matching system calls with nodes in the behavior graph, we need to have
information about data dependencies between the arguments and return values of these
systems calls. Recall that an edge from node x to y indicates that there is a data flow
from system call x to y. As a result, when observing x and y, it is not possible to declare
a match with the behavior graph x → y. Instead, we need to know whether y uses values
that x has produced. Otherwise, independent system calls might trigger matches in the
behavior graph, leading to an unacceptable high number of false positives.

Previous systems have proposed dynamic data flow tracking (tainting) to determine
dependencies between system calls. However, tainting incurs a significant performance
overhead and requires a special environment (typically, a virtual machine with shadow
memory). Hence, taint-based systems are usually only deployed in analysis environments
but not at end hosts. In this paper, we propose an approach that allows us to detect
previously-seen data dependencies by monitoring only system calls and their arguments.
This allows efficient identification of data flows without requiring expensive tainting and
special environments (virtual machines).

Our key idea to determine whether there is a data flow between a pair of system calls x
and y that is similar to a previously-observed data flow is as follows: Using the observed
data flow, we extract those parts of the program (the instructions) that are responsi-
ble for reading the input and transforming it into the corresponding output (a kind of
program slice [96]). Based on this program slice, we derive a symbolic expression that
represents the semantics of the slice. In other words, we extract an expression that can
essentially pre-compute the expected output, based on some input. In the simplest case,
when the input is copied to the output, the symbolic expression captures the fact that
the input value is identical to the output value. Of course, more complicated expressions
are possible. In cases where it is not possible to determine a closed symbolic expression,
we can use the program slice itself (i.e., the sequence of program instructions that trans-
forms an input value into its corresponding output, according to the functionality of the
program).

Given a program slice or the corresponding symbolic expression, an unknown program
can be monitored. Whenever this program invokes a system call x, we extract the

FP7-ICT-216026-WOMBAT 43

4 Effective and Efficient Malware Detection at the End Host

relevant arguments and return value. This value is then used as input to the slice or
symbolic expression, computing the expected output. Later, whenever a system call y is
invoked, we check its arguments. When the value of the system call argument is equal to
the previously-computed, expected output, then the system has detected the data flow.

Using data flow information that is computed in the previously described fashion, we
can increase the precision of matching observed system calls against the behavior graph.
That is, we can make sure that a graph with a relationship x → y is matched only when
we observe x and y, and there is a data flow between x and y that corresponds to the
semantics of the malware program that is captured by this graph. As a result, we can
perform more accurate detection and reduce the false positive rate.

4.2 System Details

In this section, we provide more details on the components of our system. In particu-
lar, we first discuss how we characterize program activity via behavior graphs. Then,
we introduce our techniques to automatically extract such graphs from observing bina-
ries. Finally, we present our approach to match the actions of an unknown binary to
previously-generated behavior graphs.

4.2.1 Behavior Graphs: Specifying Program Activity

As a first step, we require a mechanism to describe the activity of programs. According to
previous work [33], such a specification language for malicious behaviors has to satisfy
three requirements: First, a specification must not constrain independent operations.
The second requirement is that a specification must relate dependent operations. Third,
the specification must only contain security-relevant operations.

The authors in [33] propose malspecs as a means to capture program behavior. A
malicious specification (malspec) is a directed acyclic graph (DAG) with nodes labeled
using system calls from an alphabet Σ and edges labeled using logic formulas in a logic
Ldep . Clearly, malspecs satisfy the first two requirements. That is, independent nodes
(system calls) are not connected, while related operations are connected via a series of
edges. The paper also mentions a function IsTrivialComponent that can identify and
remove parts of the graph that are not security-relevant (to meet the third requirement).

For this work, we use a formalism called behavior graphs. Behavior graphs share
similarities with malspecs. In particular, we also express program behavior as directed
acyclic graphs where nodes represent system calls. However, we do not have uncon-
strained system call arguments, and the semantics of edges is somewhat different.

44 SEVENTH FRAMEWORK PROGRAMME

4.2 System Details

We define a system call s ∈ Σ as a function that maps a set of input arguments
a1, . . . , an into a set of output values o1, . . . , ok For each input argument of a system call
ai, the behavior graph captures where the value of this argument is derived from. For
this, we use a function fai ∈ F . Before we discuss the nature of the functions in F in
more detail, we first describe where a value for a system call can be derived from. A
system call value can come from three possible sources (or a mix thereof): First, it can
be derived from the output argument(s) of previous system calls. Second, it can be read
from the process address space (typically, the initialized data section – the bss segment).
Third, it can be produced by the immediate argument of a machine instruction.

As mentioned previously, a function is used to capture the input to a system call
argument ai. More precisely, the function fai for an argument ai is defined as fai :
x1, x2, . . . , xn → y, where each xi represents the output oj of a previous system call. The
values that are read from memory are part of the function body, represented by l(addr).
When the function is evaluated, l(addr) returns the value at memory location addr. This
technique is needed to ensure that values that are loaded from memory (for example,
keys) are not constant in the specification, but read from the process under analysis.
Of course, our approach implies that the memory addresses of key data structures do
not change between (polymorphic) variants of a certain malware family. In fact, this
premise is confirmed by a recent observation that data structures are stable between
different samples that belong to the same malware class [37]. Finally, constant values
produced by instructions (through immediate operands) are implicitly encoded in the
function body. Consider the case in which a system call argument ai is the constant value
0, for example, produced by a push $0 instruction. Here, the corresponding function
is a constant function with no arguments fai :→ 0. Note that a function f ∈ F can
be expressed in two different forms: As a (symbolic) formula or as an algorithm (more
precisely, as a sequence of machine instructions – this representation is used in case the
relation is too complex for a mathematical expression).

Whenever an input argument ai for system call y depends on the some output oj

produced by system call x, we introduce an edge from the node that corresponds to
x, to the node that corresponds to y. Thus, edges encode dependencies (i.e., temporal
relationships) between system calls.

Given the previous discussion, we can define behavior graphs G more formally as:
G = (V,E, F, δ), where:

� V is the set of vertices, each representing a system call s ∈ Σ
� E is the set of edges, E ⊆ V × V
� F is the set of functions

⋃
f : x1, x2, . . . , xn → y, where each xi is an output

arguments oj of system call s ∈ Σ

FP7-ICT-216026-WOMBAT 45

4 Effective and Efficient Malware Detection at the End Host

� δ, which assigns a function fi to each system call argument ai

Intuitively, a behavior graph encodes relationships between system calls. That is, the
functions fi for the arguments ai of a system call s determine how these arguments
depend on the outputs of previous calls, as well as program constants and memory
values. Note that these functions allow one to pre-compute the expected arguments of a
system call. Consider a behavior graph G where an input argument a of a system call
st depends on the outputs of two previous calls sp and sq. Thus, there is a function
fa associated with a that has two inputs. Once we observe sp and sq, we can use the
outputs op and oq of these system calls and plug them into fa. At this point, we know
the expected value of a, assuming that the program execution follows the semantics
encoded in the behavior graph. Thus, when we observe at a later point the invocation
of st, we can check whether its actual argument value for a matches our precomputed
value fa(op, oq). If this is the case, we have high confidence that the program executes
a system call whose input is related (depends on) the outputs of previous calls. This is
the key idea of our proposed approach: We can identify relationships between system
calls without tracking any information at the instruction-level during runtime. Instead,
we rely solely on the analysis of system call arguments and the functions in the behavior
graph that capture the semantics of the program.

4.2.2 Extracting Behavior Graphs

As mentioned in the previous section, we express program activity as behavior graphs.
These behavior graphs can be automatically constructed by observing the execution of
a program in a controlled environment. For more detailed information on the extraction
process, refer to Deliverable D08 (D4.1): “Specification language for code behavior”.

Optimizing Functions

We would like to point out one improvement of the extraction process when compared
to the previous deliverable in this section, however: Once we have extracted a slice for
a system call argument and translated it into a corresponding function (program), we
could stop there. However, many functions implement a very simple behavior; they
copy a value that is produced as output of a system call into the input argument of
a subsequent call. For example, when a system call such as NtOpenFile produces an
opaque handle, this handle is used as input by all subsequent system calls that operate
on this file. Unfortunately, the chain of copy operations can grow quite long, involving
memory accesses and stack manipulation. Thus, it would be beneficial to identify and
simplify instruction sequences. Optimally, the complete sequence can be translated into

46 SEVENTH FRAMEWORK PROGRAMME

4.2 System Details

a formula that allows us to directly compute the expected output based on the formula’s
inputs.

To simplify functions, we make use of symbolic execution. More precisely, we assign
symbolic values to the input parameters of a function and use a symbolic execution engine
developed previously [62]. Once the symbolic execution of the function has finished, we
obtain a symbolic expression for the output. When the symbolic execution engine does
not need to perform any approximations (e.g., widening in the case of loops), then we
can replace the algorithmic representation of the slice with this symbolic expression.
This allows us to significantly shorten the time it takes to evaluate functions, especially
those that only move values around. For complex functions, we fall back to the explicit
machine code representation.

4.2.3 Matching Behavior Graphs

For every malware program that we analyze in our controlled environment, we automat-
ically generate a behavior graph. These graphs can then be used for detection at the
end host. More precisely, for detection, we have developed a scanner that monitors the
system call invocations (and arguments) of a program under analysis. The goal of the
scanner is to efficiently determine whether this program exhibits activity that matches
one of the behavior graphs. If such a match occurs, the program is considered malicious,
and the process is terminated. We could also imagine a system that unrolls the persis-
tent modifications that the program has performed. For this, we could leverage previous
work [93] on safe execution environments.

In the following, we discuss how our scanner matches a stream of system call invoca-
tions (received from the program under analysis) against a behavior graph. The scanner
is a user-mode process that runs with administrative privileges. It is supported by a small
kernel-mode driver that captures system calls and arguments of processes that should be
monitored. In the current design, we assume that the malware process is running under
the normal account of a user, and thus, cannot subvert the kernel driver or attack the
scanner. We believe that this assumption is reasonable because, for recent versions of
Windows, Microsoft has made significant effort to have users run without root privileges.
Also, processes that run executables downloaded from the Internet can be automatically
started in a low-integrity mode. Interestingly, we have seen malware increasingly adapt-
ing to this new landscape, and a substantial fraction can now successfully execute as a
normal user.

The basic approach of our matching algorithm is the following: First, we partition the
nodes of a behavior graph into a set of active nodes and a set of inactive nodes. The
set of active nodes contains those nodes that have already been matched with system

FP7-ICT-216026-WOMBAT 47

4 Effective and Efficient Malware Detection at the End Host

call(s) in the stream. Initially, all nodes are inactive.
When a new system call s arrives, the scanner visits all inactive nodes in the behavior

graph that have the correct type. That is, when a system call NtOpenFile is seen, we
examine all inactive nodes that correspond to an NtOpenFile call. For each of these
nodes, we check whether all its parent nodes are active. A parent node for node N is
a node that has an edge to N . When we find such a node, we further have to ensure
that the system call has the “right” arguments. More precisely, we have to check all
functions fi : 1 ≤ i ≤ k associated with the k input arguments of the system call s.
However, for performance reasons, we do not do this immediately. Instead, we only
check the simple functions. Simple functions are those for which a symbolic expression
exists. Most often, these functions check for the equality of handles. The checks for
complex functions, which are functions that represent dependencies as programs, are
deferred and optimistically assumed to hold.

To check whether a (simple) function fi holds, we use the output arguments of the
parent node(s) of N . More precisely, we use the appropriate values associated with
the parent node(s) of N as the input to fi. When the result of fi matches the input
argument to system call s, then we have a match. When all arguments associated with
simple functions match, then node N can be activated. Moreover, once s returns, the
values of its output parameters are stored with node N . This is necessary because the
output of s might be needed later as input for a function that checks the arguments of
N ’s child nodes.

So far, we have only checked dependencies between system calls that are captured by
simple functions. As a result, we might activate a node y as the child of x, although
there exists a complex dependency between these two system calls that is not satisfied by
the actual program execution. Of course, at one point, we have to check these complex
relationships (functions) as well. This point is reached when an interesting node in the
behavior graph is activated. Interesting nodes are nodes that are (a) associated with
security-relevant system calls and (b) at the “bottom” of the behavior graph. With
security-relevant system calls, we refer to all calls that write to the file system, the
registry, or the network. In addition, system calls that start new processes or system
services are also security-relevant. A node is at the “bottom” of the behavior graph
when it has no outgoing edges.

When an interesting node is activated, we go back in the behavior graph and check
all complex dependencies. That is, for each active node, we check all complex functions
that are associated with its arguments (in a way that is similar to the case for simple
functions, as outlined previously). When all complex functions hold, the node is marked
as confirmed. If any of the complex functions associated with the input arguments of an
active node N does not hold, our previous optimistic assumption has been invalidated.

48 SEVENTH FRAMEWORK PROGRAMME

4.3 Evaluation

Thus, we deactivate N as well as all nodes in the subgraph rooted in N .
Intuitively, we use the concept of interesting nodes to capture the case in which a

malware program has demonstrated a chain of activities that involve a series of system
calls with non-trivial dependencies between them. Thus, we declare a match as soon
as any interesting node has been confirmed. However, to avoid cases of overly generic
behavior graphs, we only report a program as malware when the process of confirming
an interesting node involves at least one complex dependency.

Since the confirmed activation of a single interesting node is enough to detect a mal-
ware sample, typically only a subset of the behavior graph of a malware sample is
employed for detection. More precisely, each interesting node, together with all of its
ancestor nodes and the dependencies between these nodes, can be used for detection in-
dependently. Each of these subgraphs is itself a behavior graph that describes a specific
set of actions performed by a malware program (that is, a certain behavioral trait of this
malware).

4.3 Evaluation

We claim that our system delivers effective detection with an acceptable performance
overhead. In this section, we first analyze the detection capabilities of our system. Then,
we examine the runtime impact of our prototype implementation. In the last section,
we describe two examples of behavior graphs in more detail.

Name Type

Allaple Exploit-based worm

Bagle Mass-mailing worm

Mytob Mass-mailing worm

Agent Trojan

Netsky Mass-mailing worm

Mydoom Mass-mailing worm
Table 4.1: Malware families used for evaluation.

4.3.1 Detection Effectiveness

To demonstrate that our system is effective in detecting malicious code, we first gen-
erated behavior graphs for six popular malware families. An overview of these families

FP7-ICT-216026-WOMBAT 49

4 Effective and Efficient Malware Detection at the End Host

Name Samples
Kaspersky Our Samples

Effectiveness
variants variants detected

Allaple 50 2 1 50 1.00

Bagle 50 20 14 46 0.92

Mytob 50 32 12 47 0.94

Agent 50 20 2 41 0.82

Netsky 50 22 12 46 0.92

Mydoom 50 6 3 49 0.98

Total 300 102 44 279 0.93
Table 4.2: Training dataset.

is provided in Table 4.1. These malware families were selected because they are very
popular, both in our own malware data collection (which we obtained from Anubis [1])
and according to lists compiled by anti-virus vendors. Moreover, these families provide a
good cross section of popular malware classes, such as mail-based worms, exploit-based
worms, and a Trojan horse. Some of the families use code polymorphism to make it
harder for signature-based scanners to detect them. For each malware family, we ran-
domly selected 100 samples from our database. The selection was based on the labels
produced by the Kaspersky anti-virus scanner and included different variants for each
family. During the selection process, we discarded samples that, in our test environment,
did not exhibit any interesting behavior. Specifically, we discarded samples that did not
modify the file system, spawn new processes, or perform network communication. For
the Netsky family, only 63 different samples were available in our dataset.

Detection capabilities. For each of our six malware families, we randomly selected 50
samples. These samples were then used for the extraction of behavior graphs. Table 4.2
provides some details on the training dataset. The “Kaspersky variants” column shows
the number of different variants (labels) identified by the Kaspersky anti-virus scanner
(these are variants such as Netsky.k or Netsky.aa). The “Our variants” column shows
the number of different samples from which (different) behavior graphs had to be ex-
tracted before the training dataset was covered. Interestingly, as shown by the “Samples
detected” column, it was not possible to extract behavior graphs for the entire training
set. The reasons for this are twofold: First, some samples did not perform any interesting
activity during behavior graph extraction (despite the fact that they did show relevant
behavior during the initial selection process). Second, for some malware programs, our

50 SEVENTH FRAMEWORK PROGRAMME

4.3 Evaluation

Name Samples
Known variant Samples

Effectiveness
samples detected

Allaple 50 50 45 0.90

Bagle 50 26 30 0.60

Mytob 50 26 36 0.72

Agent 50 4 5 0.10

Netsky 13 5 7 0.54

Mydoom 50 44 45 0.90

Total 263 155 168 0.64
Table 4.3: Detection effectiveness.

system was not able to extract valid behavior graphs. This is due to limitations of the
current prototype that produced invalid slices (i.e., functions that simply crashed when
executed).

