
SEVENTH FRAMEWORK PROGRAMME
Theme ICT-1-1.4 (Secure, dependable and trusted infrastructures)

WORLDWIDE OBSERVATORY OF
MALICIOUS BEHAVIORS AND ATTACK THREATS

D13 (D3.3) Sensor Deployment

Contract No. FP7-ICT-216026-WOMBAT

Workpackage WP3 - Data Collection and Distribution
Author -
Version 0.1
Date of delivery M24
Actual Date of Delivery M24
Dissemination level Public
Responsible FORTH
Data included from POLIMI, NASK, VU, SYMANTEC, I2R

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°216026.

SEVENTH FRAMEWORK PROGRAMME
Theme ICT-1-1.4 (Secure, dependable and trusted infrastructures)

The WOMBAT Consortium consists of:

France Telecom Project coordinator France
Institut Eurecom France
Technical University Vienna Austria
Politecnico di Milano Italy
Vrije Universiteit Amsterdam The Netherlands
Foundation for Research and Technology Greece
Hispasec Spain
Research and Academic Computer Network Poland
Symantec Ltd. Ireland
Institute for Infocomm Research Singapore

Contact information:
Dr Marc Dacier
2229 Routes des Cretes
06560 Sophia Antipolis
France

e-mail: Marc_Dacier@symantec.com
Phone: +33 4 93 00 82 17

Marc_Dacier@symantec.com

Contents

1 Introduction 8
1.1 Overview . 8
1.2 WAPI . 10

2 SGNET 12
2.1 Introduction . 12
2.2 Deployment and experiences . 13
2.3 Current and future work . 19

3 HARMUR 20
3.1 Introduction . 20
3.2 Deployment and experiences . 21
3.3 Current and future work . 24

4 Shelia 26
4.1 Introduction . 26

4.1.1 Shelia recap . 26
4.2 Deployment and experiences . 27
4.3 Current and future work . 27

5 Paranoid Android and Multi-level intrusion detection 30
5.1 Introduction . 30
5.2 Deployment and experiences . 31
5.3 Current and future work . 32

6 HoneySpider Network 35
6.1 Introduction . 35
6.2 Deployment and experiences . 35

6.2.1 Experiences relating to the architecture of the system 35
6.2.2 Experiences relating to the detection methods used 37
6.2.3 Experiences relating to the behaviour of malicious web sites 38
6.2.4 Experiences using HSN WAPI . 39

4

6.3 Current and future work . 40

7 BlueBat 42
7.1 Introduction . 42
7.2 Deployment and experiences . 42
7.3 Current and future work . 44

8 NoAH 46
8.1 Introduction . 46
8.2 Deployment and experiences . 47
8.3 Current and future work . 54

9 WAPI and WOMBAT Workshop Scenarios 55
9.1 Introduction . 55
9.2 Preliminaries . 56
9.3 Investigation of a Banking Fraud . 58

9.3.1 Malware identification . 58
9.3.2 Infection analysis . 61
9.3.3 The real culprit . 64
9.3.4 Conclusions . 66

9.4 Monitoring of our Own Networks . 67
9.4.1 Searching for infections . 67
9.4.2 Looking for similar malware samples 71
9.4.3 Looking more in depth at zief.pl 73
9.4.4 Conclusions . 75

10 Conclusions 76

11 APPENDIX 79

5

6

Abstract

This deliverable reports the deployment of all types of sensors implemented in the
WOMBAT project and includes descriptions of experiences with the sensors from sev-
eral months of deployment and experimentation. The sensors that are deployed are
the SGNET, HARMUR, Shelia, Paranoid Android, HoneySpider Network, Bluebat and
NoAH. The early experiences show that the WOMBAT Project [10] is fulfilling our pre-
liminary expectations about having powerful tools for collecting data. These data are
useful for categorizing attackers and malware behaviors. Moreover our experiments re-
veal that the sensors can cooperate with each other, enriching in this way the information
offered for analysis.

1 Introduction

1.1 Overview

The purpose of this document is to present the deployment of the sensors in the context
of the WOMBAT project and the experiences that were acquired during their imple-
mentation and usage.

In the previous deliverable D3.2 (“Design and prototypes of new sensors”), we pre-
sented a detailed overview of the sensors design. After a few months of designing we
were able to develop the sensors and to conclude with experiences of their use.

First, we present the deployment of SGNET (Section 2 in page 12), which is a dis-
tributed honeypot deployment for the collection of data on the evolution of Internet code
injection attacks. It takes advantage of protocol learning techniques that address the
previously introduced trade-off between the need to retrieve rich information about the
observed activities and the need to reduce the resource and maintenance costs inherent
in a distributed deployment.

HARMUR (Section 3 in page 20) (Historical ARchive of Malicious URls), is an initia-
tive aiming at the collection of detailed information on the nature, the structure and the
evolution of Web threats. It positions itself as a consumer of the information generated
by existing honeyclients.

In Section 4 (page 26) we present Shelia, a Windows-based intrusion detection system
for the client side, originally developed as a design study in the context of the EU FP6
Noah project. The main idea behind Shelia is that it emulates a naive user: someone
who will follow all links and open all attachments in spam email, and who clicks all links
received via other means (say, instant messaging).

Next in Section 5 (page 30) we present a multi-level intrusion detection for smart
phones in an architecture known as Paranoid Android.This project aims at protecting
new smart phones. It uses what we called multi-level intrusion detection in previous
deliverables. For this reason, we will discuss them together.

In Section 6 (page 35) we present HoneySpider Network, a honeyclient that is being
developed under a joint venture called the HoneySpider Network project, together with
GOVCERT.NL and SURFnet. The goal of this effort is to develop a complete client
honeypot system, the HoneySpider Network (or HSN for short), based on existing state-

8

1.2 WAPI

Figure 1.1: WAPI Client

of-the-art client honeypot solutions and a novel crawler application especially tailored
for the bulk processing of URLs.

Section 7 (page 42) presents the deployment of Bluebat. BlueBat is an experimental
Bluetooth honeypot sensor. Bluetooth exhibits a number of security issues in various
specific implementations of the stack. Viruses for mobile devices primarily rely on simple
social engineering to propagate, sending copies of themselves to any device which comes
into range through an OBEX push connection. Bluebat designed, in its first working
prototype (BlueBat v.1.0), as an ad hoc device based on the GNU/Linux OS to collect
malicious samples.

Finally, in Section 8 (page 46) we present NoAH’s deployment. NoAH focuses on
honeypots that listen to unused IP address space and analyze and/or interact with
malicious traffic. The architecture of NoAH presents a flexible design for deployment
and collaboration of honeypots. NoAH is not restricted to a single type of honeypot
but tries to combine the good characteristics of low-, medium- and high-interaction
honeypots. Its modular architecture permits the construction of a network of honeypots
with minimal overhead and an affordable administrative one.

FP7-ICT-216026-WOMBAT 9

1 Introduction

Figure 1.2: whelp function

1.2 WAPI

WAPI, the WOMBAT Application Programing Interface (API), aims at improving the
ease of use of the various data sources that is available in the WOMBAT infrastructure.
Each data owner is responsible for deciding what he is eager to share, in which format
and to whom. WAPI provides the primitives to easily specify some sort of access controls.
The role of the WAPI is to hide all implementation details from the programmer (naming
schemes, querying methods etc.) and to provide her with an interface for retrieving and
querying data across WOMBAT data sources.

The last year we have successfully implemented and tested the WAPI. The most
important test occured in the second WOMBAT workshop where the WAPI was used
to investigate two real-case scenarios: (a) Investigation of a Banking Fraud and (b)
Monitoring of Own Networks.

It is very easy to access each dataset. For example, if one wants to ask NOAH’s
dataset if it has any information about a specific malware (malware with md5 =
bb8d199099a07e022fe03895d703fdda), they just has to write the below line of code:

malware = forth.malware(md5 = "bb8d199099a07e022fe03895d703fdda")

Figure 1.1 shows how a WAPI client looks like when it is successfully connected to
harmur, virustotal, wepawet, anubis, hsn, shelia, sgnet and forth datasets. After the

10 SEVENTH FRAMEWORK PROGRAMME

1.2 WAPI

connection with the datasets has been established, the client is ready to accept user input.
Whelp function is responsible for revealing the information about what object types each
dataset supports. Figure 1.2 shows the result of the whelp function in FORTH’s dataset.

FP7-ICT-216026-WOMBAT 11

2 SGNET

2.1 Introduction

The collection of information on Internet malware scenario is a challenging task. The
challenge arises from the need to cope with the spatial and quantitative diversity of
malicious activities. The observations need to be performed on a broad perspective, since
the activities are not uniformly distributed over the IP space. At the same time, the data
collectors need to be sophisticated enough to extract a sufficient amount of information
on each activity and perform meaningful inferences. How can the simultaneous need
to deploy a vast number of data collectors be combined with the need of sophistication
required to make meaningful observations? Addressing such a challenge is the ultimate
goal of the SGNET deployment.

SGNET is a truly collaborative work within the WOMBAT project. As explained in
the detailed design presented in Deliverable 3.2, SGNET incorporates technologies and
research efforts from EURECOM, Symantec, VU Amsterdam, TU Vienna and Hispasec.

SGNET takes advantage of protocol learning techniques in order to address the pre-
viously introduced trade-off between the need to retrieve rich information about the
observed activities and the need to reduce the resource and maintenance costs inherent
in a distributed deployment. By using ScriptGen [13, 14], SGNET honeypots are able
to model protocol conversation through a Finite State Machine (FSM) model and use
such models to respond to clients for well-known activities. Whenever a new/unknown
activity is encountered, SGNET honeypots are able to dynamically proxy the conversa-
tions to a honeyfarm, and take advantage of the real service implementation to handle
them.

Figure 2.1 shows the main components of the SGNET deployment. SGNET is com-
posed of multiple low-cost sensors whose FSM model is kept in sync by a central entity,
the gateway. Whenever a new activity is encountered, SGNET honeypots require the
instantiation of a new sample factory to the central gateway. The sample factory, based
on Argos [15], acts as an oracle and provides to the sensors the required protocol interac-
tion and, through memory tainting, detects and provides information on successful code
injection attacks. Such information is used by the gateway to apply the ScriptGen algo-
rithm and refine the FSM knowledge. After having seen a sufficient number of samples of

12

2.2 Deployment and experiences

Sensors Sample factories

Shellcode handlers

SG1

SG2

SG3

SF1 SF2 SF3

SH1 SH2

GW
Private

Network

Figure 2.1: SGNET architecture

the same type of interaction, SGNET sensors are therefore able to handle autonomously
future instances of the same activity leveraging the newly built FSM refinement.

The memory tainting information generated by Argos, combined with simple heuris-
tics, allows SGNET honeypots to identify injected shellcodes. SGNET takes advantage
of part of the Nepenthes [11] modules to understand the intended behavior of the ob-
served shellcodes and emulate the network actions associated to it.

All the information collected during the interaction of the different SGNET entities
is stored in a database, and fed to an information enrichment component described in
detail in charge of adding additional metadata on the attacking sources, and on the
collected malware. Among the different information sources, the most relevant to this
work are the behavioral information generated by Anubis [12], and the AV detection
statistics generated by VirusTotal [18]. Every malware sample collected by the SGNET
infrastructure is, in fact, automatically submitted to these two services, and the resulting
analysis reports are stored in the SGNET dataset to enrich the knowledge regarding the
sample.

2.2 Deployment and experiences

The SGNET infrastructure has been fully implemented and gradually deployed in mul-
tiple platforms distributed over the whole IP space. The deployment has followed the
strategy already successfully applied in the past by the Leurré.com project, and has

FP7-ICT-216026-WOMBAT 13

2 SGNET

Figure 2.2: SGNET query interface

14 SEVENTH FRAMEWORK PROGRAMME

2.2 Deployment and experiences

Location Port 139 Port 445 Port 135 Port 80 Others Total
US 616.5 89.3 639.3 20.0 65.3 1430.4

Poland 982.8 222.8 104.1 3.4 15.4 1328.4
France 619.3 372.8 155.7 55.7 20.1 1223.7
Ireland 556.4 545.1 33.0 52.3 13.9 1200.7
Belgium 546.9 44.3 105.9 61.3 26.9 785.4
France 154.8 177.2 219.8 10.3 14.6 576.7
Canada 322.4 17.5 187.0 1.9 16.9 545.7

UK 0.2 57.8 6.0 42.0 3.1 109.2
Spain 2.7 13.6 61.4 20.7 7.2 105.7
France 68.3 9.0 12.6 4.4 5.3 99.6

Australia 53.0 6.9 0.4 11.2 8.0 79.5
Australia 26.2 4.4 13.0 9.8 7.4 60.9
Greece 3.1 9.9 18.3 18.2 4.6 54.1
France 3.4 2.9 39.5 0.9 5.5 52.2

Germany 0.0 0.1 0.0 47.0 2.3 49.4
Ireland 4.9 5.3 8.3 2.7 19.5 40.7

Australia 11.4 6.2 1.7 13.3 2.9 35.6
Lithuania 13.5 2.9 2.8 3.8 10.1 33.0

Italy 7.7 1.6 0.0 11.2 3.7 24.3
Norway 1.4 5.6 1.1 2.5 5.4 16.0
Japan 0.0 0.0 10.0 0.0 0.0 10.0

US 0.0 0.0 0.0 8.2 0.4 8.7
Portugal 0.0 0.1 0.6 1.5 6.1 8.3

Italy 1.6 2.5 0.2 2.3 1.2 7.8
Total 3997.0 1598.0 1621.1 406.6 273.1

Table 2.1: Average daily load (TCP sessions per day) for the most attacked ports

proposed win-win partnerships to any research entity interested in taking advantage of
the information collected by the deployment. The partnership offers advantages to both
parties: on the one hand, the partner gets full database access to the SGNET data, while
on the other hand the partner is required to contribute to the deployment by installing a
sensor. To avoid privacy and legal issues, all the participants have been asked to sign a
non-disclosure agreement that prevents them from disclosing information on the identity
of the attackers and on the identity of the other participants to the initiative.

As of the 1st of November 2009, a total of 37 institutions from all the 5 continents
have joined the initiative and have started the process for the installation of a honeypot.
At such date, 24 sensors have contributed to the deployment for at least one month.

FP7-ICT-216026-WOMBAT 15

2 SGNET

Throughout its life, the deployment has observed a 186,315 distinct IP sources that
generated a total of 3,808,760 TCP sessions, 64,331 of which resulted in being successful
code injection attacks. 14,581 of these successful code injection attacks have been fully
emulated by the deployment, and led to the collection of 9,350 distinct malware samples.

Table 2.1 provides an overview of the traffic load observed by the deployment for these
sensors, and expressed in terms of average number of TCP sessions per day. It’s inter-
esting to see the considerable difference in the profiles of the different sensors: despite of
the fact that all the sensors share exactly the same configuration and behave completely
equally, different types of activities are observed and in different ratios. Activities that
are globally dominant, such as the activity on port 139, disappear almost completely in
a few platforms that are instead characterized mainly by other types of traffic, such as
HTTP.

To allow the participants to monitor the status of their sensors and graphically visual-
ize the collected information, we have offered them a simple Web tool that automatically
generates requests to the SGNET dataset, and that interactively visualizes the results
by means of a Java applet. The query interface, represented in Figure 2.2, allows to
define a set of constraints over the visualized data, and choose the dimensions of interest
for the visualization.

Figure 2.3 shows an example of the output of the tool, with a high level overview of
the evolution of the exploit scenario observed by the SGNET deployment throughout
the year 2008. The plot shows the weekly number of sources that have been witnessed
performing successful code injection attacks against the deployment. Each plot line
represents a different traversal of the ScriptGen Finite State Machines, and therefore
represents a different activity type. Interestingly, the deployment observes a relatively
stable amount of exploits for some high volume, highly visible activities. Such stable
activities are then coupled with more bursty activities, that generate high activity peaks
within a single week and seem to disappear subsequently.

An interesting example of such burstiness is represented in Figure 2.4. In this specific
case, the deployment witnessed the sudden appearance in April 2008 of a new activity
type on port 135, associated to a successful exploitation of the Microsoft DCE RPC
service. The activity, previously unknown, triggered the sample factories and led to the
generation of a new traversal in the ScriptGen FSM. Figure 2.4 represents the activity
associated to that specific traversal, and breaks it down by country of origin of the
attackers. While the initial wave of attacks in April 2008 comes primarily from Germany,
France, Russia, Portugal and Spain, we can notice the rise of a less noisy and more steady
rate of activities originated from the US that continues throughout the year 2008. This
seems to suggest the reuse of the same exploitation code in what could possibly be a
successive generation of the botnet, targeting a different portion of the IP space. The

16 SEVENTH FRAMEWORK PROGRAMME

2.2 Deployment and experiences

Figure 2.3: Exploit scenario evolution during 2008

DE

US

FR

RU

PT

ES

Figure 2.4: Generation of a new activity type, broken down by country of origin

FP7-ICT-216026-WOMBAT 17

2 SGNET

Figure 2.5: The raise of Conficker on the 24th of November 2008

shift in origin of the attackers is in fact coupled by a shift of the observing platforms:
while the initial wave was witnessed mainly by a sensor located in France.The successive
activity from US is witnessed by a honeypot hosted in the US. Despite the geographical
distance of the attacking population and of its targets, the generated network activity
is classified by the ScriptGen FSMs as identical. Such a simple example shows the value
of the SGNET dataset in providing information on the modus operandi of the malware
writers.

The ScriptGen learning process can be extremely helpful for focusing the attention of
the security analyst in anomalous, and therefore interesting, events. We have seen in
Figure 2.3 that most of the code injection attacks observed by the SGNET deployment
are generated by stable and noisy activity types. An analysis of these activities and
the malware associated with them shows that they are mostly associated to well known
malware families such as Allaple [16]. The FSM classification performed by the SGNET
deployment during its activity allows us to clearly pinpoint events associated to these
well studied trends and focus instead on the more rare events associated to the detection
of a new activity type. An example of such event is represented in Figure 2.5. Figure 2.5
represents the temporal evolution of the different FSM traversals in the week between
the 21st and the 27th of November 2008. Differently from previous figures, Figure
2.5 shows the daily number of sources traversing all FSM paths and not only those
leading to successful code injections. On the 24th of November 2008, SGNET generated
three new traversals corresponding to different activities associated to the Conficker

18 SEVENTH FRAMEWORK PROGRAMME

2.3 Current and future work

worm, that received considerable attention from the press for the sophistication of its
code. This new trend would have been impossible to identify through higher granularity
statistics, such as destination ports, since it would have been hidden by other more
noisy activities that are regularly appearing on a daily basis. The ScriptGen learning
techniques employed by SGNET allow us instead to detect structural differences in
the specific network conversations generated by this worm and associated to the first
witnessed attempts to exploit the MS08-067 vulnerability.

2.3 Current and future work

The SGNET deployment is continuously expanding and is likely to continue to increase
the number of participants to the initiative and the number of deployed sensors.

The return on experience in the deployment of the SGNET sensors has underlined its
strengths, but also the weaknesses of the current deployment. More specifically, work can
still be done in improving the ability of the deployment to study code injection attacks.
As of now, only a fraction of the total number of potential exploits is correctly emulated
by the infrastructure and leads to the successful download of a malware sample. The
ability of the SGNET deployment to emulate vulnerabilities is strictly linked to the high
interaction profiles supported by the sample factories. As of now, the whole SGNET
infrastructure is based on a single sample factory profile, corresponding to an unpatched
Windows 2000 system running IIS services. Exploits that do not target or work correctly
on this specific configuration cannot be emulated by SGNET, limiting our ability to
study them. But also, the emulation and identification of the shellcode are based on a
set of heuristics that can potentially fail when facing new exploitation techniques. Joint
work is being carried on by the WOMBAT participants to improve the generality of the
shellcode handling algorithms in order to overcome these limitations.

FP7-ICT-216026-WOMBAT 19

3 HARMUR

3.1 Introduction

HARMUR, the Historical ARchive of Malicious URls, is an initiative aiming at the
collection of detailed information on the nature, the structure and the evolution of Web
threats. In the recent years, we have witnessed a partial shift of attention from server-
side attacks to client-side ones, with a specific focus on Web applications. According
to [17], over half of the patched medium- and high-severity vulnerabilities in the second
half of 2007 were browser and client-side vulnerabilities.

The interaction pattern of client-side attacks profoundly differs from that of server-
side ones, and this difference is propagated to the detection methods. While server-side
honeypots can be considered as “passive” components reacting to any connection at-
tempts from randomly scanning attacking hosts, client-side honeypots (or honeyclients)
need to actively scan the Internet to discover malicious sites. This is achieved often by
crawling websites starting from a set of URL feeds or by acting as proxy for legitimate
clients and analyze the generated interaction.

HARMUR positions itself as a consumer of the information generated by existing
honeyclients. HARMUR has been designed and presented in D3.2 as a purely passive
aggregator of information generated by third parties, ranging from honeyclients to stan-
dard Internet services such as whois. HARMUR combines together URL feeds, that
provide on a regular basis streams of new, potentially interesting URLs worth being
monitored, and Analysis modules that aim at generating information on these URLs.
The whole system has been designed in order to allow the URL analysis to repeat in a
periodic fashion over each of the monitored resource locators. This attention to the tem-
poral evolution of the state of a URL and of its hosting site allows to study the dynamics
of this specific category of threats, and better understand the correlation between their
lifetime and its relation to operational network conditions. For instance, we want to
understand whether malicious sites have ever moved along multiple hosting providers in
order to maximize survivability, and the speed of these dynamics.

20

3.2 Deployment and experiences

3.2 Deployment and experiences

A prototype of the HARMUR information tracker has been running since June 2009 and
has collected information on the following site characteristics:

• Norton safeweb information. Detailed information on known threats generated
by Symantec’s Norton Safeweb initiative (http://safeweb.norton.com).

• Google Safebrowsing information. Blacklisting information generated by the
Google Safebrowsing service.

• DNS relations. Analysis of the DNS relation between domain names, corre-
sponding authoritative nameservers, and server IP addresses.

• Whois information. Registration information for the domain names.

• Geolocation and AS information. Information on the location of each name-
server and HTTP server.

• HTTP server status. Information on the reachability of the web servers, and
on their version as advertised in the HTTP headers.

In this period, HARMUR has collected information on a total of 10,120,758 distinct
URLs belonging to 1,728,644 domains and hosted on 615,651 web servers. These domains
can be broken down as follows:

• 62,502 domains are currently believed to contain security threats

• 19,676 domains have been associated in the past to security threats but now result
clean

• 77,197 domains are not reachable

• 485,011 domains have not been analyzed by any honeyclient and have unknown
security status

• 1,083,877 domains are not directly associated to any security threat

The information collected by HARMUR allows us to study and represent the relation-
ships between the malicious domains and the physical servers on which they are hosted.
Figure 3.1 provides an overview of the DNS relationships tracked by HARMUR for a
specific threat class. Each point of the figure represents a domain name and is colored

FP7-ICT-216026-WOMBAT 21

http://safeweb.norton.com

3 HARMUR

Figure 3.1: DNS relations for a specific threat class

22 SEVENTH FRAMEWORK PROGRAMME

3.2 Deployment and experiences

72.167.195.126

68.178.232.99

antitrojan-2008.com

68.178.232.100

spywarp.com

74.86.158.15

spyassassin.com

69.64.76.65

spywarekiller.netspywarepro.org

67.211.161.47

registryfix-pro.com

66.29.31.100

free-scan-antivirus.com

63.246.20.213

mycookiecleaner.com
privacydefender3.com

38.117.8.222

antivirus-antivirus.com

69.64.147.243

drcleaner.com

216.8.179.24

repairxp.com
smartestsearch.com

spywarekiller.net

69.56.174.130

antivirusxp2008.org

Figure 3.2: Domain expiration

in red if belonging to the threat class, in orange if belonging to another threat class,
and in green if benign. The different domains are grouped and connected together by
grey edges according to the DNS resolution of their names, that link them together to
the same web server. Figure 3.1 shows the complexity of the problem of the identifica-
tion of malicious domains, and underlines the challenges of protecting the web clients
from potentially dangerous sites through blacklisting methods. More specifically, Figure
3.1 shows how both IP-based blacklisting and name-based blacklisting approaches are
deemed to fail in the long run.

On the one hand, blacklisting malicious websites by blocking access to specific web
server IPs is impossible. While we can clearly identify in Figure 3.1 cases in which a
web server is solely used for hosting malicious content, and appears graphically as a
completely red cluster, we have many more cases in which a server hosts both benign
and malicious sites. Blacklisting these IP addresses would prevent users from visiting
malicious domains, but would also prevent them from visiting benign domains that are
hosted, for instance, by the same hosting service.