To evaluate the detection effectiveness of our system, we used the behavior graphs
extracted from the training dataset to perform detection on the remaining 263 samples
(the test dataset). The results are shown in Table 4.3. It can be seen that some malware
families, such as Allaple and Mydoom, can be detected very accurately. For others, the
results appear worse. However, we have to consider that different malware variants may
exhibit different behavior, so it may be unrealistic to expect that a behavior graph for one
variant always matches samples belonging to another variant. This is further exacerbated
by the fact that anti-virus software is not particularly good at classifying malware (a
problem that has also been discussed in previous work [18]). As a result, the dataset
likely contains mislabeled programs that belong to different malware families altogether.
This was confirmed by manual inspection, which revealed that certain malware families
(in particular, the Agent family) contain a large number of variants with widely varying
behavior.

To confirm that different malware variants are indeed the root cause of the lower
detection effectiveness, we then restricted our analysis to the 155 samples in the test
dataset that belong to “known” variants. That is, we only considered those samples
that belong to malware variants that are also present in the training dataset (according
to Kaspersky labels). For this dataset, we obtain a detection effectiveness of 0.92. This
is very similar to the result of 0.93 obtained on the training dataset. Conversely, if
we restrict our analysis to the 108 samples that do not belong to a known variant, we
obtain a detection effectiveness of only 0.23. While this value is significantly lower, it still

FP7-ICT-216026-WOMBAT 51

4 Effective and Efficient Malware Detection at the End Host

demonstrates that our system is sometimes capable of detecting malware belonging to
previously unknown variants. Together with the number of variants shown in Table 4.2,
this indicates that our tool produces a behavior-based malware classification that is more
general than that produced by an anti-virus scanner, and therefore, requires a smaller
number of behavior graphs than signatures.

False positives. In the next step, we attempted to evaluate the amount of false positives
that our system would produce. For this, we installed a number of popular applications
on our test machine, which runs Microsoft Windows XP and our scanner. More precisely,
we used Internet Explorer, Firefox, Thunderbird, putty, and Notepad. For each of these
applications, we went through a series of common use cases. For example, we surfed
the web with IE and Firefox, sent a mail with Thunderbird (including an attachment),
performed a remote ssh login with putty, and used notepad for writing and saving text.
No false positives were raised in these tests. This was expected, since our models typically
capture quite tightly the behavior of the individual malware families. However, if we
omitted the checks for complex functions and assumed all complex dependencies in the
behavior graph to hold, all of the above applications raised false positives. This shows
that our tool’s ability to capture arbitrary data-flow dependencies and verify them at
runtime is essential for effective detection. It also indicates that, in general, system call
information alone (without considering complex relationships between their arguments)
might not be sufficient to distinguish between legitimate and malicious behavior.

In addition to the Windows applications mentioned previously, we also installed a
number of tools for performance measurement, as discussed in the following section.
While running the performance tests, we also did not experience any false positives.

4.3.2 System Efficiency

As every malware scanner, our detection mechanism stands and falls with the perfor-
mance degradation it causes on a running system. To evaluate the performance impact
of our detection mechanism, we used 7-zip, a well-known compression utility, Microsoft
Internet Explorer, and Microsoft Visual Studio. We performed the tests on a single-core,
1.8 GHz Pentium 4 running Windows XP with 1 GB of RAM.

For the first test, we used a command line option for 7-zip that makes it run a simple
benchmark. This reflects the case in which an application is mostly performing CPU-
bound computation. In another test, 7-zip was used to compress a folder that contains
215 MB of data (6,859 files in 808 subfolders). This test represents a more mixed
workload. The third test consisted of using 7-zip to archive three copies of this same
folder, performing no compression. This is a purely IO-bound workload. The next test

52 SEVENTH FRAMEWORK PROGRAMME

4.3 Evaluation

measures the number of pages per second that could be rendered in Internet Explorer.
For this test, we used a local copy of a large (1.5MB) web page [35]. For the final test,
we measured the time required to compile and build our scanner tool using Microsoft
Visual Studio. The source code of this tool consists of 67 files and over 17,000 lines of
code. For all tests, we first ran the benchmark on the unmodified operating system (to
obtain a baseline). Then, we enabled the kernel driver that logs system call parameters,
but did not enable any user-mode detection processing of this output. Finally, we also
enabled our malware detector with the full set of 44 behavior graphs.

Test Baseline
Driver Scanner

Score Overhead Score Overhead

7-zip (benchmark) 114 sec 117 sec 2.3% 118 sec 2.4%

7-zip (compress) 318 sec 328 sec 3.1% 333 sec 4.7%

7-zip (archive) 213 sec 225 sec 6.2% 231 sec 8.4%

IE - Rendering 0.41 page/s 0.39 pages/s 4.4% 0.39 page/s 4.4%

Compile 104 sec 117 sec 12.2% 146 sec 39.8%
Table 4.4: Performance evaluation.

The results are summarized in Table 4.4. As can be seen, our tool has a very low
overhead (below 5%) for CPU-bound benchmarks. Also, it performs well in the I/O-
bound experiment (with less than 10% overhead). The worst performance occurs in
the compilation benchmark, where the system incurs an overhead of 39.8%. It may
seem surprising at first that our tool performs worse in this benchmark than in the
IO-bound archive benchmark. However, during compilation, the scanned application is
performing almost 5,000 system calls per second, while in the archive benchmark, this
value is around 700. Since the amount of computation performed in user-mode by our
scanner increases with the number of system calls, compilation is a worst-case scenario
for our tool. Furthermore, the more varied workload in the compile benchmark causes
more complex functions to be evaluated. The 39.8% overhead of the compile benchmark
can further be broken down into 12.2% for the kernel driver, 16.7% for the evaluation
of complex functions, and 10.9% for the remaining user-mode processing. Note that the
high cost of complex function evaluation could be reduced by improving our symbolic
execution engine, so that less complex functions need to be evaluated. Furthermore,
our prototype implementation spawns a new process every time that the verification of
complex dependencies is triggered, causing unnecessary overhead. Nevertheless, we feel
that our prototype performs well for common tasks, and the current overhead allows the

FP7-ICT-216026-WOMBAT 53

4 Effective and Efficient Malware Detection at the End Host

system to be used on (most) end user’s hosts. Moreover, even in the worst case, the tool
incurs significantly less overhead than systems that perform dynamic taint propagation
(where the overhead is typically several times the baseline).

4.3.3 Examples of Behavior Graphs

To provide a better understanding of the type of behavior that is modeled by our system,
we provide a short description of two behavior graphs extracted from variants of the
Agent and Allaple malware families.

Agent.ffn.StartService. The Agent.ffn variant contains a resource section that stores
chunks of binary data. During execution, the binary queries for one of these stored
resources and processes its content with a simple, custom decryption routine. This
routine uses a variant of XOR decryption with a key that changes as the decryption
proceeds. In a later step, the decrypted data is used to overwrite the Windows sys-
tem file C:\WINDOWS\System32\drivers\ip6fw.sys. Interestingly, rather than directly
writing to the file, the malware opens the \\.\C: logical partition at the offset where
the ip6fw.sys file is stored, and directly writes to that location. Finally, the mal-
ware restarts Windows XP’s integrated IPv6 firewall service, effectively executing the
previously decrypted code.

Figure 4.1: Behavior graph for Agent.fnn.

Figure 4.1 shows a simplified behavior graph that captures this behavior. The graph
contains nine nodes, connected through ten dependencies: six simple dependencies rep-

54 SEVENTH FRAMEWORK PROGRAMME

4.3 Evaluation

resenting the reuse of previously obtained object handles (annotated with the param-
eter name), and four complex dependencies. The complex dependency that captures
the previously described decryption routine is indicated by a bold arrow in Figure 4.1.
Here, the LockResource function provides the body of the encrypted resource section.
The NtQueryInformationFile call provides information about the ip6fw.sys file. The
\\.\C: logical partition is opened in the NtCreateFile node. Finally, the NtWriteFile
system call overwrites the firewall service program with malicious code. The check of the
complex dependency is triggered by the activation of the last node (bold in the figure).

Figure 4.2: Behavior graph for Allaple.b.

Allaple.b.CreateProcess. Once started, the Allaple.b variant copies itself to the file
c:\WINDOWS\system32\urdvxc.exe. Then, it invokes this executable various times with
different command-line arguments. First, urdvxc.exe /installservice and urdvxc.exe
/start are used to execute stealthily as a system service. In a second step, the malware
tries to remove its traces by eliminating the original binary. This is done by calling
urdvxc.exe /uninstallservice patch:<binary> (where <binary> is the name of
the originally started program).

The graph shown in Figure 4.2 models part of this behavior. In the NtCreateFile
node, the urdvxc.exe file is created. This file is then invoked three times with different
arguments, resulting in three almost identical subgraphs. The box on the right-hand side

FP7-ICT-216026-WOMBAT 55

4 Effective and Efficient Malware Detection at the End Host

of Figure 4.2 is an enlargement of one of these subgraphs. Here, the NtCreateProcessEx
node represents the invocation of the urdvxc.exe program. The argument to the unin-
stall command (i.e., the name of the original binary) is supplied by the GetModuleFileName
function to the NtCreateThread call. The last NtResumeThread system call triggers the
verification of the complex dependencies.

56 SEVENTH FRAMEWORK PROGRAMME

5 System Call Analysis

5.1 Motivation and introduction

Most of the anomalous actions that an aggressor would try to perform on a system
through uploaded malware (e.g., accessing the host file system, sending or receiving
packets over the network, executing other programs on the host, etc.) require the use of
one or more system calls. Thus, it is reasonable to monitor such calls in order to analyze
the behavior of a process. In particular, we propose to use anomaly detection techniques
to flag anomalous or suspicious executions and record them for review in order to create
a trail (i.e., the alert logs) that would otherwise be lost. We use S2A2DE, a tool which
we developed in [67, 99], which makes use of both the sequence and the content of system
calls to detect anomalies. This has been shown to be more efficient than using sequences
of syscalls only, something which has been studied for a long time since the seminal work
[45].

S2A2DE is a next-generation evolution of the seminal works in the field by Vigna et
al. [63, 73], and uses a Markovian model of the sequence (as in, e.g., [61]) complemented
with an analysis of the arguments of the system calls to detect intrusions - and malware
activity.

One of the reasons why this type of detection is deemed useful in the context of
WOMBAT is that, nowadays, skilled attackers are wary of writing anything on the hard
drive of an attacked machine. Thus, if we wish to preserve malware samples, we need
to take into account in-memory execution, which is a widely known and used “definitive
anti-forensic” [47, 24, 55] technique.

There are two wide classes of anti-forensics techniques: transient techniques make the
acquired evidence difficult to analyze with a specific tool or procedure, but not impossible
to analyze in general. Definitive anti-forensics techniques instead effectively deny once
and forever any access to the evidence. In this case, the evidence may be destroyed by
the attacker, or may simply not exist on the media. The final objective of anti-forensics
is to reduce the quantity and spoil the quality [51] of the evidence that can be retrieved.

Examples of transient anti-forensics techniques are the fuzzing and abuse of filesystems
in order to create malfunctions or to exploit vulnerabilities of the tools used by the ana-
lyst, or the use of log analysis tools vulnerabilities to hide or modify certain information

57

5 System Call Analysis

[46, 51]. In other cases, entire filesystems have been hidden inside the metadata of other
filesystems [51], but techniques have been developed to cope with such attempts [83].
Other examples are the use of steganography [60], or the modification of file metadata
in order to make filetype not discoverable. In these cases the evidence is not completely
unrecoverable, but it may escape any quick or superficial examination of the media: a
common problem today, where investigators are overwhelmed with cases and usually
undertrained, and therefore overly reliant on tools.

Definitive anti-forensics, on the other hand, effectively denies access to the evidence.
The attackers may encrypt it, or securely delete it from filesystems (this process is some-
times called “counter-forensics”) with varying degrees of success [49, 48]. Access times
may be rearranged to alter the activity timeline that is usually exploited by analysts to
correlate events. The final anti-forensics methodology is not to leave a trail: for instance,
modern attack tools (commercial or open source) such as Metasploit [4], Mosdef or Core
IMPACT [36] focus on pivoting and in-memory injection of code: in this case, nothing or
almost nothing is written on disk, and therefore information on the attack will be lost as
soon as the system is powered down, which is usually standard operating procedure on
compromised machines. These techniques are also known as “disk-avoiding” procedures.

Memory dump and analysis operations have been advocated in response to this, and
tools are being built to cope with the complex tasks of reliable acquisition [27, 89] and
analysis [27, 88, 78] of a modern system’s memory. However, even if the memory can be
acquired and examined, if the injected process has already terminated, no trace of the
attack will be found: these techniques are much more useful against in-memory resident
backdoors and rootkits, which by definition are persistent.

In [68] we used S2A2DE to detect malicious code in-memory, generating a forensic
audit trail even if an attack does not write code to disk.

5.2 Architecture and implementation of S2A2DE

We have briefly described the architecture of S2A2DE in Deliverable D08, but we reca-
pitulate here for a better understanding of its usage in the following.

The architecture of S2A2DE is shown in Figure 5.1. Each execution of an application
is modeled as a sequence of system calls, S = [s1, s2, s3, . . .], logged by the operating
system auditing facilities. Each system call si is characterized by a type (e.g. read,
write, exec, etc.) and a list of arguments (e.g., the path of the file to be opened by
open). We ignore instead the return value of the system call.

Please note that, while for simplicity in our study this system was developed and
tested on Linux and FreeBSD, nothing in this setup is unusual, so the concept may be

58 SEVENTH FRAMEWORK PROGRAMME

5.2 Architecture and implementation of S2A2DE

. . .exit

<args> (arg1, arg2, ..., argN)execve

ArgModelNArgModel2ArgModel1

C
o
m
p
re
s
s
o
r
(c
lu
st
er
in
g
)

<args> (arg1, arg2, ..., argN)<syscall>
ArgModel1 ArgModel2 ArgModelN

.

C
lu
s
te
rM
a
n
a
g
e
r

O
p
en
B
S
M
 a
u
d
it
 t
ra
il
s ...

...

In
p
u
tM
a
n
a
g
e
r

BehaviorModeler

MarkovManager

clu
sters =

 m
o
d
el sta

tes

Alert

Manager
Detection

syslog/IDMEF

Figure 5.1: The architecture of our HIDS prototype

FP7-ICT-216026-WOMBAT 59

5 System Call Analysis

easily ported to any operating system
S2A2DE must be trained in order to “learn” a model of the normal behavior of the

monitored applications. During this phase, the system builds a distinct profile for each
application (e.g. sendmail, telnetd, etc.). A two-phase process of machine learning is
then applied to each type of system call separately. Firstly, a single-linkage, bottom-
up agglomerative hierarchical clustering algorithm [54] is used to find, for each type of
system call, sub-clusters of invocations with similar arguments. We are interested in
creating models on these clusters, and not on the general system call, in order to better
capture normality and deviations on a more compact input space. This is important
because some system calls, most notably open, are used in very different ways. Indeed,
open is probably the most used system call on UNIX-like systems, since it opens files
or devices in the file system creating a descriptor for further use. Only by careful
aggregation over its parameters (i.e., the file path, a set of flags indicating the type
of operation, and an opening mode) we can de-multiplex the general system call into
“sub-groups” that are specific to a single function. In order to do this, we must define
a way to measure “distance” among arguments, as we will show.

Afterwards, the system builds models of the parameters inside each cluster. The
type of models, as well as the type of distances used for agglomeration, depend on
the type of parameter, as shown in Table 5.1. In our framework, the distance among
two system calls, si and sj , is the sum of distances between corresponding arguments
D(si, sj) =

∑
a∈As

dmodel(a)(sa
i , s

a
j) (being As the shared set of system call arguments).