For the above reason, most of todays web security approaches follow the opposite
approach and generate blacklists for domain names. Unfortunately, this approach is not
effective on the long term. Registering batches of domain names, based on variations
and permutations of a set of words, is an extremely easy process. This is exactly what
HARMUR has enabled us to observe: a single webserver is often associated to hundreds
of different names, probably automatically generated through the permutation of a few
words. Because of this, the cost of maintaining reliable name filters is much higher than
that of registering new ones.

In summation, Figure 3.1 represents the importance of the HARMUR dataset and its
usefulness in building realistic pictures of the web threat space, that can help in better
understanding the modus operandi of the attackers and the challenges of countering
these threats.

FP7-ICT-216026-WOMBAT 23

3 HARMUR

72.167.232.83

208.118.60.20

cleanpcnow.com

72.167.232.157

verycleanpc.com

72.167.232.235

supercleanpc.com

97.74.146.156

mycleanpc.com

Figure 3.3: Domain dynamics

While the static picture enables us to have a first high level overview of the problem,
the temporal evolution of the state of a domain can be extremely helpful in understanding
the dynamics of the threat landscape. For instance, Figure 3.2 graphically represents
the temporal evolution of a set of domain names. The edges represent modifications
in the DNS resolution of a name, and therefore their transitions across multiple web
servers. In the specific case of Figure 3.2, a set of domains apparently unrelated transits
towards the same web server, 68.178.232.99. More detailed analysis for this IP address
shows that it corresponds to a parking page for expired domains whose registration has
not been renewed to the hosting provider. This gives us important information about
these domain names: their maintainers consider them expendable, and have no interest
in investing money to ensure their activity over long periods of time.

Figure 3.3 shows instead a slightly different scenario. The four represented domains,
cleanpcnow.com, verycleanpc.com, supercleanpc.com and mycleanpc.com were registered
after the activation of the HARMUR tracker and have moved from different known
parking pages associated to different registration services to a single webserver previously
hosting a single domain. This very simple example shows the value of the site dynamics
in inferring relations among apparently unrelated phenomenon, and justifies the interest
in carrying on this type of analysis.

3.3 Current and future work

Despite the relatively short life of the dataset, HARMUR shows very promising results
in generating intelligence on the evolution and structure of web threats. This is accom-
plished by aggregating different information sources together in a central dataset and
correlating them. The ongoing work on WAPI, the data-oriented API developed by the

24 SEVENTH FRAMEWORK PROGRAMME

3.3 Current and future work

WOMBAT project, is therefore crucial to HARMUR to allow an easy extension of the
dataset by integrating other information sources developed within the project. Within
the WAPI deployment, work is currently ongoing on the definition of WAPI interactions
allowing to easily share information on web threats between HARMUR and the other
WOMBAT-developed honeyclients, HoneySpider and Shelia.

FP7-ICT-216026-WOMBAT 25

4 Shelia

4.1 Introduction

Shelia is a Windows-based intrusion detection system for the client side, that detects
attacks which arrive via e-mail, or through web browsing.

4.1.1 Shelia recap

The main idea behind Shelia is that it emulates a naive user: someone who will follow
all links and open all attachments in spam email, and who clicks all links received via
other means (say, instant messaging). Whenever Shelia detects a malicious website or
attachment, it raises an alert.

What sets Shelia apart from most other client honeypots is the way in which it decides
that something is malicious. Unlike most other systems, Shelia creates virtually no false
positives1 (although there may be false negatives2). Engrained in this design philosophy
is that false positives are much more important than false negatives, since a high false
postive rate means that you cannot act on alerts in an automated way.

False positives are avoided by detecting intrusions not by looking at changes to the
file system after visiting a website (a common way in such honeypots), but by tracking
who calls the sensitive operations. More precisely, whenever a call is made to change
the registry, the file system, or network activity, Shelia tracks whether the call is coming
from an area that is not supposed to contain code. If so, it raises an alert.

The other design goal is that it should be easy to manage. For instance, it should be
as trivial as sending email to have Shelia check certain links or attachments.

Since Shelia has changed considerably since the previous deliverables, and since the
changes are mostly due to deployability, we will use this deliverable to explain how the
current version of Shelia improves over previous ones.

1A false positive is another way of saying mistake. As applied to the field of anti-virus programs, a false
positive occurs when the program mistakenly flags an innocent file as being infected.

2A false negative is the opposite of false positive. This happens when a malicious file is flagged as
benign.

26

4.2 Deployment and experiences

4.2 Deployment and experiences

As of the summer of 2009, Shelia is in active (production) use at the Vrije Universiteit
of Amsterdam. Initially, it was used to process a large amount of older spam. The
problem with older spam is that many of the malicious sites that the emails link to no
longer exist. Next, we had Shelia process thousands of URLs obtained from Symantec.
Currently, Shelia processes a regular stream of spam from the Vrije Universiteit Ams-
terdam: all rejected email of the computer science research network. Since then, Shelia
has checked hundreds of thousands of URLs and attachments, uncovered hundreds of
malicous websites and downloaded many different malware samples.

More precisely, we finished checking a large number of suspect URLs in the beginning
of November. At that point Shelia had 250 malicious sites in these 45759 (older) URLs,
61 of which downloaded malware by means of a drive-by-download, 14 of which were
unique. After that time, we initiated Shelia’s new phase where we used it to process the
department spam.

Shelia is available via the WAPI to all partners in the consortium and also to external
parties. Finally, Shelia is currently being evaluated by GovCERT in the Netherlands.

4.3 Current and future work

In recent months, the Shelia architecture has witnessed a major overhaul. As a result,
the system is more stabile, more flexible and less tied to particular software or mode of
operation. For instance, the previous version of Shelia (described in deliverable D3.1),
required OutlookExpress and POP to access email. Neither are necessary in the current
version, illustrated in Figure 4.1. In this section we summarise the changes:

Improved input handling The old version of Shelia depended on OutlookExpress to ob-
tain spam messages from a POP server. Nowadays, the Shelia inputs are retrieved
from a data base. Any technique that can fill the database is compatible with
Shelia. For instance, we have an IMAP mail client that accesses an account, strips
the URLs and attachments and enters them in the data base. But we also have a
method that simply takes a list of URLs to check in a file and uploads these in the
database.

The database entries have a priority. The highest priority entries will be checked
first. If no explicit priority is specified, a static priority is used, whereby attach-
ments are checked first. This effectively allows us to push urgent objects into Shelia
without waiting for a long back log.

FP7-ICT-216026-WOMBAT 27

4 Shelia

VM
M

shelia

DB w
a
p
i

• shelia management server on host
– starts VM with shelia mgmt client

• client listens on socket for target objects (URLs and attachments)

• launches Shelia detector with appropriate app

• returns results to server

– retrieves URLs and attachments from DB to pass to client
• order by timestamp and priority

• and by type (default: attachments first, but can be modified)

– periodically restarts VM (also when connection is lost)
• to ensure we stay clean

– writes results in DB

• DB can be filled in many different ways
– IMAP client

– manual / file parser

Figure 4.1: Shelia architecture

28 SEVENTH FRAMEWORK PROGRAMME

4.3 Current and future work

Better control and safety Shelia runs in a virtual machine like Qemu and is restarted
every n checks to prevent infections not detected by Shelia from causing harm.
Moreover every individual check is aborted after t seconds (by default: t = 40).

Hardened access We have attempted to redesign the interaction of the guest OS and
the host OS in such a way that malfunctioning or malicious guests cannot hang
the system.

Alert database and WAPI Whenever Shelia detects an exploit, it performs extensive
analysis (which API calls does the code make, what is the payload of the attack,
etc.) and stores everything in a structured fashion in a database (in the old version
everything was simply dumped in a log file). Moreover, we have unlocked the
Shelia database by making it accessible via the WAPI for all clients with the right
credentials.

Future plans for Shelia include merging it with Argos to increase the scope of detection
(some of the attacks detected by Argos are not covered by Shelia). To do so, we will
have to rework the analysis of Shelia in the Argos detector. Doing so is a substantial
effort, as Argos currently does not execute even a single instruction of the attacker’s
code. This will have to change if we want to be able to download the malware in the
same way as is currently done by Shelia.

Several parties have expressed interest in Shelia, either to run a copy of Shelia them-
selves, or to contribute data for Shelia to process. While the Shelia code is online, proper
documentation and even a detailed installation guide are still missing. As man power is
limited, we will focus, for the near future at least, on helping knowledgeable users (e.g,
GovCERT, and NASK who have expressed interest) to install Shelia, while others are
encouraged to submit suspicious emails and links.

FP7-ICT-216026-WOMBAT 29

5 Paranoid Android and Multi-level intrusion
detection

5.1 Introduction

Paranoid Android is our project that aims at protecting new smart phones. It uses what
we called multi-level intrusion detection in previous deliverables. For this reason, we will
discuss them together. The Paranoid Android architecture is depicted in Figure 5.1.

In the Paranoid Android project, we propose to outsource smartphone security checks
to the cloud for providing high-grade security assurances without greatly impacting the
device’s performance and battery life. Off-loading security checks provides more and
cheaper processing cycles, allowing us to apply even very costly techniques such as
dynamic taint-analysis1. Furthermore, multiple security checks can be applied in parallel
to achieve a broader detection scope (e.g., a combination of anti-virus scanning, taint
analysis, system call monitoring, etc).

To achieve our goal, we replicate the state of running mobile devices to security servers
in the cloud. We do so by starting with an exact same image and conveying all sources of
non-determinism on the phone to the server in the cloud. In earlier deliverables, we have
referred to such architectures as ‘multi-level intrusion detection’. At the moment, we
have several subprojects that aim for multi-level intrusion detection, but since Paranoid
Android is by far the most mature, we will limit our discussion to this example.

Execution traces can be long and typically contain a lot of data (the system calls
and their arguments and results, signals, scheduling, etc.). Clearly, there is a risk that
transmitting lengthy execution traces in itself places an unacceptable burden on the
phone’s CPU and battery. By aggressively pruning the trace and a host of optimisations,
we manage to reduce the performance, size and power impact of Paranoid Android to
less than 2 KiB/s2 and approximately 7% battery lifetime reduction for even the most
heavy-weight tasks on the phone.

1Dynamic taint analysis is a very computationally expensive detection technique that cannot normally
be applied to production systems due to its overhead of one or several orders of magnitude. So far,
taint analysis is only applied in honeypots.

2States ratio (KiB/s = 1024 Bytes / second)

30

5.2 Deployment and experiences

Encode/filter

Tamper-evident
storage

Synchronise Replayer

Proxy API

Smartphone
emulator

Security checks

RECORD REPLAY

Mirrored
traffic

Data

UMTS,
Internet,…

logging
data PROXY

regular
traffic

mirrored
traffic

Tracer

Figure 5.1: Paranoid Android architecture overview

5.2 Deployment and experiences

We implemented the Paranoid Android architecture, depicted in Figure 5.1, for HTC’s
Android G1 phones. As the status of our system is still mostly research, deployment
focuses on the phones of the researchers, although we have started experiments with
protecting phones beyond normal lab conditions. For instance, researchers have applied
Paranoid Android’s tracer on the phone that they use in practice. However, we still need
stability and scalability tests before the system can be deployed at scale. Some initial
results are shown in Figures 5.2 – 5.4.

Our traces with actual users show, not surprisingly perhaps, that mobile devices are
mostly idle, or used for voice communications. This is good for the architecture, as
it means that a single security server may support many clients (in our simulation
experiments, we were easily able to support a hundred phones on a single server). A
typical plot of the amount of data that is generated over time is shown in Figure 5.2.
Meanwhile, Figure 5.3 shows that the data generated when performing such tasks is
negligible, with an average of 64B/s for idle operation, and 121B/s when performing a
call. Even when performing more intensive tasks, such as browsing or listening to music,
the tracer generates less than 2KiB/s. For instance, 5 hours of audio playback would
generate about 22.5MB of trace data. This shows that the trace is small enough to be
stored locally on smartphones, which already offer relatively large amounts of storage
(the iPhone 3GS comes with 32GB of storage).