For each couple of corresponding arguments a we compute the distance as:

da =
{

K(·) + α(·)δ(·) if the elements are different
0 otherwise

(5.1)

where K(·) is a fixed quantity which creates a “step” between different elements, while the
second term is the real distance between the arguments δ(·), normalized by a parameter
α(·). We use “(·)” to denote that such variables are parametric w.r.t. the type of
argument.

Since hierarchical clustering does not offer a concept analogous to the “centroid” of
partitioning algorithms that can be used for classifying new inputs, we also created,
for each cluster, a stochastic model that can be used to classify further inputs. These
models generate a probability density function that can be used to state the probability
with which the input belongs to the model. It is not strictly necessary for such model,
or its distance or probability functions, to be the same as the distance functions that
are used for clustering purposes.

As can be seen in Table 5.1, at least 4 different types of arguments are passed to
system calls: path names and file names, discrete numeric values, arguments passed to

60 SEVENTH FRAMEWORK PROGRAMME

5.2 Architecture and implementation of S2A2DE

Table 5.1: Association of models to Syscall arguments in our prototype

Syscall Model used for the arguments

open pathname → Path Name
flags, mode → Discrete Numeric

execve filename → Path Name
argv → Execution Argument

setuid, setgid uid, gid → User/Group
setreuid, setregid ruid, euid → User/Group
setresuid, setresgid ruid, euid, suid → User/Group
symlink, link,rename oldpath,newpath → Path Name
mount source, target → Path Name

flags → Discrete Numeric
umount target,flags → Path Name
exit status → Discrete Numeric
chown path → Path Name
lchown group, owner → User/Group
chmod, mkdir path → Path Name
creat mode → Discrete Numeric
mknode pathname → Path Name

mode, dev → Discrete Numeric
unlink, rmdir pathname → Path Name

FP7-ICT-216026-WOMBAT 61

5 System Call Analysis

programs for execution, users and group identifiers (UIDs and GIDs).
Path names and file names are very frequently used in system calls. They are complex

structures, rich of useful information, and therefore difficult to model properly. For the
clustering phase, we chose to use a very simple model, the directory tree depth. This
is easy to compute, and experimentally leads to fairly good results. Thus, in Equation
5.1 we set δa to be the difference in depth. The stochastic model for path names is a
probabilistic tree which contains all the directories involved with a probability weight
for each. Filenames are often too variable to be considered, so if the leaves of the tree
are too different we simply ignore them for that specific model.

Discrete numeric values such as flags, opening modes, etc. are usually chosen from a
limited set. Therefore we can store all of them along with a discrete probability. Since
in this case two values can only be “equal” or “different”, we set up a binary distance
model for clustering, where the distance between x and y is:

da =
{

Kdisc if x 6= y
0 if x = y

and Kdisc, as usual, is a configuration parameter. In this case, the generation of the
probability density function is straightforward.

We also noticed that execution arguments (i.e. the arguments passed to the execve
syscall) are difficult to model, but we found the length to be an extremely effective
indicator of similarity of use. Therefore we set up a binary distance model, where the
distance between x and y is:

da =
{

Karg if |x| 6= |y|
0 if |x| = |y|

denoting with |x| the length of x and with Karg a configuration parameter. In this way,
arguments with the same length are clustered together. For each cluster, we compute
the minimum and maximum value of the length of arguments. Fusion of models and
incorporation of new elements are straightforward. The probability for a new input to
belong to the model is 1 if its length belongs to the interval, and 0 otherwise.

We developed an ad-hoc model for user and group identifiers. These discrete values
have three different meanings: UID 0 is reserved to the super-user, low values usually are
for system special users, while real users have UIDs and GIDs above a threshold (usually
1000). So, we divided the input space in these three groups, and computed the distance
for clustering using the following formula:

da =
{

Kuid if belonging to different groups
0 if belonging to the same group

62 SEVENTH FRAMEWORK PROGRAMME

5.2 Architecture and implementation of S2A2DE

open24execve0

0.50

0.33

0.33

0.33

0.50

setuid0rename0

open3 exit0

open45open12

Figure 5.2: A sample of the resulting Markov model with the clusters of system calls as
states

and Kuid, as usual, is a user-defined parameter. Since UIDs are limited in number, they
are preserved for testing, without associating a discrete probability to them. Fusion
of models and incorporation of new elements are straightforward. The probability for
a new input to belong to the model is 1 if the UID belongs to the learned set, and 0
otherwise.

In order to take into account the execution context of each system call, we use a
Markov chain (i.e. a first order Markov model) to represent the program flow. The
model states represent the system calls, or better they represent the various clusters of
each system call, as detected during the clustering process. For instance, if we detected
three clusters in the open syscall, and two in the execve syscall, then the model will
have five states: open1, open2, open3, execve1, execve2. Each transition will reflect
the probability of passing from one of these groups to another through the program.
A sample of such a model is shown in Figure 5.2. This approach was investigated in
former literature [28, 30, 56, 81, 59, 61], but never in conjunction with the handling of
parameters and with a clustering approach.

During training, each execution of the program in the training set is considered as
a sequence of observations. Using the output of the clustering process, each syscall is
classified into the correct cluster, by computing the probability value for each model
and choosing the cluster whose models give out the maximum composite probability
along all known models: max(

∏
i∈M Pi). The probabilities of the Markov model are

FP7-ICT-216026-WOMBAT 63

5 System Call Analysis

then straightforward to compute.
Since training should happen, ideally, on the machine which will be monitored, it is

important to notice that the prototype is resistant to the presence of a limited number
of outliers (e.g. abruptly terminated executions or attacks) in the training set, because
the resulting transition probabilities will drop near zero. For the same reason, it is
also resistant to the presence of any cluster of anomalous invocations created by the
clustering phase. Therefore, the presence of a minority of attacks in the training set will
not adversely affect the learning phase, which in turn does not require an attack-free
training set, and thus it can be performed on the deployment machine.

During the detection phase, each system call is considered in the context of the process.
The cluster models are once again used to classify each syscall into the correct cluster:
the probability value for each model is computed and the stored cluster whose models
give out the maximum composite probability (Pc = max(

∏
i∈M Pi)) is chosen as the

“system call class”. Three distinct probabilities can be taken into account in order to
build anomaly thresholds:

� Ps, the probability of the execution sequence to fit the Markov model up to now;
� Pc, the probability of the system call to belong to the best-matching cluster;
� Pm, the latest transition probability in the Markov model.
We fuse the last two into a probability value of the single syscall, Pp = Pc · Pm.

A second, separate value for the sequence probability Ps is kept. Using the training
data, appropriate threshold values are calculated by considering the lowest probability
over all the dataset for that single program (for both Ps and Pp). We then choose
a sensitivity parameter for scaling such value, giving the final anomaly threshold. A
process is flagged as malicious if either Ps or Pp are lower than the anomaly threshold.
For avoiding a Ps which quickly decreases to zero for long sequences, we introduced a
“scaling” of the probability calculation based on the geometric mean, by introducing a

sort of “forgetting factor”: Ps(l) = 2l

√∏l
i=1 Pp(i)i (where l is the sequence length). In

this case, we demonstrated [67] that P [liml→+∞ Ps(l) = 0] = 1, but it converges more
slowly. Experimentally, this latter scaling function leads to much better results in terms
of false positive rate.

5.3 Experimental setup

In order to show that our system is capable of detecting the in-memory injection of
code, and of creating an audit trail which can be used for forensics purposes, while
at the same time reducing the logged data to the bare minimum that is needed, we
generated an experimental dataset.

64 SEVENTH FRAMEWORK PROGRAMME

5.3 Experimental setup

Attacker Victim

(1) Exploit code + SELF payload
(2) SELF auto-loader + arbitrary ELF

SELF loader
ready

alignm.
envp str
argv str
Envp[]
Argv[]

alignm.
Argc

(3) arbitrary ELF response/output ELF's SP

V
uln. code's stack

Figure 5.3: An illustration of the in-memory execution technique we developed and used
for this work

We developed code injection attacks against applications on an Intel x86 machine
running FreeBSD 6.2. We recompiled the kernel enabling auditing capabilities, and used
OpenBSM [95] to collect audit trails (i.e. system calls sequences and their details).

We found vulnerabilities [74, 75] in two versions of eject and bsdtar, namely mcweject
0.9 (which is an alternative to the eject command bundled with FreeBSD 6.2) and the
release of bsdtar distributed with FreeBSD 6.2.

In order to train our system, we need a reasonable set of normal executions of all the
involved commands. Using a process similar to the one used for creating the IDEVAL
[2] dataset, and in fact used also in other works such as [90], we prepared shell scripts
to emulate pseudo-random behaviors of a user.

We developed the exploits for the vulnerabilities, and used a specifically crafted pay-
load, which implements a technique known as “Userland Exec”, i.e., by overwriting the
program headers of any statically linked ELF binary, and by building a specially-crafted
stack it allows an attacker to load and run that ELF in the memory space of a target
process without calling the kernel and, more importantly, without leaving any trace on
the hard disk of the attacked machine. The idea was based on a tool named SELF [11],
but our payload is a shellcode which can be executed through code injection, as opposed
to the previously available POCs.

Our technique employs a two-stage attack where a shellcode is injected in the vul-
nerable program, and then retrieves a modified ELF from a remote machine, and sub-
sequently injects it into the memory space of the running target process, as shown
schematically in Figure 5.3.

In the setup detailed above, we performed several experiments with both eject and
bsdtar. We trained our anomaly detector with ten different execution of eject and
more than a hundred executions of bsdtar, randomized as described above. We also
audited eight instances of the activity of eject under attack, while for bsdtar we logged

FP7-ICT-216026-WOMBAT 65

5 System Call Analysis

Details Detection accuracy

Programs DR % = TP
TP+FN % FPR % = FP

FP+TN %
Test env.: (a) w/o SELF (b) w/ SELF (c) Attack-free data

eject 75% 100% 0%
(no. of execs.) = 6

6+2% = 8
8+0% = 0

0+404%
bsdtar 70.6% 100% 7.81%

(no. of execs.) = 12
12+5% = 4·2

4·2+0% = 20
20+236%

Table 5.2: Experimental results for DR with a (a) regular shellcode (without userland
execution) and (b) with our userland exec implementation based on SELF.
Test environment (c) is related to the data used to compute the FPR.

seven malicious executions. We repeated the tests both with a simple shellcode which
opens a root shell (a simple execve of /bin/sh) and with our implementation of the
userland exec technique. In the latter we injected four different statically built payloads
(sash, links, fget, and the sudoku command line game); in the case of bsdtar we
gathered 8 executions by invoking bsdtar with two different command line option sets;
in the case of eject we injected 8 different payload (the same used for bsdtar plus
portsentry, tree, pstree, less) and we audited eight different executions.

The overall results are summarized in Table 5.2. Let us consider the effectiveness of
the detection of the attacks themselves. The attacks against eject are detected with
no false positive at all. The exploit is detected in the very beginning: since a very
long argument is passed to the execve, this triggers the argument model. The detection
accuracy is similar in the case of bsdtar, even if in this case there are some false positives.
The detection of the shellcode happens with the first open of the unexpected special file
/dev/tty. It must be underlined that most of the true alerts are correctly fired at
system call level; this means that malicious calls are flagged by our IDS because of
their unexpected arguments, for instance. It must be noted that, in the case of userland
execution with SELF, we were able of reaching 100% because our IDS is easily triggered
by in memory attacks; in fact, executing the injected payload significantly modifies the
normal behavior of the process more than a classic exploit does. Also note that to test
the accuracy of the prototype we used attack-free data.

On the other hand, exploiting the “Userland Exec” an attacker launches an otherwise
normal executable, but of course such executable has different system calls, in a different
order, and with different arguments than the ones expected in the monitored process.
This reflects in the fact that we achieved a 100% detection rate with no increase in false
positives, as each executable we have run through SELF has produced a Markov model

66 SEVENTH FRAMEWORK PROGRAMME

5.3 Experimental setup

which significantly differs from the learned one for the exploited host processes.
We profiled the code with gprof and valgrind for CPU and memory requirements.

The throughput for the training phase varies between 6120 and 10228 syscalls per sec-
ond. The training phase is also memory consuming, with a worst-case peak during our
tests of about 700 MB. The performance observed in the detection phase varies between
12395 and 22266 syscalls/sec. Considering that the kernel of a typical machine running
services such as HTTP/FTP on average executes system calls in the order of thousands
per second (e.g., around 2000 system calls per second for wu-ftpd [73]), and that in the
context of WOMBAT we are thinking about the use of S2A2DE in the context of hon-
eypot operations (where system load is arguably much lower), the overhead introduced
will not impact system operations in our target context.

Of course, using the prototype in a real honeypot introduces the issue of survivability,
i.e. wheteher or not an intruder can compromise the auditing system. This is a common
issue for any type of logging system: as soon as the host is compromised at root level,
any running auditing program cannot be trusted anymore. However, compromising our
prototype would entail uploading a training file which accepts the attacker’s actions as
normal. This is definitely nontrivial: the best choice for an attacker would probably
be to deactivate our system altogether. However, this can happen only in the post-
exploitation phase, whereas detection hopefully happens during exploitation. If the
logger is configured to forward alerts to a remote syslog server, the attacker would not
be able to easily circumvent it.

FP7-ICT-216026-WOMBAT 67

6 Behavioral detection by grammar-based signatures

Behavioral detection should theoretically be able to detect, if not innovative malware,
at least unknown malware reusing variations of known techniques. However, most of the
current behavioral detectors rely on specific characteristics, allowing evasion through
simple modifications at the functional level. In Deliverable D08 (D4.1): Specification
language for code behavior [98], a generative grammar for the Abstract Malicious Be-
havioral Language (AMBL) has been provided to model malicious behaviors, describing
their generic principle rather than their technical implementations. This chapter shows
the usage of behavioral signatures declared in the AMBL to build efficient and resilient
parsing automata for detection.

In a detection context, deterministic finite automata are attractive because their lin-
ear complexity remains acceptable for operational deployment. Already in 1995, [32]
used automata to describe the alternative sequences of operations making up malicious
behaviors. Detection was then restricted to behaviors described by classes of grammars
insensitive to the context. Since then, a focus on data flow has led to the apparition
of tainting techniques to detect malicious uses of data [77]. After significant successes,
control of the data flow is now broadly used, in intrusion detection [25] or malware be-
havior extraction [33]. The data-flow being context-sensitive, it requires more evolved
automata, such as pushdown automata, to be handled. In practice, the automata embed
the sequences of system calls constituting respectively attacks and behaviors. The data
flow is then captured by analysis of the parameters collected along the system calls.
Following this principle, [72] focuses on self-reproduction as the discriminating behavior
for detection whereas [70] focuses on bots behaviors. The approach of behavioral de-
tection that we present in this chapter also combines automata and data flow control.
But, according to the declarative approach of [86], behavior signatures are first declared
within the AMBL instead of being directly embedded into automata like the previously
mentioned articles.

Starting from the declared signatures, parsing automata are built for behavioral de-
tection by syntax checking and semantic evaluation. The AMBL semantic attributes,
specified for binding and typing, increase the linking between the operations making up
the behaviors. In reference to intrusion scenarios [38, 79], these attributes eventually
constitute two sets referred to as prerequisites and consequences, evaluated at every step
of the automata. Through prerequisites and consequences, operations unrelated to the

68

6.1 Detection by parsing automata

behavior are precisely identified. Unlike traditional parsing, unrelated symbols must be
dropped to keep on with the detection process, similarly to the event filters formalized
in [87]. An other difference with parsing is that detection searches, in a single pass,
for multiple instances of a same behavior, some possibly incomplete. Just like in [87],
derivation duplication is used to handle these multiple instances without risk of missing
one.

In input to parsing, collection mechanisms supply raw data and abstraction is needed
to translate the observed traces into the behavioral language. [70] addresses by a layered
architecture the semantic gap existing between the system call traces, understandable
by OS specialists, and high-level behaviors. An abstraction layer for translation into the
AMBL was introduced in [98, Chpt.3.2.3].

This chapter covers the successive layers of the process as published in [58]. Section 6.1
defines the detection layer in terms of parsing automata, allowing their formal assess-
ment. In particular, we have been able to identify the classes of attribute-grammars
acceptable for signature detection in a single pass, but also to assess the detection com-
plexity in various cases. Since detection only provides information about independent
behaviors, Section 6.2 addresses behavior correlation over the parsing results, in order to
merge this information and profile malware into families. Implementation of the different
layers is covered in Section 6.3 in order to provide in Section 6.4 a second operational
assessment in terms of coverage and performance.

6.1 Detection by parsing automata

In a grammatical model, detecting malicious behaviors is reduced to parsing their de-
scriptions. According to [98], the AMBL is well-formed, thus guaranteeing a possible
order for semantic attribute valuation. However, in a detection context, this property
is insufficient. Deployed in real-time, the detector is confronted to a continuous flow
of data forbidding the decoupling of syntactic parsing from semantic evaluation into
consecutive processes. Syntactic parsing and semantic evaluation must thus be achieved
in a single-pass. To satisfy this constraint, attribute grammars must either be LL and
L-attributed grammars, or LR and S-attributed grammars [97, Chpt.10]. By definition,
LL-grammars are parsed from Left to right in order to construct Leftmost derivations
whereas LR-grammars construct Rightmost derivations. As specified in Definition 1, L-
attribute grammars only allow attribute dependency from left to right in the production
rules. S-attributed grammars specified in Definition 2 are included within L-attributed
grammars and only authorize synthesized attributes. With respect to syntax, LR-parsers
can handle a larger class of grammars than LL-parser. However, the AMBL has very

FP7-ICT-216026-WOMBAT 69

6 Behavioral detection by grammar-based signatures

simple syntactic rules. Sematic evaluation will thus constitute our main choice crite-
ria. By definition of the language, typing attributes are inherited. LR-parsers using a
bottom-up approach will thus be missing the typing information inherited from parent
nodes. LL-parsers have thus been chosen because of their capacity to handle larger
classes of semantic attributes. We therefore constrain the description generation within
the AMBL to LL and L-attributed subgrammars.

Definition 1 In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed from left to right positions. An attributed grammar
G is L-attributed if for every π ∈ P and Yi.α = f(..., Yj .β, ...) with α ∈ Inh and β ∈ Syn,
we have i < j.

Definition 2 An attributed grammar G is S-attributed if every of its attribute is syn-
thesized.

Definition 3 A LL-parser A is an extended pushdown automaton that can be built as a
ten-tuple <Q, Σ, D, Γp,Γs, δ, q0, Zp,0, Zs,0, F > where:
- Q is the finite set of states, and F ⊂ Q is the subset of accepting states,
- Σ is the alphabet of input symbols and D is the set of values for attributes,
- Γp / Γs are the parsing / semantic stack alphabets,
- q0 ∈ Q is the initial state and Zp,0 / Zs,0 are the stacks start symbols,
- δ is the transition function defining the production rules and semantic routines,
of the form: Q× ({Σ ∪ ε}, D∗)× (Γp,Γs) → Q× ({Γp ∪ ε},Γs).

From the behavioral descriptions, the LL-parsers for detection are constructed as push-
down automata, enhanced with attribute evaluation in order to recognize their synatx
and semantic [97, Chpt.10]. To build the detector, several behaviors are monitored in
parallel, each one parsed by a dedicated automaton as represented in Figure 6.1. Ac-
cording to Definition 3, these automata are capable of building, from top to down, the
annotated leftmost-derivation trees by using two different stacks for syntactic symbols
and semantic attributes. However, the construction of these automata differs from tra-
ditional parsing, thus explaining that we did not use parser generators such as ANTLR
[82]. In fact, each automaton Ak, associated to the kth behavior, parses at the same
time several instances of the behavior, storing its progress in independent derivations.
These derivations correspond to triples made up of the current state qk and the content
of the parsing and semantic stacks, Γpk and Γsk. Through the abstraction layer, se-
quences of events ei are collected and translated into input symbols and semantic values
of the recognized language. The parsing automata, deployed in parallel, are fed with
all these events and progress along their derivations. These events may appertain to

70 SEVENTH FRAMEWORK PROGRAMME

6.1 Detection by parsing automata

any behavioral instance, so all the derivations handled by a given automaton are inde-
pendently updated. When an irrelevant input is read (an interleaved operation inside
the behavior for example), this input is ignored instead of causing an error state in a
derivation. When an ambiguous input is read (a seemingly relevant operation that does
not eventually help to the behavior completion), the derivation is duplicated to handle
new instances. Individual parsers and the global procedure are respectively defined in
Algorithms 1 and 2. The handling of irrelevant events and ambiguous events are re-
spectively described in greater details in Sections 6.1.1 and 6.1.2. The resulting parsing
complexity is finally addressed in Section 6.1.3.

Figure 6.1: Detection by parallel automata.
The n automata correspond to the different monitored behaviors. Each automaton
handles several parallel derivations with independent states and stacks in order to

handle ambiguities.

6.1.1 Semantic prerequisites and consequences

The present detection method can be related to scenario recognition in intrusion detec-
tion. An intrusion scenario is defined as a sequence of dependent attacks [38, 79]. For
each attack to occur, a set of prerequisites or preconditions must be satisfied. Once the
attack completed, new consequences are introduced, also called postconditions. In [16],
isolated alerts are correlated into scenarii by parsing attribute-grammars annotated with
semantic rules to guarantee the flow between related alerts. Similarly, a malicious behav-
ior is a sequence where each operation prepares for the next one. In a formalization by
attribute grammars, the sequence order is ensured by the syntax whereas prerequisites

FP7-ICT-216026-WOMBAT 71

6 Behavioral detection by grammar-based signatures

Algorithm 1 A.ll-parse(e,Q,Γp,Γs).
1: if e, Q, Γp, Γs match a transition T ∈ δA then
2: if e introduces a possible ambiguity then
3: duplicate state and stack triple (Q,Γp,Γs). {Start new parallel derivation}
4: end if
5: compute transition T to update (Q,Γp,Γs).
6: if Q is an accepting state Q ∈ FA then
7: alert ”malicious behavior detected”.
8: else
9: ignore e.

10: end if
11: end if

Algorithm 2 BehaviorDetection(e1,...,et).
Require: events ei are couples of symbol and semantic values: ({Σ ∪ ε}, D∗).
1: for all collected events ei do
2: for all the automata Ak such as 1 ≤ k ≤ n do {Detection of n behaviors}
3: m = number of derivations.
4: for all state and stack triples (Qk,j ,Γpk,j ,Γsk,j) such as 1 ≤ j ≤ m do
5: Ak.ll-parse(ei,Qk,j ,Γpk,j ,Γsk,j).
6: end for
7: end for
8: end for

72 SEVENTH FRAMEWORK PROGRAMME

6.1 Detection by parsing automata

and consequences are ensured by semantic rules of the form Yi.α = f(Y1.α1...Yn.αn)
according to Definition 4.

� Checking prerequisites: Prerequisites are defined by specific semantic rules
where the left-side attributes of the equations are attached to terminal symbols
(Yi∈Σ). During parsing, semantic values are collected along input symbols. These
values are compared to values computed using inherited and already synthesized
attributes. This comparison corresponds to the matching performed on the seman-
tic stack Γs during transitions from δ. As in [87], symbols failing to satisfy the
prerequisites are simply ignored instead of raising errors.

� Evaluating consequences: When the left-side attribute is attached to a non-
terminal (Yi∈V) and all right-side attributes are valued, the attribute is evaluated.
During the transitions from δ, the evaluation corresponds to the reduction step
where the computed value is pushed on the semantic stack Γs. Once computed, the
consequences can impact next transitions by being integrated to their prerequisites.

Definition 4 An attribute-grammar GA is a triplet <G,D, E> where:
- G is originally a context-free grammar <V,Σ, S, P>,
- att : X ∈ {V ∪Σ} → att(X) ∈ Att∗ is an assignment function for attributes and
D=∪α∈AttDα their set of values,
- E is a set of semantic rules such as for any production of P , there is at most one rule
per variable of the form Y.α = f(Y1.α1...Yn.αn) with f : Dα1× ...×Dαn→Dα.

6.1.2 Ambiguity support
All events are fed to the behavior automata. However, some of them may be unrelated to
the behavior or unuseful to its completion. Unrelated events do not match any transition
and are simply dropped as explained in Section 6.1.1. This is insufficient for unuseful
events raising ambiguities: they may be related to the behavior but parsing them makes
the derivation fail unpredictably. Let us take an explicit example for duplication in
Figure 6.2. After opening the self-reference, two files are consecutively created. If
duplication is achieved between the self-reference and the first file, parsing succeeds. If
duplication is achieved with the second one, parsing fails because the automaton has
progressed beyond the state of accepting a second creation. Similar ambiguities may be
observed along the variable affectations which alter the data-flow.

The algorithm should thus be able to manage the different objects and variables
combinations. As represented in Figure 6.2, ambiguities are handled by the detection al-
gorithm using derivation duplicates. This solution guarantees that no behavior instance
can be missed as proven by the completeness proof in [87]. Before transition reduction,

FP7-ICT-216026-WOMBAT 73

6 Behavioral detection by grammar-based signatures

Figure 6.2: Handling ambiguous symbols.
To resist interleaved interactions, the derivation is duplicated before transition to

handle alternate object combinations.

if the operation is potentially ambiguous, the current derivation is copied in a new triple
containing the current state and the parsing and semantic stacks. This solution han-
dles the combinations of events without backtracking. To come back and forth in the
derivation trees would have proved too cumbersome for real-time detection. To avoid
an explosion in the number of derivations, derivations, as soon as they become useless,
may be destroyed as it will be presented in Section 6.3.3 on implementation.

6.1.3 Time and space complexity

LL-parsing is linear in function of the number of symbols [52]. However, parallelism and
ambiguities increase the complexity of the detection algorithm. Let us consider calls
to the parsing procedure as the reference operation. This procedure is decomposed in
three steps: matching, reduction and accept (two comparisons and a computation). In
the worst case scenario, all events are related to the behavior automata and all these
events introduce ambiguities. In the best case scenario, no ambiguity is raised. Resulting
complexities are given in Proposition 1.

Proposition 1 In the worst case, behavioral detection using attributed automata has a
time complexity in ϑ(k(2n − 1)) and a space complexity in ϑ(k2n(2s)) where k is the
number of automata, n is the number of input symbol and s is the maximum stack size.
In the best case, time complexity drops to linear time ϑ(kn) and space complexity becomes
independent of the inputs ϑ(k2s).

The worst case complexity is important but it quickly drops as the number of am-
biguous events decreases. The experimentations in Section 6.4.5 show that the ratio of

74 SEVENTH FRAMEWORK PROGRAMME

6.2 Profiling the main classes of malware

ambiguous events is limited and the algorithm offers satisfactory performances. Based
on this ratio, a new assessment of the average practical complexity is provided. Be-
sides, these experimentations also show that an important ratio of ambiguous events are
already a sign of malicious activity.

Proof 1 In a best case scenario, the number of derivation for each automaton remains
constant. Considering the worst case scenario, all events are potentially ambiguous
for all the current derivations. Technically, ambiguities multiply by two the number of
derivations at each iteration of the main loop. Consequently, each automaton handles
2i−1 different derivations at the ith iteration. The time complexity is then equivalent to
the number of calls to the parsing procedure:

(1) k + 2k + ... + 2n−1k = k(1 + 2 + ... + 2n−1) = k(2n − 1)
The maximum number of derivations is reached after the last iteration. In the worst

case, all automata manage 2n parallel derivations. Each derivation is stored in two
stacks of size s. This moment thus coincides with the maximum memory occupation:

(2) k2n(2s).

6.2 Profiling the main classes of malware

In the previous sections, a behavioral approach for detection has been provided. Strictly
speaking, this approach does not detect malware, but offers a finer-grained approach
by detecting the independent malicious behaviors encountered inside these malware. A
complete detection scheme, as presented in Definition 5, requires a third layer, above
translation and individual detection, for behavior correlation. The interest of correlation
is twofold. It first reduces the risks of false positives. The experimentations coming in
Section 6.4.3 show that some behaviors are more discriminating than others. Correlation
is a way to give these significant behaviors a greater weight in the detection process. In
addition, correlation can also be used to associate individual behaviors with a family the
malware instance belongs to.

Definition 5 A behavioral detection scheme is the pair {B, φc} where B is a set of be-
havior signatures defined as Boolean variables and φc : F|B|2 → Fn is a Boolean correlation
function for detection, Fn being the n-ary field indexing legitimate programs and malware
families [42, 43].

Resulting of detection by automata, the Boolean variables corresponding to the moni-
tored behaviors B are resolved. These variables may express the simple behavior presence

FP7-ICT-216026-WOMBAT 75

6 Behavioral detection by grammar-based signatures

(example (1)). However, since the detection automata provide richer information than
behaviors alone, these variables can also convey more meaningful expressions. Addi-
tional information can be recovered from the derivation trees built by the automata dur-
ing parsing. For example, a duplication derivation tree distinguishes the possible data
flows, between direct transfer, single read/write or interleaved reads/writes (example
(2)). Through the semantic annotations of the tree, information about the duplication
target can also be recovered such as its name or its status: existing or created by the
malware (example (3)). All this information constitutes additional Boolean variables
that can be fed into the correlation process, to increase its deduction capability.

(1) Xβ =
{

1 if β has been identified
0 otherwise

(2) Xβ,m =
{

1 if β has been identified using method m
0 otherwise

(3) Xβ,o,s =
{

1 if β manipulates object o with status s
0 otherwise

A solution to finally build the correlation function φc is to establish, according to the
common properties of their behaviors, profiles for the generic classes of malware. These
profiles can be specified by belonging conditions, using all the behavioral information at
our disposal. In Figure 6.3, we have put forward profiles for different kinds of Viruses,
Trojans and Worms, their belonging conditions expressed as Boolean statements.

6.3 Prototype implementation

As a proof of concept, a prototype of behavioral detector has been designed, satisfying
the formalization of the previous sections. We have developed a first version of the
prototype, which includes the two aforementioned layers: a specific data collection and
abstraction layer and a generic detection layer. The second version has been enhanced
with an additional layer for behavior correlation by profiles. The overall architecture
is described in Figure 6.4. For the abstraction layer, dedicated components capture
the features of different languages whereas a common object classifier apprehends the
platform-specific elements of the environement. In order to cover different use cases,
abstraction components have been designed for two different languages, and both col-
lection methods: a native language through the interpretation of dynamic traces of PE
Executables in Section 6.3.1 and, to show the independence of detection from the collec-
tion method, an interpreted language through the static analysis of Visual Basic Script
in Section 6.3.2. Above abstraction, the detection layer described in Section 6.3.3 de-

76 SEVENTH FRAMEWORK PROGRAMME

6.3 Prototype implementation

Profile for the Virus class:
duplication.number ≥ 1
duplication.target.status ∈ {existing}
File overwriter subclass:

duplication.flow ∈ {transfer}
File infector subclass:

duplication.flow ∈
{single read/write,

interleaved read/write}

Profile for the Trojan class:
duplication.number ≥ 1
executionproxy.number ≥ 1

Profile for the Net Worm class:
propagation.number ≥ 1
propagation.interface ∈ {network}

Profile for the Mail Worm class:
duplication.number ≥ 1
propagation.number ≥ 1
propagation.interface ∈ {mail}

Profile for the P2P Worm class:
duplication.number ≥ 1
propagation.number ≥ 1
propagation.interface ∈
{file, folder}

Profile for the Drive Worm class:
duplication.number ≥ 1
propagation.number ≥ 1
propagation.interface ∈ {drive}
Amovible drive subclass:

residency.target.name ∈
{autorun.inf}
Generic drive subclass:

residency.target.name 6∈
{autorun.inf}

Profile for the IRC Worm class:
duplication.number ≥ 1
∨ propagation.number ≥ 1
residency.number ≥ 1
residency.target.name ∈ {mirc.ini,

script.ini}

Figure 6.3: Generic Malware Profiles.
The profiles are mainly built on the presence of specific behaviors inside malware, but
additional parameters, corresponding to derivation-related and semantic information,

refine the belonging conditions.

FP7-ICT-216026-WOMBAT 77

6 Behavioral detection by grammar-based signatures

ploys parallel automata parsing the interpreted traces independently from their original
source. The behavioral information extracted by the automata is finally correlated by
the profiling layer described in Section 6.3.4, in order to classify malware.