Paranoid Android imposes two types of overhead on the phone. First, it consumes ad-
ditional CPU cycles and thus incurs a performance overhead. Second, it consumes more

FP7-ICT-216026-WOMBAT 31

5 Paranoid Android and Multi-level intrusion detection

Hours
00 04 08 12 16 20 24

K
iB

yt
es

5

10

15

20
25
30
35

Average Rate

Data Averate Data Generation Rate

Figure 5.2: Data generated by Paranoid Android running for a day: the light coloured
lines represent blocks of data generated by the tracer. Their bursty nature is
due to the compression library, which buffers data to increase the compression
ratio. The darker line near the x-axis represents the average data generation
rate in time.

power because of the increased CPU usage and the synchronisation with the server. To
quantify these costs, we monitored the device’s CPU load average, and battery capacity,
while randomly browsing a set of URLs. We performed this task natively as well as
under Paranoid Android, and show the results in Figure 5.4.

5.3 Current and future work

Current work focuses on making Paranoid Android robust, and implementing a low-
threshold release. In our initial release, we will focus on individuals who want to protect
their own phone, but who are willing to accept a delay of up to a day in detecting
intrusions. In that case, we do not need an infrastructure that involves carriers. Instead,
we can keep everything local to the phone.

32 SEVENTH FRAMEWORK PROGRAMME

5.3 Current and future work

Tasks

Booting Idle Calling Web
Browsing

Google
Maps

Audio
Playback

0

0.5

1

1.5

2

2.5
R

at
e

(K
iB

/s
)

0

Figure 5.3: Average data generation rate, when performing various tasks

When the prototype proves to be mature, we will make it available for early testing
by external parties.

FP7-ICT-216026-WOMBAT 33

5 Paranoid Android and Multi-level intrusion detection

Time
0:00 0:10 0:20 0:30

B
at

te
ry

 c
ap

ac
ity

 (
%

)

80

85

90

95

100

C
P

U
 lo

ad
 a

ve
ra

ge

0

1

2

3

4

5

6

Battery−Native

Battery−PA

Load−Native

Load−PA

Figure 5.4: Battery consumption and CPU load average when browsing on the HTC
G1 phone. We compare native execution, with execution under Paranoid
Android. Note that the y-axis on the left starts at 80%

34 SEVENTH FRAMEWORK PROGRAMME

6 HoneySpider Network

6.1 Introduction

This section describes the experiences acquired during the deployment of the HoneySpi-
der Network system at NASK. The HoneySpider Network is a client honeypot system
that aims to discover malicious Web sites, in particular those that perform drive-by
download attacks. It consists both of low interaction crawlers and high interaction
honeypots, that run real browsers inside VM images. The system is integrated with
WOMBAT through the WOMBAT API (WAPI). In this document, we describe our ex-
perience with the HSN WAPI and our experiences and lessons learnt in deploying HSN.
We currently have multiple instances of HoneySpider running on the NASK network.

6.2 Deployment and experiences

Our experiences using the HoneySpider Network system can be broadly split into 4
categories that are determined by:

• the architecture of the system

• the detection mechanisms used

• the behaviour of malicious sites

• HSN WAPI

6.2.1 Experiences relating to the architecture of the system

The architecture of the HoneySpider Network (HSN) system is designed to be modular
and scalable. This means that the system can consist of a central manager which manages
multiple low interaction crawlers and multiple high interaction crawlers, spread across
many physical or virtual machines. Data is stored in a distributed fashion, which while
improving the scalability of the system, as not all information is stored in a centralized
database, does make its retrieval later on more complex.

35

6 HoneySpider Network

Figure 6.1: Screenshot of the HoneySpider Network GUI

36 SEVENTH FRAMEWORK PROGRAMME

6.2 Deployment and experiences

The HSN system is designed not just as a service to others, as is the case in most of
the other WOMBAT sensors, but as complete software that can be deployed by itself,
enabling not just one instance of HSN but many, each consisting of as many low and high
interaction crawlers as the installing party likes. The main target group of this software
are CERTs that do not operate for profit. These CERTs are able to receive a copy of the
HSN system for free if the three main parties behind the project, NASK, GOVCERT.NL
and SURFnet unanimously agree. Sharing the code with others increases demands in
terms of general user friendliness, not just of the system itself, but installation-wise as
well.

During deployment of the HSN, we discovered that in general the system is easy to in-
stall. The main problematic area is the high interaction component of the system, based
around the Capture-HPC solution. Capture-HPC uses VirtualBox as a guest system to
check for malicious changes in Windows during visitation of the suspect web site. As
each installation carried out by a new organization requires a setup of a Windows im-
age, this can be quite time consuming. Also, the system parameters (memory, processor
power) affect the way Capture-HPC behaves, meaning that tweaking of some Capture-
HPC parameters is often necessary. Furthermore, setting up virtualization software is
not trivial and requires some experience. We found that users installing the software
had problems in this area, despite being provided with detailed instructions.

6.2.2 Experiences relating to the detection methods used

HoneySpider uses both low and high interaction client honeypot solutions. Its primary
goal is to examine a large dataset of URLs and scan each one, to detect whether a web
site is malicious or not, focusing in particular on drive by download mechanisms. A
secondary issue is the ability to download the malware provided.

We found that the two most useful detection heuristics used by the low interaction
system are the a) Näıve Bayesian algorithm applied to ngrams generated from JavaScript
and b) the heuristic that is responsible for detecting constructs of JavaScript that are
interpreted differently in different browsers. In a), we discovered that the training data
set needs updating every couple of months in order to be effective at detecting malicious
web sites. We also discovered the need to provide the capability of black and whitelisting
JavaScripts through their MD5 hashes to improve detection effectiveness and lower false
positives. In particular, the increasing prevalence of usage of JavaScript libraries, such as
jQuery, makes it more difficult to detect code that is obfuscated for malicious purposes
(our solution classifies obfuscated code as suspicious). We also found that obfuscated
JavaScript has become more complex in that many different HTML elements of a page
need to be parsed for successful deobfuscation, meaning that the DOM support in the

FP7-ICT-216026-WOMBAT 37

6 HoneySpider Network

crawlers needs extensions. In b), the heuristics check for the use of such functions
as argument.callee.toString() or different try {} catch () {} constructs that are
known to be interpreted differently in IE and Firefox. These are used to determine what
browser to target and to avoid deobfuscation, as most analysts analyzing sites tend to
use the Firefox engine to handle JavaScript. We found this method to be very effective
at identifying suspect sites, delivering no false positives.

Different problems were faced by our high interaction system, which is based around a
modified version of Capture-HPC. Modifications were primarily made to improve stabil-
ity of the software, its logging mechanisms, and to facilitate a move away from VMWare
to VirtualBox. This allowed for easier, more reliable integration with the HSN frame-
work. However, the key problem area is the design of the Capture-HPC detection model.
System calls invoked during visitation of a web site are captured, allowing for the mon-
itoring of file, process and registry changes. These changes are then compared against
exclusion lists (lists that specify what changes are good or bad) to identify potential
malicious web sites. In practice, exclusion lists have to be adjusted individually to every
Windows image, depending on its version and the application versions installed. Ex-
clusion lists are cryptic and very long making them difficult to create and maintain.
Whenever any file, process or registry change does not match an exclusion list entry,
Capture-HPC flags a site as malicious. This binary decision system is insufficient as
from our experience Windows tends to behave in a very non-deterministic manner, mak-
ing false positives a serious issue. Apart from making sure that exclusion lists undergo
long periods of testing, we correct some of the verdicts, by flagging them as malicious
only log changes that are either above a certain threshold or contain at least one file
system modification. While imperfect, this does lower the false positives, which are in
our opinion the biggest obstacle in performing large scale reliable assessment of Web
sites. We are however, working on developing more sophisticated algorithms that will
be able to make a better assessment of whether a certain Capture-HPC log file consists
of bad modifications or not. Finally, we found it to be problematic at times to extract
malware from sites, as quite often older versions of Windows XP tended to crash before
we were able to transfer files outside a guest. We are attempting to solve this issue
by introducing a shared folder which is mounted from the host, that stores all system
modifications in real time, eliminating the need to transfer files from guest.

6.2.3 Experiences relating to the behaviour of malicious web sites

In terms of the behaviour of malicious web sites, as explained already, we are observing
more sophisticated uses of different elements of an HTML page to decode JavaScript.
Some of the methods employed appear to need manual analysis. Another issue is the

38 SEVENTH FRAMEWORK PROGRAMME

6.2 Deployment and experiences

use of fast flux networks in URLs embedded in web pages, which sometimes results
in different content being served at different times, making a malicious-benign verdict
unreliable. We partly solve this issue by adding a fast-flux assessment of each encoun-
tered URL. This is done in real time. URLs that are found to be fast-flux are then
flagged appropriately, which gives a systems operator indication that a benign verdict
may not necessarily be true. Blacklisting of our crawler IPs is a problem observed as
well. It happens quite often in the case of fast-flux urls that are to be analyzed. As
these often point to a central location, it is quite easy for the miscreant maintaining
the attack infrastructure to observe sequential queries to a fast-flux URL, characteristic
of web crawlers. To deal with this case, we make sure that every instance of our web
crawler uses a different IP exit address, especially when a URL is checked first by a low
interaction crawler, and then by a high interaction machine. However, this does not
prevent us from getting blacklisted in the long run. A possible solution is the creation
of a large set of proxies by the CERT community that can be used by the crawlers at
random or using TOR. The first case requires organizational work within the CERT
community, but is not infeasible. In the TOR case, many exit nodes are known anyway
and the general slowness of the network also makes it less useful. Another hindrance
to the analysis of web sites that we observed is the requirement to use proper referrer
headers in order to get served a malicious page. For instance, viewing a web page after
clicking on the results of a Google search query may deliver an exploit, but accessing
the web page directly may not. There appears to be no easy solution to such a problem,
other than attempt to retry sites with different referrer headers.

6.2.4 Experiences using HSN WAPI

The first application of HSN WAPI was the demo during the second WOMBAT work-
shop. The participants were asked to follow a realistic scenario, investigating an infection.
The results were fully satisfactory – the part of the scenario using the HSN dataset was
not a problem for the participants. The structure of the HSN WAPI was clear enough
and provided the necessary information. From the technical point of view there were no
problems either. The test proved that HSN WAPI is free from serious bugs, but more
importantly it confirmed the value of having a unified interface to different datasets –
getting the information requested in the scenario without WAPI would be a very difficult
and time consuming task.

After the workshop the HSN WAPI was left available to workshop participants and
is still open. The stability of the HSN WAPI can therefore be considered sufficient, al-
though it should be stressed that during this time it never reached a high load. The most
important aspect of this test is the fact, that it was performed while the HoneySpider

FP7-ICT-216026-WOMBAT 39

6 HoneySpider Network

Network was being actively developed. All the installations were in fact testbeds, often
reinstalled or moved. Providing a service from a single, constant URL was possible by
using the WRAPI – a Python-based WAPI proxy implemented using the generic server
developed in WOMBAT.

Apart from these tests, the HSN WAPI has already been used in practice. When there
appeared a need to allow interaction between the Arakis early warning system and the
HoneySpider Network, the natural approach was to use a remote API. Since WAPI was
already stable, we decided to use it. The conclusions from the implementation of the
interface between the two systems are mostly positive. Using the SOAP protocol makes
it possible to connect systems using completely different technology – in this case WAPI
implemented in Java was accessed from PHP scripts. Some small incompatibilities were
caused by an old version of the PHP SOAP library and have been resolved by a simple
extension of the WAPI. We also found that we were able to get all the required public
information using just the available WAPI services.

Since the internal data exchange between the two systems involved some data that we
did not consider public, while the WAPI was designed as a public interface, we had to
extend it. The changes were implemented as an additional method of the standard object
Dataset and a new kind of object. We also used this occasion to implement some of the
operations possible using existing WAPI services in a new, specialized, but also faster
way. The changes were easy to implement, proving the extendability of our WAPI. At
the same time this was another proof of the usefulness of the WRAPI. There is no need
to support two separate versions of the WAPI. The Arakis interface uses the extensions
implemented in the Java-based HSN WAPI, but they are not available through WRAPI,
so the external users only have access to public data. The advantage of this approach
is that the restricted extensions are hidden by omission, not active filtering – the new
services are simply not registered in the WRAPI. This makes accidental publication of
restricted information improbable.

In summary, the HSN WAPI is easy to use, fully functional and effective both when
used interactively and as an API for programmers. It is also stable, safe and easily
extendable.