Figure 6.4: Multi-layered architecture of the detector.
The detector prototype is constituted of three stacked layers, making-up the global

detection process. Each layer handles more generic and synthetic data, starting from
the collected raw traces, passing by detected behaviors, to the above malware

classification.

6.3.1 Analyzer of process traces

Process traces provide useful information about the system activity of an executable.
Whatever the considered operating system, different dynamic tools exist to capture these
traces of system calls. The prototype deploys a free tool called NtTrace which has been
chosen for its capacity to collect Windows Native Calls, their arguments as well as their
returned values [6].

78 SEVENTH FRAMEWORK PROGRAMME

6.3 Prototype implementation

1) Collection environment: Contrary to static analysis, the main point with dynamic
collection mechanisms, either real-time or emulation based, is that most behaviors are
conditioned by external objects and events, such as available target for infection or lis-
tening servers for network propagation. The configuration of the collection environment
is thus critical. For trace collection, the virtual environment from Figure 6.5 has been
installed over Qemu [8] using a drive image under Windows XP. In order to increase
the mechanism coverage and collect conditioned behaviors, useful services and resources
were configured or installed: system time, Internet Service Provider accounts, mail and
peer-to-peer clients, potential targets (executables, pictures, music, web pages). To cre-
ate a more realistic network configuration, emulations of DNS and SMTP servers have
been deployed outside the virtual machine. These servers are not used to directly collect
data but their presence is mandatory to establishing network connections and exchanges.
They constitute the only way to capture the associated trace, containing the network ac-
tivity at the system call level. Additional servers for IRC (Unreal) and FTP (FileZilla)
have been deployed in a second step to observe any botnet activity for the related sam-
ples. NtTrace is finally run inside the virtual operating system, outputting system call
traces as text files.

Figure 6.5: Collection environment for Windows API calls.
For an optimal coverage, the virtual environment is configured for the maximum

similitude with the configuration of a personal computer, considering an average user.

2) Trace analysis: On top of the collection tool, we have developed an analyzer for line
by line translation of the collected traces. Referenced APIs are directly classified over
the different interaction categories according to Table 6.1, whereas unreferenced APIs
are simply ignored until their integration in a future version. Sequences of identical calls
as well as sequences of two combined calls are detected during the analysis and formatted

FP7-ICT-216026-WOMBAT 79

6 Behavioral detection by grammar-based signatures

Figure 6.6: Addresses interpretation by space partitioning.

Figure 6.7: Character strings interpretation by structural analysis.

into loops in order to compress the resulting abstract trace.
In addition to interactions, the analyzer must be able to manage objects through

identification and typing. In order to enforce typing on the call parameters, an object
classifier, embedding decision trees such as the ones described in Figures 6.6 and 6.7, has
been specifically designed for a Windows configuration. The identification of objects is
more complex. Looking specifically at creation and opening interactions, their resolution
establishes a correspondence between the names of the involved objects and their refer-
ences, either addresses or handles. The correspondence is stored in a dedicated object
base which is looked up during the analysis of the following calls. The code sample from
Figure 6.8 illustrates the management of object correspondences inside the prototype.
Conversely, deleting and closing interactions destroy correspondences for the remainder
of the analysis. Names and identifiers must be unlinked since references could be reused
for a different object. The identification of variables in reading interactions is a last
point worth mentioning. The manipulated variables do not simply replaced each other

80 SEVENTH FRAMEWORK PROGRAMME

6.3 Prototype implementation

like handles; they may overlap. Let us consider a first variable defined by an address
a1 and a size s1. Any reading interaction storing its result at the address a2 such as
a1 < a2 < a1 + s1 creates a second variable and reduces the size of the first variable to
a2 − a1 like in the code sample from Figure 6.9.

Table 6.1: Mapping Windows Native and VBScript APIs to interaction classes.

6.3.2 Analyzer of Visual Basic Scripts

No collection tool similar to NtTrace is available for VBScript. A dedicated collection
tool has thus been developed, embedding the abstraction layer directly. VBScript being

FP7-ICT-216026-WOMBAT 81

6 Behavioral detection by grammar-based signatures

if(!strncasecmp(OPENF1,line,10)){ //NtOpenFile(@[handle], ..., filename, ...)

//Parsing arguments

args = strchr(line,’(’); args++;

objtoken1 = strtok(args,",");

token = strtok(NULL,",");

filename = strtok(NULL,",[]");

token = strtok(objtoken1," []");

token = strtok(NULL," []"); sscanf(token,"%X",&handle1);

//Updating object base

objind = isKnownObject(types,filename,0);

if(objind==UNKNOWN) objind = addNewObject(types,filename,OBJ FILE);

if(handle1) addObjectHandle(types,objind,handle1);

*obj1 = objind; //Object parameter

return OP OPEN; //Recognized command

}

Figure 6.8: Recognition of opening interactions.
In input, line is read from the process trace. If NtOpenFile is recognized, its

arguments are parsed to manage objects. A look up determines if the object is existing
in the base or must be created. A correspondence is then established with the returned

handle value.

an interpreted language, its static analysis was easier to consider than for native code,
because of the visibility of the source code and its integrated safety properties: no direct
code rewriting during execution and no arbitrary transfer of the control flow [69]. Relying
on these advantages, we have conceived the VBScript Analyzer as a partial interpreter
using static analysis for path exploration. The analyzer is divided into three parts: a
static part recovering the script structure and normalizing its code, a second dynamic
part exploring the different execution paths and collecting significant events, and the
object classifier.

1) Static analyzer: The static analysis heavily relies on the syntactic specifications
of the VBScript language [5]. The script is first parsed to localize the main, the local
functions and procedures, as well as to retrieve their signature. Its structure is then
parsed by blocks to recover information about the declared variables and the instantiated
managers (file system, shell, network, mail). In addition to information collection, the
static analyzer also deploys code normalization. Code normalization removes several
syntactic shortcuts provided by VBScript but most critically thwarts obfuscation and
encryption. By normalization, the current version of the analyzer can handle certain
categories of obfuscation such as integer encoding, string splitting or string encryption.

2) Dynamic interpreter: A partial script interpreter has been defined to explore the

82 SEVENTH FRAMEWORK PROGRAMME

6.3 Prototype implementation

if(!strncasecmp(READF1,line,10)){ //NtReadFile(@[handle], ..., buffer, size, offset)

//Parsing arguments

args = strchr(line,’(’); args++;

token = strtok(args,","); sscanf(token,"%X",&handle2);

token = strtok(NULL,","); ... //Skip the four next parameters

token = strtok(NULL,", "); sscanf(token,"%X",&ptr1);

token = strtok(NULL,", "); sscanf(token,"%X",&size);

objtoken1 = strtok(NULL,",)");

token = strtok(objtoken1,"[]");

token = strtok(NULL,"[]"); sscanf(token,"%X",&offset);

//Updating object base

objind2 = isKnownObject(types,NULL,handle2);

if(objind2==UNKNOWN) return 0;

objind1 = UNKNOWN;

for(i=0; i<types->nbobj; i++){
address = getObjectAddress(types,i);

space = getObjectSize(types,i);

if(address==ptr1){
if(!objind1) objind1 = i; //Reuse known variable

}else if(ptr1>add && ptr1<(add+addsize)){
diff = ptr1-address-1; //Restraining variable size

setObjectSize(types,i,diff);

}
}
if(!objind1){ //Creating second variable

objind1 = addNewObject(types,NULL,VAR);

setObjectAddress(types,objind1,ptr1);

}
setObjectSize(types,objind1,size);

*obj1 = objind1; *obj2 = objind2; //Object parameters

return OP READ; //Recognized command

}

Figure 6.9: Recognition of reading interactions.
The basic functioning is identical than for opening interactions except for variable
management. If the manipulated variable is unknown, a new one is simply created
using the given address and size. In case of overlapping, an overwriting variable is
created; original variables are maintained but their size is reduced to respect the

boundary of the created variable.

different execution paths. This interpreter has a partial capability, only in the sense that
the script code is not really executed but only significant operations and dependencies
are collected. To support path exploration, the analyzer handles conditional structures,

FP7-ICT-216026-WOMBAT 83

6 Behavioral detection by grammar-based signatures

loop structures, and calls to local functions and procedures. Inside these different code
blocks, each line is processed to retrieve the monitored API calls manipulating files,
registry keys, network connections or mails. Monitored calls are interpreted by mapping
according to the Table 6.1. Variable affectations, greatly impacting the data-flow, are
thereby also monitored. With respect to the call arguments and the affected values, a
second level of analysis is deployed to process these expressions. In order to control the
data-flow, object references and aliases must be followed up through the processing of
expressions, and in particular at some key operations:

� Local function and procedure calls - linking signature names with the passed argu-
ments,

� Monitored API calls - creating new objects or updating their type and references,
� Affectations - linking variables with affected values,
� Calls to execute - evaluating expressions as code.

3) Object classifier: The previous object classifier has been reused as shown in the
architecture of Figure 6.4. However, scripts being mainly based on character strings,
the address classifier is unused. In addition, extensions to the string classifier have been
implemented to best fit the script particularities, with new constants for the self-reference
for example ("Wscript.ScriptName", "Wscript.ScriptFullName" containing the path
to the running script).

6.3.3 Detection automata

The real implementation of the detection automata complies with the algorithm pre-
sented in Section 6.1. The current version we have developed supports five different
automata detecting respectively duplication, propagation, residency, overinfection and
execution proxy behaviors [58]. As shown in the code sample from Figure 6.10, the
production rules from the grammatical behavior descriptions have been directly coded
as state transitions inside the automata. Semantic prerequisites have been integrated as
tests conditioning these transitions whereas consequences are computed when resolving
them. In input, the automata are fed with the traces of abstracted events, obtained by
the analyzers. Notice that both analyzers format their traces in a same binary format for
interoperability. For each behavior detected along parsing, a new entry is written down
in a behavior report. In order to enrich the behavioral reports, the object databases con-
taining all semantic values related to traces are also loaded. In output, the global report
is finally formatted in an XML format satisfying the Data Type Definition presented in
Figure 6.11.

With respect to the original algorithm, two enhancements have been brought to in-

84 SEVENTH FRAMEWORK PROGRAMME

6.3 Prototype implementation

/** updateDuplicationAutomata()

* According to the operation symbol in input, the function dispatches the control to the

* production rule whose first set contains the operation (Construction of LL-parsers [57]).

*/

void updateDuplicationAutomata(unsigned long ul Operation,

long l Arg1id, int i Arg1type, long l Arg2id, int i Arg2type){
switch(ul Operation){
case OP OPEN:

parseDupOpen(l Arg1id, i Arg1type);

break;

case OP CREATE:

parseDupCreate(l Arg1id, i Arg1type);

...

}
}

void parseDupOpen(long l Argid, int i Arg1type){
for(i=0; i<duplication.nbderivation; i++){

struct PARSED AUTOMATON * aut;

aut = &duplication.derivations[i]; //Selects ith derivation

curstate = getCurrentState(aut); //Recovers derivation state

getCurrentAttributes(aut,t curids,t curtypes); //Recovers derivation semantic stack

switch(curstate){
case q1:

if(i Argtype==TYPE THIS){ //Checks semantic rules

startDerivation(&duplication, q1,

t curids,t curtypes); //Duplicate derivation (ambiguity)

t curids[1] = l Argid; //Computes semantic values

t curtypes[1] = i Argtype;

addNode(aut,q2,t curids,t curtypes); //Progression towards next node

}
break;

case q2:

...

}
}

}

Figure 6.10: Transitions of the duplication automaton.
As input, the automaton receives the abstracted events decomposed as operations and

arguments. All parallel derivations are confronted to these operations and progress
according to their current state q and their semantic stack stored in t curids and

t curtypes.

FP7-ICT-216026-WOMBAT 85

6 Behavioral detection by grammar-based signatures

<?xml version="1.0"?>

<!DOCTYPE Behaviors [

<!ELEMENT Behaviors (Duplication|Propagation|Residency|Overinfection|ExecutionProxy)*>

<!ELEMENT Duplication (sequence,flow,source,target,transit?)>

<!ELEMENT Propagation (sequence,flow,source,interface,transit?)>

<!ELEMENT Residency (sequence,value,target)>

<!ELEMENT Overinfection (sequence,conditional,marker)>

<!ELEMENT ExecutionProxy (sequence,flow,source,target,transit?)>

<!ELEMENT sequence EMPTY>

<!ATTLIST sequence number ID #REQUIRED>

<!ELEMENT flow EMPTY>

<!ATTLIST flow method (transfer|single-block|interleaved) #REQUIRED>

<!ELEMENT conditionnal EMPTY>

<!ATTLIST conditionnal method (straight|inverse) #REQUIRED>

<!ELEMENT source EMPTY>

<!ATTLIST source id CDATA #REQUIRED>

<!ATTLIST source name CDATA #REQUIRED>

<!ATTLIST source nature (none|file|folder|drive|registry|network|mail) #REQUIRED>

<!ELEMENT target EMPTY>

<!ATTLIST target id CDATA #REQUIRED>

<!ATTLIST target nature (none|file|folder|drive|registry|network|mail) #REQUIRED>

<!ATTLIST target status (created|existing) #REQUIRED>

<!ELEMENT interface EMPTY>

<!ATTLIST interface id CDATA #REQUIRED>

<!ATTLIST interface name CDATA #REQUIRED>

<!ATTLIST interface nature (none|file|folder|drive|network|mail) #REQUIRED>

<!ELEMENT transit EMPTY>

<!ATTLIST transit id CDATA #REQUIRED>

<!ATTLIST transit nature (none|variable) #REQUIRED>

<!ELEMENT value EMPTY>

<!ATTLIST value id CDATA #REQUIRED>

<!ATTLIST value nature (none|file|folder|drive|registry|network|mail|variable) #REQUIRED>

<!ELEMENT marker EMPTY>

<!ATTLIST marker id CDATA #REQUIRED>

<!ATTLIST marker name CDATA #REQUIRED>

<!ATTLIST marker nature (none|file|folder|drive|registry) #REQUIRED>

]>

Figure 6.11: DTD of the Behavioral Report.
In addition to behaviors, the report stores information about the deployed method or

the involved objects, these information being recovered respectively from the derivation
and the object database.

crease its performance. A first mechanism avoids duplicate derivations. Coexisting iden-

86 SEVENTH FRAMEWORK PROGRAMME

6.4 Experimentation and discussions

tical derivations artificially increase the number of algorithm iterations without identify-
ing other behaviors than the ones already detected. The second enhancement is related
to the close and delete interactions. In order to decrease the number of iterations,
useless derivations where no interaction occurs between the opening/creation and the
closing/deletion of a same object are destroyed. These mechanisms have proved helpful
in maintaining the number of parallel derivations at a manageable level.

6.3.4 Malware profiler

Above the detection automata, a malware profiler has been implemented in order to
assess the profiles defined in Section 6.2. The behavioral reports generated by the au-
tomata contain the required information and are parsed using an open-source library
for XML parsing called Expat [3]. According to the recovered information, the profiler
associates the related malware to one or several generic classes. The profile report gen-
erated in output is also provided in an XML format satisfying the Data Type Definition
presented in Figure 6.12.

<?xml version="1.0"?>

<!DOCTYPE Profile [

<!ELEMENT Profile (Category)*>

<!ELEMENT Category EMPTY>

<!ATTLIST Category class CDATA #REQUIRED>

<!ATTLIST Category subclass CDATA #IMPLIED>

]>

Figure 6.12: DTD of Profile Report.
The report can contain several entries since malware can satisfy the belonging

conditions of different classes and subclasses.

6.4 Experimentation and discussions
Experimentations have been led to assess the prototype in operational conditions. For
this, a pool of samples has been gathered, divided into two categories: Portable Exe-
cutables and Visual Basic Scripts. Each category contains about 200 malware and 50
legitimate samples, split up in families according to the repartition from Figure 6.13.
Malware have been mainly downloaded from repositories [7, 10], whereas legitimate sam-
ples have been selected from an healthy system installation, with a priority to samples
whose behavior presents some similarities with malware. The different samples have been
transmitted to their respective analyzers, before submitting the resulting abstracted logs
to the detection automata. The resulting coverage is interpreted in Section 6.4.1 and ob-
served phenomenons such as the collection impact, the behavior relevance or the profile

FP7-ICT-216026-WOMBAT 87

6 Behavioral detection by grammar-based signatures

adequacy are respectively explained in further details in Sections 6.4.2, 6.4.3 and 6.4.4.
Operational performance is finally addressed in Section 6.4.5.