6.3 Current and future work

We are currently working on improving issues relating to the stability of the system and
in improving the performance of our crawlers. Future work includes redesigning of our
low interaction architecture in order to be able to better handle and detect attacks that
involve Flash objects and PDF files. We also plan extensions to our DOM implementa-

40 SEVENTH FRAMEWORK PROGRAMME

6.3 Current and future work

tion, so that we are more often able to get access to exploits and malware through low
interaction machines. We intend to experiment with Shelia as a possible replacement for
Capture-HPC, as Shelia’s design is less likely to introduce false positives when assessing
Web sites. Enhancements to the GUI are also being considered.

FP7-ICT-216026-WOMBAT 41

7 BlueBat

7.1 Introduction

BlueBat is an experimental Bluetooth honeypot sensor. As discussed in the previous
deliverable D3.1 (“Infrastructure design”) [3], Bluetooth exhibits a number of security
issues in various specific implementations of the stack. Such attacks are very well de-
scribed on the website [9], and they allow different degrees of data access (from the
agenda to any file on a vulnerable device), communication interception, up to and in-
cluding running any AT command taking full control of the phone. However, viruses for
mobile device primarily rely on simple social engineering to propagate, sending copies
of themselves to any device which comes into range through an OBEX push connection.

We designed BlueBat, in its first working prototype (BlueBat v.1.0), as an ad hoc
device based on the GNU/Linux OS to collect the samples. We made use of the official
Bluetooth stack implementation named BlueZ [2]. Specific utilities allow to perform
device configuration, scanning and information gathering. We created a Python software,
using the pybluez [7] package, to glue such utilities together, along with the gpsd [5]
GPS daemon, and Colin Mulliner’s secure OBEX server [8]. We used the latter because
of his security option (chroot, privilege separation), and of the possibility to control its
behavior via a Python script. Basically, BlueBat. Honeypot opens an OBEX server
modified to accept any incoming file transfer. In parallel, we perform a continuous
scanning for devices, and we fingerprint the ones we find, using pybluez. We also use
gpsd to log the position data for each activity, to support mobility. The script gathers
the data and pushes it in a MySQL Database, correlating the results.

We used Asus EEE PCs as the basic platform, plus a combination of antennas as
described in D3.2[4].

7.2 Deployment and experiences

Besides testing the antennas combination as described in D3.3, we deployed the devices
in several locations in Milano. A first test was made by placing a long range honeypot
on a street for several days . We also tested, for several hours each, various locations
in our own University, in the underground and the Duomo square, using appropriately

42

7.2 Deployment and experiences

concealed and unobtrusive hardware. During all these tests, no files were transmitted
to the honeypots (except the test ones). We are currently discussing a semi-permanent
placement of some of the honeypots in several high-affluence positions in Milan. As
far as the number of observed “discoverable” devices, in the Duomo square location we
reached over 500 unique devices per hour on average, from a single observation point
equipped with a 6 dBi omnidirectional antenna.

In parallel to these tests, we used two cellphones as portable honeypots for a continuous
time of 6 months. These devices were handed out to voluntary students, traveling in
Europe in the context of Erasmus programme, which brought them along on several
train travels, and also in various airports, in various nations (Italy, Austria, Switzerland,
Spain), on board various trains and in airports. A total of 3 files were received. One,
named sarah.jpeg, contains a photograph of a girl, while the second turned out to
be a video promoting a leading brand of sportswear and footwear. It must be noted,
though, that in order to actually receive the latter, the bearer of the honeypot phone had
to willingly stop near the marketing totem and wait for the download to end, further
stressing the unreliability of this communication channel. A third one is a .sis file
(485zp6x6 .sis, an executable for the Symbian platform), which could be malicious
but was incompletely received and thus is difficult to identify.

While a complete explanation of the reasons for this low number of received files is
beyond the scope of this report and will be the subject of more extensive research, some
data are already clear. First, the honeypots (the fixed ones as well as the portable ones)
observed a large number of devices in conditions which were in many cases optimal for
transfers (i.e., users in crowded places and not moving). Mobility can lead to aborted
file transfer (as was the case with one of the files we received), but those are logged.
The only explanation which seems reasonable is that the actual prevalence of Bluetooth
self-propagating worms using OBEX is extremely low (but not zero, as shown by the
.sis file which is, with every probability, a malware specimen).

Field tests also revealed some unexpected issues in our original design: correlating
scanning data and data obtained by the honeypot is a good idea in theory but difficult
to realize in practice, as device scanning is very slow, consuming up to 5 minutes for a
single pass of scanning using only a standard Class 1 dongle. Using an Aircable dongle
with a 9 dBi omnidirectional antenna such a scan may take up to 15 minutes, trying to
lock on almost out of range devices. Unluckily, this cannot be solved by sampling, but
some modifications could be introduced in the low-level drivers to shorten timeouts for
scanning operations (trading off completeness for effectiveness). During this timeouts,
the scan process doesn’t see other devices which may have entered and exited the study
zone. This makes scanning substantially useless in crowded zones when a powerful
antenna is in use. So we resorted to using the most powerful antennas just for running

FP7-ICT-216026-WOMBAT 43

7 BlueBat

the OBEX server, and less powerful ones for additional scanning and tracking.
Another unexpected result was that, actually, the human body (even the body of the

device owner can be enough) is able to shield Bluetooth signals. This, in crowded areas,
makes trying to enumerate devices difficult, let alone trying to receive a file. Therefore, a
dense crowd will always limit the effectiveness of long range honeypot solutions, making
the placement of a higher number of shorter-range sensors much more efficient.

Placement of the sensors turns out also to be of paramount importance. Density of
devices varies wildly, and population movement is also important: while any touristic
place such as the Duomo, train stations or airports have a crowd of people passing by,
some places such as metro stations have the additional advantage that people move
around slowly, or do not move at all: this also limits the issues with the “human shield”
effect. Besides metro stations, entry/exit of attractions or exhibits are other good places.

7.3 Current and future work

The experiences with the early deployments gave us insights for two developments of
our research.

Firstly, since the prevalence of OBEX transfers seems so low, we decided to expand
our honeypot to also handle other Bluetooth interactions. A new version of Bluebat (v
2.0) has been developed and is currently being deployed among the partners.

Bluebat v2.0 has been completely redesigned from scratch. It is written in C, and it
listens to over 30 RFCOMM channels, as well as the first 254 L2CAP channels, which
are the most used by attackers while exploiting a device. The OBEX transfer honeypot
itself has been reimplemented from scratch, in order not to depend on python and to be
more flexible in handling data.

Bluebat 2.0 separates a client (sensor) and a server (database) component. The sensor
runs in a single device (at the moment a Linux PC sensor), and it collects data, as stated,
regarding all RFCOMM connections, L2CAP channels, and OBEX transfers. All data
are stored in XML format. Binary data are encoded in base64 for storage. At regular
intervals, if the sensor is connected to a wired or wireless Internet link, it pushes data
to a server over TCP port 5168. An alternate mechanism dumps data over a USB key.

The server, besides collecting data over TCP or from a USB key, stores it in a MySQL
database and offers WAPI interrogation interfaces via XML SOAP over TCP port 8080.

The Bluebat client has been designed to be lightweight and have few dependencies,
in order to be executed in low power netbooks and smartphones. The new design also
makes it easier to scale the honeypot as required by the global approach of WOMBAT.
A self-installing Bluebat client CD ROM will help foster distribution of the sensors.

44 SEVENTH FRAMEWORK PROGRAMME

7.3 Current and future work

In the second place, since our Bluetooth honeypots on mobile phones seemed to pro-
duce interesting results, we are currently testing the port of the Bluebat client on An-
droid [1] devices. Producing a reliable honeypot for mobile phones running closed stacks
proved impractical, as we reported in D06 [3], because of the J2ME framework imple-
mentation. Each service on a Bluetooth device must be registered in a Service Discovery
DB (SDDB) on a certain UUID. There are some standard numbers, equivalent to the
“well-known ports”: for instance, OBEX push is commonly associated to UUID 1105.
Therefore, our software must be registered in the SDDB under that same UUID. But
the phone manufacturer OBEX service is already registered with this UUID, and it has
priority: if a request reaches the device, it is the manufacturer server which answers
it. Our honeypots on mobile phones used hacks that made them not portable and not
suitable for distribution to a wide population of users. Android, on the other hand,
makes it possible to develop a version that can be deployed in a distributed fashion.

FP7-ICT-216026-WOMBAT 45

8 NoAH

8.1 Introduction

NoAH is focused on honeypots that listen to unused IP address space and analyze and/or
interact with malicious traffic. The architecture of NoAH presents a flexible design for
deployment and collaboration of honeypots. NoAH is not restricted to a single type
of honeypot but tries to combine the good characteristics of both types. Its modular
architecture permits the construction of a network of honeypots with minimal overhead
and affordable administrative overhead.

Honeypots in NoAH are deployed inside the “NoAH core”, the center of decisions.
Apart from honeypot deployment, services like automated signature generation for zero-
day attacks run inside the core. The NoAH core is not a centralized farm of honeypots.
On the contrary, it is a distributed set of honeyfarms that can collaborate. Inside the
core, both low-interaction (LI) and high-interaction (HI) honeypots are deployed. Low-
interaction honeypots are used as a traffic filter. Therefore, activities like port-scanning
can be effectively detected by LI honeypots and stop there. Traffic that cannot be han-
dled by LI honeypots is handed over to HI honeypots. In this case, LI honeypots are
used as proxies whereas HI honeypots offer the optimal level of realism. To prevent the
HI honeypots from infections, a containment environment is used. Any containment en-
vironment can be used, like VMware, Xen or Qemu virtual machines. Another proposed
environment is Argos.

The address space covered by NoAH core can be further extended. Institutes, cam-
puses or organizations can collaborate with NoAH by deploying a “plug” to NoAH core.
This “plug” is actually a tunnel to NoAH core. All traffic going to dark space of a
collaborative party is tunneled to honeypots in the NoAH core for processing. Replies
from honeypots are tunneled back and injected to party’s network. Using tunneling,
honeypot deployment is not needed and thus the administrative overhead is minimal.

Apart from organizations and Institutes, simple home users can help NoAH. Home
users or small size enterprises can share their black address (or port) space in a sim-
ilar way as the participating organizations described before. To do so, they install
honey@home [6].

Overall, NoAH glues together various network and host components to form a flexi-

46

8.2 Deployment and experiences

Figure 8.1: The NoAH sensor deployment map

ble network of honeypots. Although the NoAH core is the main component of NoAH
architecture, NoAH is more than a set of honeyfarms. Approaches like tunneling and
honey@home extend NoAH far beyond its core and have the potential for wide address
space coverage with minimal overhead.

8.2 Deployment and experiences

The NoAH infrastructure includes ten static sensors that monitor more than nine thou-
sand unused IP addresses so far. The static sensors are geographically distributed and
monitor unused addresses from diverse environments; such as from Universities and In-
stitutions to ISPs. Figure 8.1 displays the location of the deployed NoAH sensors printed
on a Google map. In average, the high-interaction honeypots process around half a mil-
lion packets per day. Such a number is impossibly to be inspected manually by hand,
thus automatic mechanisms that will display statistics and trends about received traffic

FP7-ICT-216026-WOMBAT 47

8 NoAH

(a) (b)

Figure 8.2: The top 10 source IP addresses and destination ports as monitored by a
NoAH sensor for one day

is needed. We present what types of statistics are gathered by each sensor and how they
are visualized.

Each sensor runs three software components:

• Daemon. The first one is a minimal daemon based on the pcap library that listens
to an interface and captures packets going to a given unused IP address space.

• Database. Specific pieces of information for the captured packets are stored to a
local Postgres database. This information includes the packet protocol, source and
destination IP addresses, source and destination ports, flags in the case of a TCP
packet and finally the timestamp of when the packet was captured

• PHP files. The last component is a set of PHP files that retrieve and render various
statistics for the traffic received. These statistics are:

– Top source IP addresses. By default the top 10 source IP addresses that
sent most packets for the last 2 hours is displayed. For each IP address the
number of packets it sent and its geographic location is also displayed. The

48 SEVENTH FRAMEWORK PROGRAMME

8.2 Deployment and experiences

Figure 8.3: Distribution of Attackers Around the Globe

geographic location is retrieved by a local MaxMind database. Additionally,
each IP address is clickable. By clicking it, the user is redirected to a webpage
that displays all packets sent by that IP address for a configurable time period.
The user is able to select that time period which varies from two hours up to
the last month. Figure 8.2(a) shows how the top 10 source IP addresses look
like.

– Top destination ports. The top destination ports targeted by attackers is
displayed. For each port the number of packets and a trend indication is also
shown. The trend indication represents whether the sensor received more or
less packets to that port in comparison with the previous time period. Again,
the user can configure the time period up to the last month. By clicking a
port, a webpage containing all traffic sent to that port is sent. A screenshot
for the top 10 source IP addresses and destination ports as observed by a
NoAH for one day can be seen in Figure 8.2(b).

– Attack maps. This page includes two earth maps (Figure 8.3). The first map
displays the geographic distribution of distinct source IP addresses. Each
country is colored based on how many IP addresses are hosted in that country.
Countries that host no attackers are colored as white, low activity countries
are colored as green while countries that host lots of attacking IP addresses
are red.

– Attack graphs. This page includes three graphs (Figure 8.4). The first one is
a breakdown of the TCP ports while the second one is a breakdown of UDP
ports for the last two hours. The third one is a breakdown of traffic type in
terms of how much TCP, UDP and ICMP traffic was received during the last
day.

– Backscatter traffic. Each sensor receives unsolicited traffic, that is traffic that
comes in response to spoofed attacks. It is trivial to identify such traffic by

FP7-ICT-216026-WOMBAT 49

8 NoAH

Figure 8.4: Attack graphs

50 SEVENTH FRAMEWORK PROGRAMME

8.2 Deployment and experiences

Figure 8.5: Backscatter traffic of 17th of September

inspecting the TCP flags of each packet. A plot for the number of backscatter
packets received over the last 24 hours is displayed on Figure 8.5.

Furthermore, the user has several options to customize the displayed information.
First of all, she can select traffic coming from or going to a specific IP address. Second,
the time frame can be changed. The user can view traffic from the last 2 hours up to the
last 1 month. Additionally, she can define an arbitrary date interval. Third, the number
of top source IP addresses and top destination ports can be altered. By default, only
10 of the most active source IP addresses and targeted destination ports are displayed.
These lists can be expanded up to 100 entries. The final filtering option is to display
traffic going to specific destination ports. All of the above options can be combined.
Thus, user can query our statistics database for more complicated questions, like ”what
traffic have you received that originates from IP address X, targets IP address Y to
destination port Z from last Monday to last Thursday?” and many more.

All individual sensors send a daily list of the top 100 source IP addresses and top 100
destination ports they observed to the main stats.fp6-noah.org site. The lists are
then aggregated and displayed in a similar template to the one of individual sensors.
The role of aggregation is twofold. First, it permits us to view at a quick glance what
traffic is sent to the honeypot sensors and see if trends have changed over the last

FP7-ICT-216026-WOMBAT 51

8 NoAH

Figure 8.6: TrGeo visualizes the attackers around the world. Each balloon represents
how much traffic the location sent in terms of packets.

monitoring periods. Second, it allows us to correlate traffic among various sensors. For
example, we can check if two sensors receive traffic on a specific port and if their most
attacked ports are the same. As all aggregated data are public, the source IP addresses
are anonymized after the aggregation process. However, the geolocation of each source
IP address is calculated before the anonymization process. The anonymization function
applied to source IP address is the replacement of the address with random numbers.
We have also considered other anonymization functions, such as prefix-preserving, but
they present a high risk of revealing the honeypot topology.

In our effort to present an overview of what traffic our honeypots capture daily, we have
implemented TrGeo. TrGeo is a platform for geographic visualization of packets captured
by the NoAH infrastructure. The basic concept behind TrGeo is to track locations of the
attackers and display the traffic volume they send on the earth map. For the purposes
of this work, we have implemented TrGeo as an Adobe Flash application that renders

52 SEVENTH FRAMEWORK PROGRAMME

8.2 Deployment and experiences

Country # Conversations
USA 56,361

Russia 22,823
Taiwan 18,858

AR 9,327
Japan 6,662
MY 4,193
MD 3,474
PT 3,061
BG 2,663

China 2,646

Table 8.1: Top 10 source countries
of attackers that tar-
geted the NoAH sensors

IP Address # Conversations Country Days
xx.xx.215.83 14,499 USA 1
xx.xx.92.207 7,862 USA 2
xx.xx.247.14 7,279 Russia 1
xx.xx.109.189 7,260 USA 2
xx.xx.101.25 5,327 Taiwan 2
xx.xx.98.156 4,853 Taiwan 1
xx.xx.56.118 3,798 Argentina 1
xx.xx.101.211 3,743 USA 3
xx.xx.42.29 3,628 Argentina 1
xx.xx.171.197 3,580 USA 2

Table 8.2: Top 10 attackers that targeted the
NoAH sensors.

desired data on top of Google maps. On each source location a balloon is drawn that
represents how much traffic the location sent in terms of packets. As time passes, the
height of these bars changes according to the traffic they sent. In fact, TrGeo implements
the visualization of a sliding time window. For example, if it has not observed packets
from a location for a long time period, the balloon for that location will have its counter
and size decreased. The information about packet volume and geographical origin is
extracted from queries done to the stats.fp6-noah.org site. The aggregation is done at
the level of countries, this means multiple attackers from different cities of a country are
mapped to a single random location within the country. An instance of TrGeo could be
found at Figure 8.6.

During a 2-month-long deployment period, from the end of July to September 2009,
the infrastructure handled a total of 153,082 conversations with attackers that targeted
the NoAH sensors. The maximum number of conversations handled in one day was
22,268 which occurred on the 17th of September.

Table 8.1 presents the top 10 source countries of attackers that initiated conversations
with the NoAH sensors. The aggregated conversations from these 10 countries amount
to 84.8% of the total conversations handled by our honeypots. Results show that the
United States are the country that initiated the largest number of conversations with
the NoAH sensors. In Table 8.2 we can see the statistics of the top attackers for the
whole duration of the two month deployment period. It is interesting to note that all
top attackers were active for a few days, and in all cases they were consecutive.

FP7-ICT-216026-WOMBAT 53

8 NoAH

8.3 Current and future work

The area of honeypots is an active research division. However, new attack vectors should
be taken under consideration. Malware propagation takes place in other communication
channels, such as Instant Messaging networks and social networking sites. Malware
authors take advantage of the fact that users trust the content sent by other users in their
friend list. By infecting instant messenger clients or compromising IM accounts, they
spread malicious URLs and executables by spamming the friend lists. We have taken
some first steps for detecting these attack vectors and have performed a preliminary
analysis of IM-enabled phishing and malware propagation.

Lately, the number of devices that access the Internet has increased dramatically.
Users now crawl the Web by handheld devices, such as mobile phones and PDA’s. The
nature and volume of mobile networks makes them an attractive platform to launch
attacks against. Honeypot technologies could be applied to that domain too, for example
decoy services running on mobile phones. Platforms like Java and Android [1] allow the
development and deployment of mobile honeypots.

54 SEVENTH FRAMEWORK PROGRAMME

9 WAPI and WOMBAT Workshop Scenarios

9.1 Introduction

As discussed in deliverable D3.1 (“Infrastructure design”) [3], we proposed to define a
common WOMBAT API (WAPI) to be shared among all the participants in order to
simplify the task of the data consumer willing to take advantage of these datasets. The
WAPI is actually a remote API allowing consumers to retrieve remote information from
sources according to a given communication protocol. The communication protocol we
choose to use is the SOAP protocol. A strong argument for this choice is that SOAP is
very well supported by a high number of client libraries making it the perfect choice for
satisfing the client flexibility requirement.

The WAPI architecture is based in two components the WAPI server and client. Each
WAPI server is created by each partner who is offering data. The partner is responsible
for the type and the amount of data that the server offer to others. Moreover, he is
responsible for the clients he is willing to share his data.

WAPI takes advantage of SSL protocol to provide confidentiality of the transmitted
results and, most importantly, to implement access control. In order to be able to
talk with a WAPI server, a client must provide a valid SSL certificate signed by the
Certification Authority maintained by each partner providing WAPI services.

The implementation of WAPI server and client have been made using the Python
Language. Python was chosen due its ability to be flexible, object-oriented and has wide
range of libraries. These libraries offer a lot of WAPI characteristics such as security
(SSL) and flexibility (SOAP). But, using SOAP protocol as the communication protocol
offers programming language freedom. This means that anybody can create a WAPI
server and client in any language, as far as the data been sending over the SOAP protocol
meet the WSDL standards.

The following Sections also appears in the Deliverable 6.4 (“Second Open Workshop
Proceedings”) devoted to the WOMBAT workshop organized in Saint Malo in September
2009. We have decided to include it into this deliverable as well in order to provide to the
reader a document that would as self contained as possible to get a good understanding
of the usefulness of these various sensors and how they can interact together.

55

9 WAPI and WOMBAT Workshop Scenarios

9.2 Preliminaries

In this section we show how one can use the WAPI to query different WOMBAT datasets,
namely Anubis (Figure 11.1), SGNET (Figure 11.2), HARMUR (Figure 11.3), Shelia
(Figure 11.4), HSN (Figure 11.5), WEPAWET (Figure 11.6), VirusTotal (Figure 11.7)
and FORTH (Figure 11.8).

The provided client takes advantage of the IPython interactive shell (http://ipython.
scipy.org/moin/) as opposed to the original Python shell, providing better support for
autocompletion and results visualization. The client starts by typing the following in
the command line:

python wapi_client.py -c conf

conf is the necessary configuration file that the wapi client needs in order to connect
with all the datasets. Below it presents a common configuration file.

WAPI client configuration file. Specifies

the list of WOMBAT datasets as well as the

connection options to connect to each of them.

general format:

[<dataset_name>]

url=<scheme>://<hostname or ip>/path/to/wapi/server/

cert_ca=relative/path/to/ca/certificate.pem

cert_client=relative/path/to/client/certificate.pem

namespace=<namespace>

#NOTE: cert_ca, cert_client and namespace are optional.

[sgnet]

url=https://193.55.112.70/sgnet/

cert_ca=cert/sgnet/cacert.pem

cert_client=cert/sgnet/client.pem

namespace=sgnet.wapi.wombat-project.eu

[wepawet]

url=https://193.55.112.70/wepawet/

cert_ca=cert/wepawet/cacert.pem

cert_client=cert/wepawet/client.pem

namespace=wepawet.wapi.wombat-project.eu

[harmur]

url=https://193.55.112.70/HARMUR/

cert_ca=cert/harmur/cacert.pem

cert_client=cert/harmur/client.pem

56 SEVENTH FRAMEWORK PROGRAMME

http://ipython.scipy.org/moin/
http://ipython.scipy.org/moin/

9.2 Preliminaries

namespace=HARMUR.wapi.wombat-project.eu

[anubis]

url=wapi://isis.iseclab.org:8080/anubis/

cert_ca=cert/anubis/cacert.pem

cert_client=cert/anubis/client.pem

namespace=anubis.wapi.wombat-project.eu

[shelia]

url=https://centaur.few.vu.nl:8080/shelia/

cert_ca=cert/shelia/cacert.pem

cert_client=cert/shelia/client.pem

namespace=shelia.wapi.wombat-project.eu

[forth]

url=wapi://139.91.90.201/forth/

cert_ca=cert/forth/cacert.pem

cert_client=cert/forth/client.pem

namespace=forth.wapi.wombat-project.eu

[virustotal]

url=wapi://62.15.230.161/virustotal/

cert_ca=cert/virustotal/cacert.pem

cert_client=cert/virustotal/client.pem

[hsn]

url=https://gror.nask.waw.pl:8888/hsn/

cert_ca=cert/hsn/hsn_ca.pem

cert_client=cert/hsn/hsn_user.pem

namespace=hsn.wapi.wombat-project.eu

[utils]

anubis_url=https://anubis.iseclab.org/index.php?action=result&task_id=%s&format=html

FP7-ICT-216026-WOMBAT 57

9 WAPI and WOMBAT Workshop Scenarios

FW FW
Internal Network

Cashiers' clients

Webservers

Internet

Proxy

DMZ

Figure 9.1: Bank Network

9.3 Investigation of a Banking Fraud

In this scenario,we take on the role of CERT responders from a Bank (See figure 9.1).
The Bank needs to conduct a (forensics) investigation of the machine of a client that has
reported a fraud case via electronic banking. The Bank up to now has excluded that
the fraud was related to phishing or any other physical swindle.

A brief analysis of the infected client does not show any clear evidence of infection, no
suspicious BHO is detected and no suspicious registry entries are found in the system.
The client affected by the fraud is connected to the Internet through an HTTP proxy,
and has agreed to give you the list of the HTTP activity of the infected machine in
the last week. After a brief look at such activity, you notice a large amount of HTTP
requests towards a suspicious domains. Such requests are performed every 20 minutes
approximately, during working hours but also during night and weekends. All the queried
URLs are similar to the following one: http://ijmkkyjves.net/iE=eQBHE8cNe8DRM

9.3.1 Malware identification

Can we take advantage of the WAPI to link such suspicious behavior to a specific malware
sample?