Figure 6.13: Repartition of the Test Pool.
The pool contains various types of malware among which are some of the most known:

Agobot, MySoom, Sober, Sobig, etc. The pool also contains various samples whose
behaviors show similarities with malware: Outlook for the mail activity, Azureus for

file transmission, etc.

6.4.1 Coverage
The experimentation has provided significant results with a detection rate of 52% for
PE Executables and up to 90% for VB Scripts. The detection rates by behaviors are
described in Tables 6.2 and 6.3. Duplication is indeed the most significant malicious
behavior. However the additional behaviors, and in particular residency, helps to detect
additional malware where duplication is missed. False positives are almost inexistent,
as shown in Tables 6.4 and 6.5. The only false positive, observed for residency, can be
easily explained: the given script is a malware cleaner which reinitializes the Internet
Explorer start page after infection.

Some false negative spikes, superior to 80%, can be localized in the PE results from
Table 6.2: the low duplication detection rate for PE Viruses and the propagation de-
tection rates for Net and Mail Worms are explained by limitations in the collection
mechanisms. The impact of the collection mechanism on detection is assessed in Section

88 SEVENTH FRAMEWORK PROGRAMME

6.4 Experimentation and discussions

Behaviors EmW P2PW V NtW Trj Global

Duplication 41(68,33%) 31(77,5%) 15(18,29%) 8(53,33%) 10(38,46%) 47,09%

direct copy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
single read/write 41(68,33%) 30(75%) 14(17,07%) 8(53,33%) 10(38,46%) 46,19%
interleaved r/w 9(15%) 3(7,5%) 3(3,66%) 3(0,2%) 0(0%) 8,07%

Propagation 4(6,67%) 19(47,5%) 3(3,66%) 1(6,67%) 0(0%) 12,11%

direct copy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
single read/write 4(6,67%) 19(47,5%) 3(3,66%) 1(6,67%) 0(0%) 12,11%
interleaved r/w 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Residency 36(60%) 22(55%) 5(60,98%) 6(40%) 12(46,15%) 36,32%

Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
inverse conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Execution Proxy 0(0%) 0(0%) 0(0%) 0(0%) 4(15,38%) 1,79%

Global detection 43(71,67%) 33(82,50%) 16(19,51%) 8(53,33%) 16(61,54%) 52,02%

Table 6.2: PE Malware detection.

EmW= Email Worms, P2PW= Peer-to-Peer Worms, V =Viruses, NtW=Net Worms,
Trj=Trojans.

6.4.2. Comparing VB Scripts and PE Traces, the false negative rates are lower for the
scripts. The VBScript Analyzer works statically with path exploration; its coverage is
thus more complete. The explanation of the remaining false negatives is twofold: the
encryption of the whole malware body which is not supported yet and the cohabitation
in a same web page of JavaScript and VBScript code which makes the syntactic analysis
fail. Reversing code encryption can be handled similarly to string encryption, by local-
ization of the decryption routine and calling it on-demand. Cohabitation of scripting
languages can be addressed by a localization mechanism, parsing the tags of web pages
to extract those containing VBScript code.

Globally, the observed detection rates for duplication are consistent with the results
previously obtained in existing works [72]. The real enhancements from this work are
twofolds: the parallel detection of additional behaviors described in the same language
(propagation, residency and overinfection), and the possibility to feed detection with
traces from other sources such as those coming from the script analyzer. With regards
to [26], the execution proxy behavior has been transposed for testing the compliance
with their model. The samples tested in common were mostly detected likewise; the
exceptions are also explained by limitations in the collection mechanism.

FP7-ICT-216026-WOMBAT 89

6 Behavioral detection by grammar-based signatures

Behaviors EmW FdW IrcW P2PW V Gen Global

Encrypted strings 1/51 0/4 1/26 0/30 3/61 10/30 15/202
Encrypted body 4/51 0/4 0/26 1/30 2/61 0/30 7/202
String encryption 1(100%) 0 0 0(0%) 2(66,67%) 10(100%) 86,67%

Duplication 43(84,31%) 4(100%) 20(76,96%) 22(73,33%) 44(72,13%) 30(100%) 80,70%

direct copy 41(80,39%) 4(100%) 20(76,96%) 22(73,33%) 25(40,98%) 30(100%) 70,30%
single read/write 8(15,69%) 0(0%) 4(15,38%) 3(10%) 21(34,43%) 0(0%) 17,82%
interleaved r/w 1(1,96%) 0(0%) 0(0%) 0(0%) 8(13,11%) 0(0%) 4,46%

Propagation 33(64,71%) 3(75%) 5(19,23%) 25(83,33%) 5(8,20%) 30(100%) 49,99%

direct copy 33(64,71%) 3(75%) 4(15,38%) 25(83,33%) 3(4,92%) 30(100%) 48,52%
single read/write 3(5,88%) 0(0%) 2(7,69%) 1(3,33%) 2(3,28%) 0(0%) 3,96%
interleaved r/w 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Residency 32(62,75%) 4(100%) 20(76,92%) 18(60,00%) 20(32,79%) 30(100%) 61,39%

Overinfection test 4(7,84%) 1(25%) 1(3,85%) 0(0%) 0(0%) 0(0%) 2,97%

conditional 4(7,84%) 1(25%) 1(3,85%) 0(0%) 0(0%) 0(0%) 2,97%
inverse conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Execution proxy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Global detection 46(90,20%) 4(100%) 25(96,15%) 27(90,00%) 50(81,97%) 30(100%) 90,09%

Table 6.3: VBS Malware detection.

EmW= Email Worms, FdW= Flash Drive Worms, IrcW= IRC Worms,
P2PW =Peer-to-Peer Worms, V= Viruses, Gen =Generators variants.

Behaviors PE PE PE PE PE PE
ComE MM Off Sec SysU Global

Duplication 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Propagation 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Residency 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Execution proxy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Global detection 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Table 6.4: PE Legitimate Samples Detection.

Com = Communication and Exchange Applications, MM=Multimedia Applications,
Off =Office Applications, Sec =Security Tools, SysU = System and Utilities.

90 SEVENTH FRAMEWORK PROGRAMME

6.4 Experimentation and discussions

Behaviors VBS VBS VBS VBS VBS VBS VBS
EmM InfC Enc DfE MwC RegR Global

Duplication 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Propagation 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Residency 0(0%) 0(0%) 0(0%) 0(0%) 1(12,50%) 0(0%) 1,67%
Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Execution proxy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Global detection 0(0%) 0(0%) 0(0%) 0(0%) 1(12,5%) 0(0%) 1,67%

Table 6.5: VBS Legitimate Samples Detection.

EmM= Email Managers, InfC= Information Collectors, Enc =Encoders, DfE= Disk
and File Explorers, MwC = Malware Cleaners, RegR = Registry Repairs.

6.4.2 Limitations in trace collection

A significant part of the missed behaviors, or false negatives, are due to limitations exist-
ing in the collection coverage. However, thanks to the layer-based approach, collection
and abstraction can be improved for a given platform or language without modifying
the upper detection layer.
1) Dynamic analysis (PE Traces): Due to the dynamic nature of the collection,
the first reason for detection failure is a problem related to the configuration of the
simulated environment. The simulation must appear as real as possible in order to sat-
isfy the execution conditions of the malware, in particular for triggered actions. The
software configuration of the simulated environment constitutes a first difficulty. 64,6%
of the tested PE Viruses (53/82) did not execute properly in the simulated environ-
ment: invalid PE files, access violations or unhandled exceptions. These failures may be
explained by the detection of virtualization or anti-debug techniques crafted to thwart
dynamic analysis.

The configuration of the simulated network constitutes a second problem. For exam-
ple, the propagation of Mail Worms is conditioned by the network configuration. 75%
of the PE Mail Worms (45/60) did not show any SMTP activity because they could not
reach any server. In certain worms, the address of the server was hard coded making the
redirection by the DNS server useless. Certain worms were also unable to retrieve from
the environment the address of a registered mail server. Likewise, Net Worms propagate
through vulnerabilities only if a vulnerable target is reachable. The absence of poten-
tial targets explains that 93,33% of them did not propagate (14/15). They contented
themselves with scanning different ranges of IPs. The problem is even worse with the
bot samples from the Trojan pool. In order to observe the different behaviors, the bots
must receive the right commands through an IRC channel which is often protected by a
password. In order to configure this password as well as the URL of the reachable IRC

FP7-ICT-216026-WOMBAT 91

6 Behavioral detection by grammar-based signatures

server, six bots were produced from customized code sources, recompiled specifically for
the collect platform [9]. 66% of the behaviors of execution proxy were detected in these
bots (4/6). On the opposite, for the other bots whose binary only was available (3/3),
only duplication was observed because no command was sent. Generally speaking, all
actions conditioned by the configuration of the simulated environment are difficult to
observe: a potential solution could be forced branching.

Beyond the configuration problem, the level of the trace collection can also explain
the detection failure. With a high-level collection mechanism, like NtTrace running in
user space, visibility over the performed actions and the data flow is reduced. All flow-
sensitive behaviors such as duplication can be missed because of breakdowns in this data
flow. Such breakdowns can find their origin sometimes in non monitored system calls
and for the most part in the intervention of intermediate buffers where all operations
are executed in memory. These buffers are often used in code mutation (polymorphism,
metamorphism). 12,20% of the viruses duplications (10/82) were missed because of a
data flow breakdown. The problem is identical with mail propagation: 8,33% of the
propagations (5/60) were missed for Mail Worms because of an intermediate buffer used
for Base64 encoding. These problems do not come from the behavioral descriptions
but from NtTrace which does not capture any information about operations in memory.
More complete collection tools, either collecting instructions [29] or deploying tainting
techniques [1, 85], could avoid these breakdowns in the data flow. Tainting, in particular,
uses a shadow memory to store taint information about the sensitive data manipulated.
Taints are then propagated at the instruction level whenever the result of the computa-
tion depends on data already tainted.
2) Static analysis (VB Scripts): In the VBScript Analyzer, the static analysis of
the source code enables branching exploration and observation of the data flow. Their
implementation compensates for the drawbacks that were encountered with NtTrace.
The greater coverage of the Analyzer eventually results in better detection rates.

However, contrary to the stable set of system calls, the VBS language offers numer-
ous services to monitor. The same operation can be achieved using different managers
or interfacing with different Microsoft applications. The actual version of the analyzer
should monitor additional features to increase its coverage: accesses to Messenger ser-
vices or the support of the Windows Management Instrumentation (WMI). For example,
listing connected drives for propagation is currently supported by the analyzer but this
same list could be recovered using WMI by querying the LogicalDisk entries from the
Win32 ComputerSystem object. The support of the WMI is required to detect Drive
Worms using this technique.

Moreover, like any other static analysis, script analysis is hindered by encryption and
obfuscation techniques. Generally speaking, static analysis of scripts is easier because no

92 SEVENTH FRAMEWORK PROGRAMME

6.4 Experimentation and discussions

prior disassembly is required and some security locks ease the analysis: no dynamic code
rewriting, no dynamically resolved jumps. However, inserting an intermediate interpre-
tation layer can reintroduce all obfuscation techniques possible in low level languages (C
language, Assembly) [69].

6.4.3 Behavior relevance

The previous section deals with problems related to data collection, but the behavioral
model itself must be assessed. The relevance of each behavior must be individually
assessed by checking the coverage of its grammatical model. It then becomes possible to
extrapolate possible correlations between the different behaviors, by attaching a greater
weight to the most relevant behaviors.

Duplication, propagation and residency are obviously characteristic to malware. How-
ever, only duplication and propagation are discriminating enough for detection. On the
contrary, residency has exhibited false positives during the experimentations. Its be-
havioral model could be refined by introducing a constraint on the value written to the
booting object: the value should refer to the program itself or to one of its duplicated
versions. This modification could help avoiding the observed false positives. Anyhow,
residency is still likely to occur in legitimate cases, during installation of programs or
drivers. For example, antivirus products use the same hooking techniques to monitor
system calls than malware use for stealth. False positives can also be found for the
behavior of execution proxy, even if it is not observed in the tested legitimate samples.
Obviously, remote installers deploy the exact same technique; and this is confirmed in
[26]. Consequently, bivalent behaviors, used both by legitimate and malicious programs,
can not really be considered as false positives. Their behavioral model can be main-
tained; the distinction of malicious intents must eventually be addressed by correlation
with other behaviors, purely malicious. For example, the profiler correlates the behavior
of execution proxy with duplication to detect Trojans.

On the other hand, the behavioral model for overinfection tests is not completely rele-
vant. The weak detection rates are explained by a description that is overly specific. The
conditional structure on which the behavioral model is built constitute a first restric-
tion because it is not captured by dynamic monitoring. The collected traces of system
call do not contain information about conditional jumps and their alternative paths. In
addition, stopping is always triggered in case of overinfection, which is not always true.
A benign behavior could be deployed instead. A potential solution to these restrictions
could be a generalization of the model. For example, the conditional could be removed
and replaced by consecutive open and create commands. However, it would increase the
risk of confusion with error handling in legitimate programs. Maintaining this behavior

FP7-ICT-216026-WOMBAT 93

6 Behavioral detection by grammar-based signatures

may finally be arguable.

6.4.4 Profiles adequacy

To study the adequacy of our profiles, the experimentations have been pursued by sub-
mitting the output of the detection automata to the profiler. In addition, this study is
also a mean to measure the impact of the individual behaviors on classification. Ob-
viously, classifying legitimate programs into malware families shows little interest. Le-
gitimate results are thus put aside. Similarly, correlation when no behavior is detected
makes little sense. These results are also removed from the study. The profiler results
are finally presented in confusion matrices where they are compared with their original
malware family. Since they may be errors in the repositories from which samples were
downloaded, a reclassification has been manually realized before the comparison.

Drive Worm Email Worm Irc Worm P2P Worm Virus
DWG 1/4(25,00%) 2/77(02,60%) 1/29(03,45%) 3/27(11,11%) 4/44(09,09%)
DWA 3/4(75,00%) (00,00%) (00,00%) (00,00%) (00,00%)
EMW (00,00%) 42/77(54,54%) 1/29(03,45%) (00,00%) (00,00%)
EMW+DWG (00,00%) 13/77(16,88%) (00,00%) 1/27(03,70%) (00,00%)
EMW+IRW (00,00%) 1/77(01,30%) (00,00%) (00,00%) (00,00%)
EMW+DWG+VFI (00,00%) 1/77(01,30%) (00,00%) (00,00%) (00,00%)
EMW+IRW+PPW (00,00%) 1/77(01,30%) (00,00%) (00,00%) (00,00%)
EMW+IRW+VFI (00,00%) 1/77(01,30%) (00,00%) (00,00%) (00,00%)
EMW+IRW+PPW+VFI (00,00%) 1/77(01,30%) (00,00%) (00,00%) (00,00%)
IRW (00,00%) (00,00%) 12/29(41,38%) (00,00%) (00,00%)
IRW+DWG (00,00%) (00,00%) 2/29(06,89%) (00,00%) (00,00%)
IRW+PPW (00,00%) 1/77(01,30%) 1/29(03,45%) (00,00%) (00,00%)
IRW+DWG+PPW (00,00%) 1/77(01,30%) (00,00%) (00,00%) (00,00%)
PPW (00,00%) (00,00%) (00,00%) 15/27(55,56%) (00,00%)
PPW+DWG (00,00%) (00,00%) (00,00%) 1/27(03,70%) (00,00%)
PPW+IRW (00,00%) (00,00%) (00,00%) 1/27(03,70%) (00,00%)
VFI (00,00%) (00,00%) (00,00%) (00,00%) 8/44(18,18%)
VFO (00,00%) (00,00%) (00,00%) 1/27(03,70%) (00,00%)
GM (00,00%) 13/77(16,88%) 12/29(41,38%) 5/27(18,53%) 32/44(72,73%)

Table 6.6: VBS Malware classification.