58 SEVENTH FRAMEWORK PROGRAMME

http://ijmkkyjves.net/iE=eQBHE8cNe8DRM

9.3 Investigation of a Banking Fraud

Figure 9.2: Investigation of a Banking Fraud (Part A)

FP7-ICT-216026-WOMBAT 59

9 WAPI and WOMBAT Workshop Scenarios

Figure 9.3: Investigation of a Banking Fraud (Part B)

60 SEVENTH FRAMEWORK PROGRAMME

9.3 Investigation of a Banking Fraud

Q Anubis stores behavioral information for thousands of malware samples during an ex-
ecution time of two minutes approximately. Is there any malware sample analyzed
by Anubis that exposed a similar behavior during its analysis?

A An example solution follows:

#let’s search for any HTTP conversation targeting the identified domain

http = anubis.http_traffic(destination="ijmkkyjves.net")

#let’s retrieve the WAPI malware objects associated to this behavior

malware = [h.tasks()[0].malware()[0] for h in http]

Figure 9.2 steps (1), (2) and (3).

Q Look more in depth at the MD5 hash of these samples and at their binary size. Is
there anything striking about these characteristics?

A Let’s extract these simple characteristics from the Anubis malware objects:

#what are the basic characteristics of these samples?

stats = set([(m.md5,m.file_size,m.mime_type) for m in malware])

Q Try to take advantage of the VirusTotal API to give a name to these samples.

A An example solution follows:

md5_hashes = set([m.md5 for m in malware])

for md5 in md5_hashes:

print "=== %s"%md5

print virustotal.get_file(md5=md5)[0].get_last_analysis()[0].

av_positives_report

Figure 9.2 steps (4) and (5).

9.3.2 Infection analysis

In the previous step, we have been able to link the suspicious network behavior ob-
served on the infected host with a specific malware sample, called Mebroot. Mebroot
received a certain amount of press coverage (see, for instance, http://www.symantec.
com/connect/blogs/bootroot-trojanmebroot-rootkit-your-mbr). While the low
antivirus detection rate might explain why such malware was not detected by the an-
tivirus software installed on the infected machine, we still do not know how the machine
got infected in the first place.

FP7-ICT-216026-WOMBAT 61

http://www.symantec.com/connect/blogs/bootroot-trojanmebroot-rootkit-your-mbr
http://www.symantec.com/connect/blogs/bootroot-trojanmebroot-rootkit-your-mbr

9 WAPI and WOMBAT Workshop Scenarios

We go back to the logs, and we are able to identify the moment in which the anomalous
connection attempts started. Assuming that the infection happened approximately at
that time, we extract a list of URLs visited by the infected machine in the hour preceding
the beginning of the anomaly. The traffic was concerning the following domains:

domains = ["google.com",

"facebook.com",

"baidu.cn",

"adobe.com",

"bandwidthplace.com",

"azadars.com"]

We therefore hypothesize that one of these domains is the potential cause of the
infection. Let’s use the WAPI to verify this hypothesis.

Q Check if any of the domains visited by the client are known to the HoneySpider
network.

A An example solution follows:

for d in domains:

hsnatts = hsn.searchURL(url=d)

if len(hsnatts) == 0:

print "No results for %s"%d

else:

for hsnatt in hsnatts:

print "Result for %s:"%d

print "URL: %s, classified as %s"%(hsnatt.normalizedURL,

hsnatt.classification)

Q azadars.com is seen by the HoneySpider Network as suspicious. Take advantage of
the WAPI to understand what type of threat is associated to it.

A An example solution follows:

hsnazadars = hsn.searchURL(url="azadars.com")[1]

hsnazadars.dump();

Was it scanned with the high interaction component?

print hsnazadars.highInteractionScanIds()

Ok, and what was the result of low interaction scan?

hsnazalim = hsnazadars.getCrawlerURL()[0]

hsnazalim.dump()

#So, low interaction heuristics show, that this is just suspicious. Why?

62 SEVENTH FRAMEWORK PROGRAMME

9.3 Investigation of a Banking Fraud

#Let’s have a look at the requests:"

hsnreqs = hsnazalim.getRequests()

for req in hsnreqs:

print "%s request %s"%(req.classification,req.request)

#Why is the suspicious one actually suspicious?

for req in hsnreqs:

if req.classification == "SUSPICIOUS":

req.dump()

#So, it was obfuscated. Were any redirections extracted from the scripts?

for redir in hsnazalim.getRedirects():

print "%s redirection to %s"%(redir.classification,redir.request)

#There was one, but heuristics found nothing interesting there."

Figure 9.2 steps (6), (7), (8) and (9).

Q Try to perform the same analysis taking advantage of the shelia dataset.

A An example solution follows:

sheliaazadars = shelia.alerts_by_target(target="azadars.com")[0]

#is there any malware downloaded as a consequence of the analysis?

sheliamalware = sheliaazadars.malware()[0]

#notice the MD5 and the file length and compare them with

#the malware identified in Anubis. Is there anything interesting?

Figure 9.2 steps (10) and (11).

Q Do you think that the temporal evolution might be the reason for which Shelia and
HSN provide discording reports? Try to validate this hypothesis taking advantage
of the different WAPI datasets.

A First of all, we should look at the timestamp of the analysis tasks for the domain
azadars.com. Did Shelia and HSN look at the site at the same moment in time?

#when did HSN first look at the domain?

print hsnazadars.creationDate

#when did Shelia analyze the same domain?

print sheliaazadars.timestamp

FP7-ICT-216026-WOMBAT 63

9 WAPI and WOMBAT Workshop Scenarios

If we look at the wepawet information, we can have a more clear proof that
azadars.com changed over time.

wepawetazadars = wepawet.domain(domain_name="azadars.com")[0]

#let’s look at the different analysis tasks

for t in wepawetazadars.tasks():

print "On %s, there were %d exploits"%(t.analyzed_at,len(t.exploits()))

Figure 9.3 steps (12) and (13).

Q Which vulnerabilities have been exploited?

A The answer can be easily retrieved by looking in more detail the wepawet analysis.

#let’s pick the oldest analysis task

wepa_ana = wepawetazadars.tasks()[0]

#which exploits were detected?

for expl in wepa_ana.exploits():

expl.dump()

Figure 9.3 step (14).

9.3.3 The real culprit

In the previous Section, we have been able to identify a domain, azadars.com, that was
visited by our victim just before the infection. We have been able to show that, before
September, this domain was indeed capable of exploiting clients to install malware and
compromise our victim machine. We don’t know yet much about azadars.com: is it a
malicious site set up on purpose to compromise victims redirected to it through phishing
campaigns? Let’s try to use the WAPI to know more about it.

Q Take advantage of the HARMUR dataset to know more about the azadars.com site.
Is the site registrant associated to other malicious domains?

A An example solution follows:

azadars = harmur.domain(domain="azadars.com")[0]

azadars.dump()

print azadars.same_registrant()

Figure 9.3 steps (15) and (16).

64 SEVENTH FRAMEWORK PROGRAMME

9.3 Investigation of a Banking Fraud

Q On what physical server is the site hosted?

A An example solution follows:

azadars_srv = azadars.servers()[0]

#let’s print all the available information

azadars_srv.dump()

Figure 9.3 step (17).

We can query HARMUR to know more about other sites hosted on the same
physical server.

azadars.servers()[0].reverse_resolution()

same_server = [(d.name,d.color) for d in azadars.servers()[0].hosted_domains()

]

Figure 9.3 steps (18) and (19).

Q From WHOIS/DNS information, azadars.com looks like a legitimate site hosted by
a web hosting service that has been compromised by an exploit toolkit. Look at
the exploit information provided by HARMUR and wepawet and try to confirm
this hypothesis.

A HARMUR aggregates different threat information feeds to decide whether a certain
domain is malicious or not. What can we say about this domain?

for threat in azadars.threats():

threat.dump()

Figure 9.3 step (20).

Wepawet allows us to analyze more in detail the effect of the exploits detected in
the previous phase.

for payload in wepa_ana.payloads():

print "download %s from %s"%(payload.md5,payload.url)

#compare with Anubis samples

if payload.md5 in md5_hashes:

print "the downloaded sample performs connections to ijmkkyjves.net once

executed!"

Figure 9.3 step (21).

FP7-ICT-216026-WOMBAT 65

9 WAPI and WOMBAT Workshop Scenarios

The site azadars.com seems to be infected by an exploit toolkit that forces the
victim to download from the domain ijmkkyjves.com a malware sample whose
MD5 was analyzed by Anubis and that is known to be performing connections to
ijmkkyjves.net.

Q “ijmkkyjves” looks like a randomly generated string. Are these two domains part of
a bigger picture?

A We can query the HARMUR dataset to find an answer to this question:

dl_site = harmur.domain(domain="ijmkkyjves.com")[0]

#all the information available on the server:

dl_site.servers()[0].dump()

#which other domains are hosted on the same server?

dl_site.servers()[0].reverse_resolution()

9.3.4 Conclusions

During this demonstration we have explored the potential of the WAPI to build better
pictures on the threats “ecosystem”. We have started from a real case scenario, and we
have combined information retrieved by Anubis with the analysis performed by different
client honeypot technologies. We have seen how each of these datasets is often able to
show us only one facet of the truth, and the value of aggregating together these different
facets to get a broader view on Internet threats.

66 SEVENTH FRAMEWORK PROGRAMME

9.4 Monitoring of our Own Networks

ISP network

Internet

Clients

Cu
st

om
er

s'
 c

lie
nt

s

Broadband
network

Virtual hostingCustomers' servers DBs

Figure 9.4: ISP Network

9.4 Monitoring of our Own Networks

In this scenario, we are in the security staff of an ISP 9.4 or an enterprise network (or
even a CERT for a given country), and we are interested in querying WOMBAT datasets
to get information about infected machines in our own network.

211.108.242.0/24

The idea is to offer to network administrators useful information that might help them
in understanding what type of threat is affecting the different clients in order to clean
them or notify them.

9.4.1 Searching for infections

Q We can start by querying the SGNET dataset to know if any honeypot has observed
malicious activity generated by hosts of our own network.

• What exploit events have we found, if any?

FP7-ICT-216026-WOMBAT 67

9 WAPI and WOMBAT Workshop Scenarios

Figure 9.5: Monitoring of Own Networks (Part A)

68 SEVENTH FRAMEWORK PROGRAMME

9.4 Monitoring of our Own Networks

Figure 9.6: Monitoring of Own Networks (Part B)

FP7-ICT-216026-WOMBAT 69

9 WAPI and WOMBAT Workshop Scenarios

• Can we associate to these exploit events the activity of a specific malware
type?

• If yes, how many?

A We first retrieve all the known sources and, for each sources, we save the list of events
associated with it.

ip = "211.108.242.0"

print "We are interested in our network %s/24" % ip

#What does sgnet know about it

sources = sgnet.source(address=ip,network_prefix=24)

print "We have %d sources" % len(sources)

Figure 9.5 step (1).

Q One host of our network has performed a successful code injection attack against one
of the SGNET honeypots, and is therefore likely to be infected. Take advantage of
the Anubis and VirusTotal dataset to know more about the nature of this malware.
Try to give a “name” to such sample.

A An example solution follows:

source = sources[0]

print "Address is %s" % source.address

event = source.events()[0]

print "Here is the exploit event"

event.dump()

malware = event.malware()[0]

event_md5 = malware.md5

print "Uploaded malware with md5 %s\n" % event_md5

#What does virustotal say about the md5?

print virustotal.get_file(

md5=event_md5)[0].get_last_analysis()[0].av_positives_report

event_tasks = anubis.malware(md5=event_md5)[0].tasks()

print "\nAnubis has %d tasks for this md5\n" % len(event_tasks)

#Here is one

event_tasks[0].dump()

Figure 9.5 steps (2), (3), (4), (5), (6) and (7).

70 SEVENTH FRAMEWORK PROGRAMME

9.4 Monitoring of our Own Networks

Q We want to take a deeper look at this task to see, say, what type of activity it
performed (e.g., files created, remote HTTP connections).