This confusion matrix is built with the columns indexed with the real malware classes
and the lines indexed by the output of the profiler. The generic malware correspond to

samples with no attributed class. Labels: DWG = DriveWorm (generic), DWA =
DriveWorm (amovible), EMW = Email Worm, IRW = Irc Worm, PPW =

Peer-to-Peer Worm, VFI = Virus (file infector), VFO = Virus (file overwriter), GM =
Generic Malware.

The best results of coverage were obtained with the VBS Scripts samples, consequently

94 SEVENTH FRAMEWORK PROGRAMME

6.4 Experimentation and discussions

the classification of the malware is likely to be more precise. The results obtained with
the profiler are synthesized in the confusion matrix from Table 6.6. The matrix takes
into consideration the fact that a given malware instance can simultaneously satisfies
several profiles. Globally, the results are quite satisfying with an accuracy of 70% on
average, except for viruses where it drops to 18%. The problem is that viruses in VBS
are not really viruses in the sense of programs infecting a host application, but simply
duplicating programs.

Part of the remaining confusions are mainly due to the fact that some duplications
were missed. For example, some Mail Worms and Peer-to-Peer Worms were classified
as generic malware in spite of their propagation; only because they did not duplicate as
required by their profiles. Similarly, residency was found in almost all Irc Worms; but
only 51% were correctly classified because no duplication nor propagation was detected.
However, since residency is the behavior the most prone to false positives; residency
alone can not be sufficient to define a profile for Irc Worms.

Email Worm Net Worm P2P Worm Trojan Virus
EMW (00,00%) (00,00%) (00,00%) (00,00%) (00,00%)
NW (00,00%) 1/8(12,50%) (00,00%) (00,00%) (00,00%)
NW+VFI 2/43(04,65%) (00,00%) (00,00%) (00,00%) (00,00%)
NW+PPW+VFI 1/43(02,33%) (00,00%) (00,00%) (00,00%) (00,00%)
PPW 2/43(04,65%) (00,00%) 18/34(52,94%) (00,00%) (00,00%)
T (00,00%) (00,00%) (00,00%) 4/16(25,00%) (00,00%)
VFI 7/43(16,28%) 2/8(25,00%) (00,00%) (00,00%) 2/15(13,33%)
VFI+PPW (00,00%) (00,00%) (00,00%) (00,00%) 1/15(06,67%)
VFO (00,00%) (00,00%) (00,00%) (00,00%) (00,00%)
GM 31/43(72,09%) 5/8(62,50%) 16/34(47,06%) 8/16(75,00%) 12/15(80,00%)

Table 6.7: PE Malware classification.

This confusion matrix is built with the columns indexed with the real malware classes
and the lines indexed by the output of the profiler. The generic malware correspond to

samples with no attributed class. Labels: EMW = Email Worm, NW = Network
Worm, PPW = Peer-to-Peer Worm, T = Trojan, VFI = Virus (infector), VFO =

Virus (overwriter), GM = Generic Malware.

The results are less precise for PE Executables, as shown by the confusion matrix
in Table 6.7. This loss of precision is mainly explained by the missed behaviors. In
particular, an important number of propagations were missed, explaining significant
confusions in the classification of the different Worms. An other important remark on
propagation is that no precise information about the network communications, such as
the port or the protocol, was available inside the traces of system calls. Consequently,
no distinction could be done between Net Worms and Mail Worms. The accuracy of the
Trojan classification is also low. We have only considered for detection the behavior of

FP7-ICT-216026-WOMBAT 95

6 Behavioral detection by grammar-based signatures

execution proxy, whereas the Trojans can also offer other services such as Spam relay or
stealth techniques. The Trojan profile is thus incomplete and would require additional
behavioral signatures for these services.

6.4.5 Performance

Table 6.8 provides the measured performance for the different components of the pro-
totype. Starting with the abstraction layer, the analysis of PE Traces is the most time
consuming task. This is not surprising since the analyzer uses numerous string com-
parisons which could be partially avoided by replacing the off-line analysis by real-time
collection and translation. By hooking the system calls, the translation becomes imme-
diate. As for the VBScript Analyzer, it offers satisfying performances. Optimized, it
could be deployed on mail servers to analyze joint pieces for example.

NtTrace Data reduction from PE traces to logs

Analyzer Total size: 351,32Mo Average: 1,32Mo/Trace
Reduced logs: 11,85Mo Reduction ratio: 29

Execution speed

Single core M 1,4GHz Dual core 2,6GHz

1,48 s/trace 0,34 s/trace

VB Script Data reduction from VB scripts to logs

Analyzer Total size: 1842Ko Average: 7Ko/Script
Reduced logs: 298Ko Reduction ratio: 6

Execution speed

Single core M 1,4GHz Dual core 2,6GHz

0,042 s/script 0,016 s/script
+0,50 s/encrypted line +0,21 s/encrypted line

Detection Execution speed

Automata Single core M 1,4GHz Dual core 2,6GHz

NT: 0,44 s/log NT: 0,14 s/log
VBS: 0,002 s/log VBS: <0,001 s/log

Table 6.8: Prototype performances.

The time and space performances are described components by components for
mono-core and multi-core configurations.

The performance of the detection automata are also satisfying compared with the
worst case complexity found in Proposition 1. The detection speed remains far below
the order of a half second in more than 90% of the cases; the remaining 10% were all
malware. In real-time conditions, it would correspond to a charge of 50.000 system call-
s/second. The prototype implementation has also revealed that the maximum required
space for the derivation stacks was very low: 7 and 3 elements are the respective max-

96 SEVENTH FRAMEWORK PROGRAMME

6.4 Experimentation and discussions

imal sizes reached by the syntactic and semantic stacks (2s < 10 in Proposition 1). In
addition to speed, the number of raised ambiguities has also been measured leading to
the establishment of an operational complexity stated in Proposition 2.

Proposition 2 In the average case, behavioral detection using attributed automata has
an operational time complexity in ϑ(kα(n2+n

2)) and space complexity in ϑ(kαn(2s)),
where k is the number of automata, n is the number of input symbol and α the ambiguity
ratio.

Proof 2 If ne denotes the number of events and na the number of ambiguity, in the
worst case, we would have na = 2ne. By experience, we obtain:
na << 2ne and na << n2

e and na ≈ αne

Let us consider a regular distribution of these ambiguities, meaning that α derivations
are started at each iteration.

(1) kα + 2kα + ... + nkα = kα(1 + 2 + ... + n) = kα(n2+n
2)

Figure 6.14: Ambiguity ratios (α) for the
PE samples.

Figure 6.15: Ambiguity ratios (α) for the
VB scripts.

The approximation of Proposition 2 provides an operational complexity more worth
considering. Moreover, this algorithm can easily be parallelized for optimization in a
multi-core architecture. Figures 6.14 and 6.15 provide graphs of the collected α ratios.
From these graphs, it can be observed that above a certain threshold, an
important ambiguity ratio α is already a sign of malicious activity.

FP7-ICT-216026-WOMBAT 97

7 Exploit Behaviour and Shellcode Analysis

The Argos emulator [85] is used by various projects to detect zero-day attacks. Some
advanced versions of Argos, like Prospector [92], go beyond basic detection by identifying
the bytes that are responsible for buffer overflows and matching these bytes with protocol
fields of network traffic to serve as signatures. However, even the most advanced version
of Argos to date stops at the shellcode. In fact, we have carefully tried to avoid executing
even a single instruction of the attacker’s code.

On the one hand, this design decision has helped deployment. Administrators are
less reluctant to host a complex piece of intrusion detection software if they know that
malicious code will not be executed. As such, it has been one of the key selling points
of Argos.

On the other hand, stopping at the very first instruction limits our options for further
analysis. It is hard to determine what the shellcode does, which server it tries to contact,
and which binary it downloads, unless we execute part of the shellcode.

We recently extended the Argos emulator to make it execute and analyze the shellcode.
Much of this analysis concerns the structural features of the attacker’s code. For instance,
the new version determines how many and what sort of unpackers are used, where the
real shell code starts, etc.

However, the execution and analysis of shellcode also enables behavioral analysis. For
instance, we can see what Windows API calls the shell code makes, and in some cases
even which malware it downloads. We will report the structural analysis in Deliverable
4.4 (Final Analysis report of structural features), while in this deliverable we will limit
ourselves to the behavioural aspects.

7.1 Analysis of shellcode behavior

The Argos emulator currently monitors the shellcode while it executes. Unpackers are
tracked and the final shellcode is carefully instrumented. For later analysis, we record
and disassemble every instruction that is executed. Doing so gives us a reliable trace of
the attacker’s code in its early stages.

Moreover, we explicitly track all calls to imported Windows libraries. First, we log the
calls and map the target addresses back to high-level function descriptions (by means

98

7.2 Advanced use of shellcode analysis in WOMBAT

of lookups in symbol tables). As a result, we know what functions are called by the
attacker’s code (e.g., connect, or createFile) with the arguments.

The shellcode keeps executing until it reaches a stop condition. A stop condition is
specified by the Argos administrator in terms of API calls. A trivial stop condition is
to stop executing when the first system call is made. However, more interesting stop
conditions can also be specified. One fairly safe one would be to limit the number of
outgoing connections and stop at the first write to the network. Alternatively, we can
relax the stop condition even more and stop, for instance, at the second outgoing network
connection. This would allow the shellcode to download the malware from a server, while
limiting possible harm that may be caused by the shellcode to other machines on the
Internet.

7.2 Advanced use of shellcode analysis in WOMBAT

As new attacks are more interesting than old ones, we would like to handle known
attacks automatically. Suppose an attack exchanges a sequence of messages with a
host which eventually compromises it and makes it execute shellcode that will start
downloading the real malware (e.g., the bot software). If the initial exchange of messages
is known, we do not want to spend time analysing it. Nor do we want to waste the
scarce cycles of high-interaction honeypots on it. Rather, we want to handle the attack
handshake automatically in a light-weight front-end that has learned how to respond
to the attacker’s overtures, and rather than execute the shellcode, simply executes the
appropriate download command to obtain the malware.

7.2.1 Extending SGNet

In WOMBAT, we use SGNet sensors to handle the interaction of known attacks auto-
matically [65]. Attacks that cannot be handled by the sensors are forwarded to an Argos
node [85] which serves as an oracle for separating attacks from benign interaction. So
far, however, there has not been an automatic way to analyse the shellcode to find out
what it tries to download and then to download it in a safe manner. Instead, SGNet
has relied on static handlers (pre-)defined by the Nepenthes project. A handful of static
handlers does not scale if WOMBAT aims to cover many nodes with many applications
with many different vulnerabilities.The implication is that we should perform automatic
shellcode analys is to find out what the code wants to download.

FP7-ICT-216026-WOMBAT 99

7 Exploit Behaviour and Shellcode Analysis

7.2.2 Joining forces: automatic analysis using Argos, SGNet, Nemu and
Anubis

A brief analysis of the above goals reveals that within the WOMBAT project, various
pieces of the overall puzzle are available. For instance:

1. SGNet [65] is capable of inferring the right handshake with attackers given a set
of samples.

2. Argos [85] is good at detecting exploits and linking bytes in memory to bytes in
network traffic. With the extension we are also able to analyse the shellcode.

3. Nemu [84] is a network emulator that is explicitly designed to detect non-selfcontained
polymorphic shellcode.

4. Anubis [20] uses dynamic analysis to cluster malware in different families, helping
us focus on the most interesting ones.

As a logical next step, we have decided to combine these subprojects into a single
system as follows. The majority of known attacks will be handled by SGNet sensors. A
sensor handshakes with the attacker. Let us assume for now that the attack is a new one
that cannot be handled by the sensor. In that case, the sensor forwards the attack to
the Argos oracle at the SGNet core by replaying the interaction. So far, this behaviour
is similar to that of existing SGNet sensors. We will see shortly that the new SGNet
sensors behave differently from their predecessors in case of known attacks.

Argos not only serves as the oracle that decides whether or not a specific interaction
is malicious. It also executes the shellcode and indicates where we can find these bytes
in the network stream. This information is then given to Nemu which uses the starting
location in the network trace to start detecting the shellcode. Nemu also identifies the
malware that should be downloaded. Next, the file is downloaded.

To help integrating the new version of Argos with the existing infrastructure, we have
added a new data channel to the emulator by means of a Unix domain socket. The
socket operates as a tap interface to Argos. In other words, SGNet can simply inject
Ethernet frames into the socket, which will then be read by Argos as if these packets
arrived on the network. The socket should make it very simple for SGNet sensors to
replay new/unknown interactions against Argos.

The role of Nemu may not be immediately clear. After, all the identification of the
shellcode can also be handled by Argos. This is true in principle, but Nemu is much more
lightweight. In the absence of static handlers that determine how we should download
the malware for a specific attack, we need to dig out the shellcode dynamically to find
out what is downloaded from where at the SGNet sensors. Installing Argos at every
sensor scales poorly, but we should be able to run Nemu to analyse the shellcode, given
that Argos has already told it what to look for.

100 SEVENTH FRAMEWORK PROGRAMME

7.2 Advanced use of shellcode analysis in WOMBAT

In short, an SGNet that is able to handle the interaction with the attacker, will invoke
Nemu-based analysis on the shellcode. The result will be a clear procedure to download
the malware.

Finally, we use Anubis to analyse the malware and place it in a cluster. Doing so
allows us to zoom in on new or otherwise interesting families of malicious code.

While the design is in place, the implementation of this more advanced use of shellcode
analysis is still ongoing.

FP7-ICT-216026-WOMBAT 101

8 Conclusion

It is clear from the preceding chapters that the behavioral analysis of malicious code
has been an extremely active research area within the Wombat consortium. Many con-
sortium members were involved in this work package (and indeed this deliverable) and
they have used a wide variety of techniques to perform the analysis. Most importantly,
the consortium has clearly pushed the state of the art in analysis of malware behaviour
in many aspects.

Several of the results presented in this deliverable have been presented at peer-reviewed
venues. Others - like the shellcode analysis - have led to closer collaboration between
the Wombat partners.

In summary, we conclude that the work on behavioral features within the Wombat
project has been both rich in variety and successful in their results. Moreover, the
techniques described here will provide invaluable support to our work on threat analysis.

102

Bibliography

[1] Anubis: Analyzing unknown malware.

[2] Darpa intrusion detection evaluation datasets. Available online at http://www.ll.
mit.edu/IST/ideval/data/dataindex.html.

[3] ¡eXpat/¿ - The Expat XML Parser.

[4] MAFIA: Metasploit anti forensics investigation arsenal. Available online at http:
//metasploit.com/projects/antiforensics/.

[5] Msdn - vbscript language reference.

[6] Nttrace - native api tracing for windows.

[7] Offensive computing repository.

[8] Qemu - open source processor emulator.

[9] Securitydot : exploits, vulnerabilities, articles.

[10] Vx heaven repository.

[11] Advanced antiforensics – SELF. Available online at http://www.phrack.org/
issues.html?issue=63&id=11, 2005.

[12] Anubis. http://anubis.seclab.tuwien.ac.at, 2008.

[13] AVG Virus Database - Mabezat. http://www.avg.com/virbase?nam=win32/
mabezat, 2008.

[14] F-Secure Malware Information Pages - Allaple.A. http://www.f-secure.com/
v-descs/allaple a.shtml, 2008.

[15] Forum Posting - Detection of Sandboxes. http://www.opensc.ws/snippets/
3558-detect-5-different-sandboxes.html, 2009.

103

http://www.ll.mit.edu/IST/ideval/data/dataindex.html
http://www.ll.mit.edu/IST/ideval/data/dataindex.html
http://metasploit.com/projects/antiforensics/
http://metasploit.com/projects/antiforensics/
http://www.phrack.org/issues.html?issue=63&id=11
http://www.phrack.org/issues.html?issue=63&id=11
http://anubis.seclab.tuwien.ac.at
http://www.avg.com/virbase?nam=win32/mabezat
http://www.avg.com/virbase?nam=win32/mabezat
http://www.f-secure.com/v-descs/allaple_a.shtml
http://www.f-secure.com/v-descs/allaple_a.shtml
http://www.opensc.ws/snippets/3558-detect-5-different-sandboxes.html
http://www.opensc.ws/snippets/3558-detect-5-different-sandboxes.html

Bibliography

[16] S. O. Al-Mamory and H. Zhang. IDS Alerts Correlation using Grammar-based
Approach. Journal in Computer Virology, Published online, 2008.

[17] M. Bailey. Malware clustering results. http://www.eecs.umich.edu/∼mibailey/
malware/, 2008.

[18] M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Jahanian, and J. Nazario. Au-
tomated Classification and Analysis of Internet Malware. In Symposium on Recent
Advances in Intrusion Detection (RAID), 2007.

[19] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario.
Automated classification and analysis of internet malware. In Proceedings of the 10th
International Symposium on Recent Advances in Intrusion Detection (RAID’07),
September 2007.

[20] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel, and E. Kirda. Scalable,
behavior-based malware clustering. 2009.

[21] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for Analyzing Malware.
In 15th European Institute for Computer Antivirus Research (EICAR 2006) Annual
Conference, April 2006.

[22] U. Bayer, P. Milani Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable,
Behavior-Based Malware Clustering. In Symposium on Network and Distributed
System Security (NDSS), 2009.

[23] F. Bellard. Qemu, a Fast and Portable Dynamic Translator. In Usenix Annual
Technical Conference, 2005.

[24] H. Berghel. Hiding data, forensics, and anti-forensics. Commun. ACM, 50(4):15–20,
2007.

[25] S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly detection. In Proc.
IEEE Symposium Security and Privacy (SSP), pages 48–62. IEEE Computer Soci-
ety, 2006.

[26] D. Bruschi, L. Martignoni, and M. Monga. Detecting Self-Mutating Malware using
Control-Flow Graph Matching. In Proceedings of the Conference on the Detection
of Intrusions and Malware and Vulnerability Assessment (DIMVA), Lecture Notes
in Computer Science, pages 129–143, 2006.

104 SEVENTH FRAMEWORK PROGRAMME

http://www.eecs.umich.edu/~mibailey/malware/
http://www.eecs.umich.edu/~mibailey/malware/

Bibliography

[27] M. Burdach. In-memory forensics tools. Available online at http://forensic.
seccure.net/.

[28] J. B. D. Cabrera, L. Lewis, and R. Mehara. Detection and classification of intrusion
and faults using sequences of system calls. ACM SIGMOD Record, 30(4), 2001.

[29] E. Carrera. Malware - behavior, tools, scripting and advanced analysis. In HITB-
SecConf, 2008.

[30] G. Casas-Garriga, P. Dı́az, and J. Balcázar. ISSA: An integrated system for sequence
analysis. Technical Report DELIS-TR-0103, Universitat Paderborn, 2005.

[31] L. Cavallaro, P. Saxena, and R. Sekar. On the Limits of Information Flow Tech-
niques for Malware Analysis and Containment. In GI SIG SIDAR Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), 2008.

[32] B. L. Charlier, A. Mounji, and M. Swimmer. Dynamic detection and classification
of computer viruses using general behaviour patterns. In Proc. Conf. Virus Bulletin,
1995.

[33] M. Christodorescu, S.Jha, and C. Kruegel. Mining specifications of malicious be-
haviour. In Proc. joint meeting Conf. European Software Engineering and ACM
SIGSOFT Symp. Foundations of Software Engineeering, pages 5–14, 2007.

[34] R. Cilibrasi and P. Vitányi. Complearn version 1.15. http://www.complearn.org/,
2008.

[35] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato. Version Control with
Subversion. http://svnbook.red-bean.com/en/1.5/svn-book.html, 2008.

[36] Core Security Technologies. CORE Impact. http://www.coresecurity.com/
?module=ContentMod&action=item&id=32.

[37] A. Cozzie, F. Stratton, H. Xue, and S. King. Digging For Data Structures . In
Symposium on Operating Systems Design and Implementation (OSDI), 2008.

[38] F. Cuppens and A. Miège. Alert correlation in a cooperative intrusion detection
framework. In Proc. IEEE Symp. Security and Privacy (SSP), page 202. IEEE
Computer Society, 2002.

[39] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. Miller. Formalizing sensitivity
in static analysis for intrusion detection . In IEEE Symposium on Security and
Privacy, 2004.

FP7-ICT-216026-WOMBAT 105

http://forensic.seccure.net/
http://forensic.seccure.net/
http://www.complearn.org/
http://svnbook.red-bean.com/en/1.5/svn-book.html
http://www.coresecurity.com/?module=ContentMod&action=item&id=32
http://www.coresecurity.com/?module=ContentMod&action=item&id=32

Bibliography

[40] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection using
call stack information . In IEEE Symposium on Security and Privacy, 2003.

[41] P. Ferrie. Attacks on more virtual machine emulators.

[42] E. Filiol. Malware Pattern Scanning Schemes Secure against Black-Box Analysis.
Journal in Computer Virology, 2(1, EICAR 2006 Special Issue, V. Broucek and P.
Turner Eds.):35–50, 2006.

[43] E. Filiol, G. Jacob, and M. L. Liard. Evaluation Methodology and Theoretical Model
for Antiviral Behavioural Detection Strategies. Journal in Computer Virology, 3(1,
WTCV’06 Special Issue, G. Bonfante and J-Y. Marion Eds.):23–37, 2007.

[44] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for
unix processes. In SP ’96: Proceedings of the 1996 IEEE Symposium on Security
and Privacy, page 120, Washington, DC, USA, 1996. IEEE Computer Society.

[45] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for Unix
processes. In Proceedings of the 1996 IEEE Symposium on Security and Privacy,
Washington, DC, USA, 1996. IEEE Computer Society.

[46] J. Foster and V. Liu. Catch me if you can. . . . In Blackhat Briefings 2005, Las
Vegas, NV, August 2005.

[47] S. Garfinkel. Anti-Forensics: Techniques, Detection and Countermeasures. In Pro-
ceedings of the 2nd International Conference on i-Warfare and Security (ICIW),
pages 8–9, 2007.

[48] S. Garfinkel and A. Shelat. Remembrance of data passed: a study of disk sanitiza-
tion practices. Security & Privacy Magazine, IEEE, 1(1):17–27, 2003.

[49] M. Geiger. Evaluating Commercial Counter-Forensic Tools. In Proceedings of the
5th Annual Digital Forensic Research Workshop.

[50] J. Giffin, S. Jha, and B. Miller. Efficient context-sensitive intrusion detection. In
11th Annual Network and Distributed Systems Security Symposium (NDSS), San
Diego, CA, February 2004.

[51] Grugq. The art of defiling: defeating forensic analysis. In Blackhat briefings 2005,
Las Vegas, NV, August 2005.

[52] D. Grune and C. Jacobs. Parsing Techniques - A Practical Guide. Springer, 2008.

106 SEVENTH FRAMEWORK PROGRAMME

Bibliography

[53] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter: Detecting
Malware Infection Through IDS-Driven Dialog Correlation. In 16th Usenix Security
Symposium, 2007.

[54] J. Han and M. Kamber. Data Mining: concepts and techniques. Morgan-Kauffman,
2000.

[55] R. Harris. Arriving at an anti-forensics consensus: Examining how to define and
control the anti-forensics problem. In Proceedings of the 6th Annual Digital Forensic
Research Workshop (DFRWS ’06), volume 3 of Digital Investigation, pages 44–49,
September 2006.

[56] S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of
system calls. Journal of Computer Security, 6:151–180, 1998.

[57] J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Lan-
guages and Computation, 2nd ed. Addison Wesley, 1995.

[58] G. Jacob, H. Debar, and E. Filiol. Malware Behavioral Detection by Attribute-
Automata using Abstraction from Platform and Language. In Proc. Int. Symp.
Recent Advances in Intrusion Detection (RAID), LNCS, pages 81–100. Springer,
2009.

[59] S. Jha, K. Tan, and R. A. Maxion. Markov chains, classifiers, and intrusion detec-
tion. In Proceedings of the 14th IEEE Workshop on Computer Security Foundations
(CSFW’01), pages 206–219, Washington, DC, USA, June 2001. IEEE Computer So-
ciety.

[60] N. Johnson and S. Jajodia. Exploring steganography: Seeing the unseen. COM-
PUTER, 31(2):26–34, 1998.

[61] A. P. Kosoresow and S. A. Hofmeyr. Intrusion detection via system call traces.
IEEE Softw., 14(5):35–42, 1997.

[62] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating Mimicry
Attacks Using Static Binary Analysis. In 14th Usenix Security Symposium, 2005.

[63] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the Detection of Anomalous Sys-
tem Call Arguments. In Proceedings of the 2003 European Symposium on Research
in Computer Security, Gjvik, Norway, October 2003.

[64] T. Lee and J. J. Mody. Behavioral Classification. In EICAR Conference, 2006.

FP7-ICT-216026-WOMBAT 107

Bibliography

[65] C. Leita, M. Dacier, and F. Massicotte. Automatic handling of protocol dependen-
cies and reaction to 0-day attacks with scriptgen based honeypots. In Proceedings
of RAID’06, pages 185–205, Hamburg, Germany, September 2006.

[66] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer-Verlag, New York, second edition, 1997.

[67] F. Maggi, M. Matteucci, and S. Zanero. Detecting intrusions through system call
sequence and argument analysis. Submitted for publication, 2007.

[68] F. Maggi, S. Zanero, and V. Iozzo. Seeing the invisible: forensic uses of anomaly
detection and machine learning. SIGOPS Oper. Syst. Rev., 42(3):51–58, 2008.

[69] J.-Y. Marion and D. Reynaud-Plantey. Practical obfuscation by interpretation. In
Presented at 3rd Workshop on the Theory of Computer Viruses (WTCV), 2008.

[70] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell. A layered
architecture for detecting malicious behaviors. In Proc. Int. Symp. Recent Advances
in Intrusion Detection (RAID), LNCS, pages 78–97. Springer, 2008.

[71] Microsoft PECOFF. Microsoft Portable Executable and Common Object
File Format Specification. http://www.microsoft.com/whdc/system/platform/
firmware/PECOFF.mspx, 2000.

[72] J. A. Morales, P. J. Clarke, and Y. Deng. Identification of file infecting viruses
through detection of self-reference replication. Journal in Computer Virology, On-
line, 2008.

[73] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel. Anomalous system call detection.
ACM Trans. Inf. Syst. Secur., 9(1):61–93, 2006.

[74] National Vulnerability Database. CVE-2007-1719. Available online at http://nvd.
nist.gov/nvd.cfm?cvename=CVE-2007-1719.

[75] National Vulnerability Database. CVE-2007-3641. Available online at http://nvd.
nist.gov/nvd.cfm?cvename=CVE-2007-3641.

[76] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Sig-
natures for Polymorphic Worms. In IEEE Symposium on Security and Privacy,
2005.

108 SEVENTH FRAMEWORK PROGRAMME

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-1719
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-1719
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-3641
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-3641

Bibliography

[77] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analy-
sis, and signature generation of exploits on commodity software. In Proc. Symp.
Network and Distributed System Security (NDSS), 2005.

[78] J. Nick L. Petroni, A. Walters, T. Fraser, and W. A. Arbaugh. Fatkit: A framework
for the extraction and analysis of digital forensic data from volatile system memory.
Digital Investigation, 3(4):197–210, december 2006.

[79] P. Ning, Y. Cui, D. S. Reeves, and D. Xu. Techniques and tools for analyzing
intrusion alerts. ACM Trans. Information and System Security, 7(2):274–318, 2004.

[80] T. Ormandy. An empirical study into the security exposure to hosts of hostile
virtualized environments.

[81] D. Ourston, S. Matzner, W. Stump, and B. Hopkins. Applications of Hidden Markov
Models to detecting multi-stage network attacks. In Proceedings of the 36th Annual
Hawaii International Conference on System Sciences, page 334, 2003.

[82] T. Parr. ANTLR Parser Generator.

[83] S. Piper, M. Davis, G. Manes, and S. Shenoi. Detecting Hidden Data in Ext2/Ext3
File Systems, volume 194 of IFIP International Federation for Information Process-
ing, chapter 20, pages 245–256. Springer, Boston, 2006.

[84] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Real-world polymorphic
attack detection using network-level emulation. In CSIIRW ’08: Proceedings of the
4th annual workshop on Cyber security and information intelligence research, pages
1–3, New York, NY, USA, 2008. ACM.

[85] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an Emulator for Fingerprinting
Zero-Day Attacks. In Proc. ACM SIGOPS EUROSYS’2006, Leuven, Belgium, April
2006.

[86] J.-P. Pouzol and M. Ducassé. From Declarative Signatures to Misuse IDS. In Pro-
ceedings of the International Symposium on Recent Advances in Intrusion Detection
(RAID), 2001.

[87] J.-P. Pouzol and M. Ducassé. Formal Specification of Intrusion Signatures and De-
tection Rules. In Proceedings of the IEEE Computer Security Foudations Workshop
(CSF), 2002.

FP7-ICT-216026-WOMBAT 109

Bibliography

[88] S. Ring and E. Cole. Volatile Memory Computer Forensics to Detect Kernel
Level Compromise. In Proceedings of the 6th International Conference on Informa-
tion And Communications Security (ICICS 2004), Malaga, Spain, October 2004.
Springer.

[89] B. Schatz. Bodysnatcher: Towards reliable volatile memory acquisition by software.
In Proceedings of the 7th Annual Digital Forensic Research Workshop (DFRWS ’07),
volume 4 of Digital Investigation, pages 126–134, September 2007.

[90] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based method
for detecting anomalous program behaviors. In Proceedings of the 2001 IEEE Sym-
posium on Security and Privacy, Washington, DC, USA, 2001. IEEE Computer
Society.

[91] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Fingerprinting.
In Symposium on Operating Systems Design and Implementation (OSDI), 2004.

[92] A. Slowinska and H. Bos. The age of data: pinpointing guilty bytes in polymorphic
buffer overflows on heap or stack. In 23rd Annual Computer Security Applications
Conference (ACSAC’07), Miami, FLA, December 2007.

[93] W. Sun, Z. Liang, V. Venkatakrishnan, and R. Sekar. One-way Isolation: An
Effective Approach for Realizing Safe Execution Environments. In Network and
Distributed Systems Symposium (NDSS), 2005.

[94] D. Wagner and D. Dean. Intrusion detection via static analysis. In SP ’01: Proceed-
ings of the 2001 IEEE Symposium on Security and Privacy, page 156, Washington,
DC, USA, 2001. IEEE Computer Society.

[95] R. Watson. OpenBSM. http://www.openbsm.org, 2006.

[96] M. Weiser. Program Slicing. In International Conference on Software Engineering
(ICSE), 1981.

[97] R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.

[98] Wombat Partners. D08 (d4.1) specification language for code behavior. Technical
report, Wombat European Project from the 7th FP, 2008.

[99] S. Zanero. Unsupervised Learning Algorithms for Intrusion Detection. PhD thesis,
Politecnico di Milano T.U., Milano, Italy, May 2006.

110 SEVENTH FRAMEWORK PROGRAMME

http://www.openbsm.org

	Introduction
	A Survey of Current Malware Behavior
	Introduction
	Dataset
	Submissions
	Submitted file types
	Submission sources

	Observed Malicious Behavior
	File system activity
	Registry activity
	Network activity
	GUI windows
	Botnet activity
	Sandbox detection

	Conclusion

	Scalable, Behavior-Based Malware Clustering
	Quality
	Comparative Evaluation
	Performance
	Qualitative Discussion of Clustering Results
	Limitations and Future Work

	Effective and Efficient Malware Detection at the End Host
	System Overview
	System Details
	Behavior Graphs: Specifying Program Activity
	Extracting Behavior Graphs
	Matching Behavior Graphs

	Evaluation
	Detection Effectiveness
	System Efficiency
	Examples of Behavior Graphs

	System Call Analysis
	Motivation and introduction
	Architecture and implementation of S2A2DE
	Experimental setup

	Behavioral detection by grammar-based signatures
	Detection by parsing automata
	Semantic prerequisites and consequences
	Ambiguity support
	Time and space complexity

	Profiling the main classes of malware
	Prototype implementation
	Analyzer of process traces
	Analyzer of Visual Basic Scripts
	Detection automata
	Malware profiler

	Experimentation and discussions
	Coverage
	Limitations in trace collection
	Behavior relevance
	Profiles adequacy
	Performance

	Exploit Behaviour and Shellcode Analysis
	Analysis of shellcode behavior
	Advanced use of shellcode analysis in WOMBAT
	Extending SGNet
	Joining forces: automatic analysis using Argos, SGNet, Nemu and Anubis

	Conclusion