A An example solution follows:

#Let’s look at this task in more detail

t = event_tasks[0]

#File events

print [x.name for x in t.file_events()]

#Registry keys created

print [x.key_name for x in t.created_keys()]

#HTTP traffic

print t.http_traffic()

print "No real files, and nothing very meaningful in the registry either\n"

Figure 9.5 steps (8), (9) and (10).

Q Recall that the web interface of Anubis contain many details about capture samples.
Can we take a deeper look at it? We can rely on the open_anubis_report shortcut
method provided by the Utils module.

A This can be done by invoking the appropriate method:

event_uuid = event_tasks[0].uuid

print "\nAnubis has this as task uuid %s\n" % event_uuid

#Look at the report

Utils.open_anubis_report(event_uuid)

#It has an exception, does not do much

9.4.2 Looking for similar malware samples

From the previous point, we have seen that the specific exploitation behavior used
by this malware sample is used by lots of different malware groups. While such
exploitation behavior is mainly famous for being associated to the Rahack/Allaple
worm, it seems to be used also by other, less known, malware families.

Q Let’s look more in depth at this malware cluster and let’s take advantage of Anubis
to identify any less visible, but interesting, behavior. To reduce querying time, we

FP7-ICT-216026-WOMBAT 71

9 WAPI and WOMBAT Workshop Scenarios

can safely cap our requests to the first 30 samples. Also, remember that the Utils
module provides the handy flatten_list, which just does what it says.

A An example solution follows:

#Are both samples in same cluster?

print set(Utils.flatten_list([t.cluster() for t in event_tasks]))

cluster = t.cluster()[0]

cluster.dump()

#It’s a big cluster. Let’s look at a few of the tasks in it

#let’s take the first 30, and see if they do http

cluster_tasks = cluster.tasks()[0:30]

httpl = [t.http_traffic() for t in cluster_tasks]

cluster_http = Utils.flatten_list(httpl)

print set([x.dest_name for x in cluster_http])

#..or interesting file stuff

filel = [t.file_events() for t in cluster_tasks]

cluster_files = Utils.flatten_list(filel)

print set([x.name for x in cluster_files])

Q It looks like the whole cluster is not doing much. Maybe we can retrieve other similar
samples by leveraging the SGNet EPM clustering and rely on Anubis to figure
out what type of HTTP traffic these malware are generating. In particular, we
are interested in finding malware that attempt to connect to a domain we retain
suspicious: zief.pl.

A An example solution follows:

#Let’s use sgnet EPM clustering, to see if similar activities

#have malware with more interesting behavior

activity = event.activity()[0]

print "Here is the activity:\n"

activity.dump()

#Looking up MD5s for this activity

epm = activity

md5s_epm = [m.md5 for m in epm.malware()[0:30]]

print "\nGot %d MD5s\n" % len(md5s_epm)

72 SEVENTH FRAMEWORK PROGRAMME

9.4 Monitoring of our Own Networks

#Let’s look for anubis tasks

malwares = [anubis.malware(md5=m) for m in md5s_epm]

malwares = filter(lambda m:len(m),malwares)

malwares = [m[0] for m in malwares]

tasksl = [m.tasks() for m in malwares]

tasks = Utils.flatten_list(tasksl)

print "Got %d tasks" % len(tasks)

#Looking up all of their HTTP traffic

httpl = [t.http_traffic() for t in tasks]

http = Utils.flatten_list(httpl)

#Here are all accessed domains

print list(set([x.dest_name for x in http]))

#We are interested in zief.pl

http_zief = filter(lambda h:h.dest_name.endswith("zief.pl"),http)

9.4.3 Looking more in depth at zief.pl

We have started from a single infection of a polymorphic worm and we have been able,
taking advantage of SGNET EPM clustering, to identify a larger set of malware samples
and infections that are linked to the same malware group. While the specific sample from
which we started our analysis did not expose any other behavior than simple worm-like
propagation, we have been able to identify in other samples belonging to the same group
some suspicious HTTP behavior related to a specific domain, zief.pl.

From now on, we want to dig a little bit deeper on the zief.pl domain. What is its
role in the infection?

Q Take advantage of the HARMUR dataset to get information about the server(s)
hosting this domain. Are they located in Poland or somewhere else?

A An example solution follows:

#What does harmur say of threats from zief.pl?

domain = harmur.domain(domain="zief.pl")[0]

#Here are urls harmur has on this domain

print [u.url for u in domain.urls()]

#Here is a summary of the threats on this domain

print [(t.type,t.id) for t in domain.threats()]

FP7-ICT-216026-WOMBAT 73

9 WAPI and WOMBAT Workshop Scenarios

#Here is one of the bloodhound threat in more detail

domain.threats()[1].dump()

#Let’s look up one of the threats on the symantec website

threat_urls = domain.threats()[1].help.split()

print threat_urls

#Let’s look up the servers’ geo location information

servers = domain.servers()

#only one of the three servers is located in China!

for srv in zief_servers:

srv.dump()

print srv.reverse_resolution()

Figure 9.6 steps (11), (12), (13), (14) and (15).

Q Looks like only one of the three servers is actually located in China. Maybe the
FORTH dataset can provide further information about zief.pl. Let’s query it.

A An example solution follows:

#Where is zief.pl located?

zief_ips = set([h.dest_ip for h in http_zief])

print "Here are the ips:\n%s\n" % str(zief_ips)

zief_ip = list(zief_ips)[0]

#Let’s look up the whois data

forth.address(ip_addr=zief_ip)[0].dump()

#Does this address send spam?

print forth.address(ip_addr=zief_ip)[0].isSpammer()

Figure 9.6 steps (16) and (17).

Q zief.pl seems to be a download site for additional components retrieved by the
malware once executed. Is there any additional threat on this domain? We can
take advanatage of the Anubis web interface to retrieve in depth information, on
its servers and on any threat known to be associated to it.

A An example solution follows:

#Let’s see if anubis tasks that contact zief.pl are more interesting

zief_http = filter(lambda x:x.dest_name.endswith("zief.pl"),http)

zief_tasksl = [h.tasks() for h in zief_http]

74 SEVENTH FRAMEWORK PROGRAMME

9.4 Monitoring of our Own Networks

zief_tasks = Utils.flatten_list(zief_tasksl)

map(lambda t:zief_tasks.extend(t),zief_tasksl)

print "We have %d tasks that contact www.zief.pl\n" % len(zief_tasks)

#How many anubis clusters are they in?

print set(Utils.flatten_list([t.cluster() for t in zief_tasks]))

#Here is one such anubis task

zief_tasks[0].dump()

print "MD5 is %s" % zief_tasks[0].malware()[0].md5

#Look at the report. A lot more going on...

Utils.open_anubis_report(zief_tasks[0].uuid)

Q Interestingly, we have found a match into Anubis. It’s worth looking up VirusTotal
analyses about the malware sample we just found in Anubis. Optionally, the
WEPAWET dataset may be useful to find any client-side threat (e.g., JavaScript,
PDF, Flash) related to zief.pl.

A An example solution follows:

#What does VirusTotal say about this malware?

print virustotal.get_file(

md5 = zief_tasks[0].malware()[0].md5)[0].get_last_analysis()[0].

av_positives_report

Figure 9.5 steps (4) and (5).

In addition, the WEPAWET report provides direct links to FIRE reports which
are worth to inspect as they show the different activities (e.g., C&C, phishing) of
the malicious IPs over time.

9.4.4 Conclusions

In this scenario, we have shown how it is possible to take advantage of the WAPI to
investigate the security status of a certain network. We have shown how to take advan-
tage of the different features offered by the datasets to investigate malware infections
and get a better understanding of the underlying processes.

FP7-ICT-216026-WOMBAT 75

10 Conclusions

In this deliverable we described the deployment and experiences of SGNET, HARMUR,
Shelia, Paranoid Android, HoneySpider Network, Bluebat and NoAH sensors. These
sensors capture various types of data such as malware, IP sources, malicious URLs and
exploits.

The early experiences show that the WOMBAT Project [10] is fulfilling our preliminary
expectations about having powerful tools for collecting data. These data are useful for
categorizing attackers and malware behaviors. Moreover our experiments reveal that the
sensors can cooperate with each other, enriching in this way the information offered for
analysis.

The diversity of the data sources led to the creation of the WAPI, an API for ex-
changing data, among partners, over the SOAP protocol. WAPI takes advantage of SSL
protocol to provide confidentiality of the transmitted results and, most importantly, to
implement access control. Thanks to WAPI, we are now able to trace attacks, find the
methodology the attackers use and create new tools for faster reaction to any suspicious
behavior. This happened because all data are now consolidated in a global infrastruc-
ture. The WAPI has already been tested and used. One of the biggest test it faced,
was at the second WOMBAT Workshop where the attendees achieved to investigate two
case scenarios with the help of sensors data, using the WAPI client.

76

Bibliography

[1] Android. http://code.google.com/android/.

[2] Bluez website. http://www.bluez.org/.

[3] D06 (d3.1) infrastructure design. http://wombat-project.eu/WP3/
FP7-ICT-216026-Wombat-WP3-D06_V02_Infrastructure_design.pdf.

[4] D07 (d3.2) design and prototypes of new sensors.

[5] Gpsd website. http://gpsd.berlios.de/.

[6] Network of affined honeypots. http://www.fp6-noah.org.

[7] Pybluez website. http://org.csail.mit.edu/pybluez/.

[8] Secureobex server. http://www.mulliner.org/bluetooth/sobexsrv.php.

[9] Trifinite.org website. http://www.trifinite.org.

[10] Wombat project. http://www.wombat-project.eu/.

[11] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling. The Nepenthes Plat-
form: An Efficient Approach to Collect Malware. In 9th International Symposium
on Recent Advances in Intrusion Detection (RAID), September 2006.

[12] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for Analyzing Malware.
In 15th European Institute for Computer Antivirus Research (EICAR 2006) Annual
Conference, April 2006.

[13] C. Leita, M. Dacier, and F. Massicotte. Automatic handling of protocol depen-
dencies and reaction to 0-day attacks with ScriptGen based honeypots. In 9th
International Symposium on Recent Advances in Intrusion Detection (RAID), Sep
2006.

[14] C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an automated script genera-
tion tool for honeyd. In 21st Annual Computer Security Applications Conference,
December 2005.

77

http://code.google.com/android/
http://www.bluez.org/
http://wombat-project.eu/WP3/FP7-ICT-216026-Wombat-WP3-D06_V02_Infrastructure_design.pdf
http://wombat-project.eu/WP3/FP7-ICT-216026-Wombat-WP3-D06_V02_Infrastructure_design.pdf
http://gpsd.berlios.de/
http://www.fp6-noah.org
http://org.csail.mit.edu/pybluez/
http://www.mulliner.org/bluetooth/sobexsrv.php
http://www.trifinite.org
http://www.wombat-project.eu/

Bibliography

[15] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for fingerprinting
zero-day attacks. In ACM Sigops EuroSys, 2006.

[16] D. Smith. Allaple worm (ISC diary), http://isc.sans.org/diary.html?
storyid=2451.

[17] D. Turner, M. Fossi, E. Johnson, T. Mack, J. Blackbird, S. Entwisle, M. K. Low,
D. McKinney, and C. Wueest. Symantec global internet security threat report.
Technical Report XIII, Symantec, 2008.

[18] VirusTotal. www.virustotal.com.

78 SEVENTH FRAMEWORK PROGRAMME

http://isc.sans.org/diary.html?storyid=2451
http://isc.sans.org/diary.html?storyid=2451
www.virustotal.com

11 APPENDIX

79

11 APPENDIX

Figure 11.1: Anubis Dataset. The dataset con-
tains nine Objects (Malware, Task,
MalwareCluster, IRCTraffic, HttpTraffic,
OpenedPort, FileEvent, CreatedRegKey and
ModifiedRegKey) that are presented as list-
boxes. The elements of each list-box are the
Object identifiers. Arrows depicts the references
among Objects.

80 SEVENTH FRAMEWORK PROGRAMME

Figure 11.2: SGNET Dataset. The dataset contains six Ob-
jects (Source, Destination, ActivityClass,
InjectionAttack, Malware and PEinfo) that
are presented as list-boxes. The elements of each
list-box are the Object identifiers. Methods are
shown in bold. Arrows depicts the references
among Objects.

FP7-ICT-216026-WOMBAT 81

11 APPENDIX

Figure 11.3: HARMUR Dataset. The dataset contains five
Objects (URL, Server, Domain, Threat and
AnalysisEvent) that are presented as list-boxes.
The elements of each list-box are the Object iden-
tifiers. Methods are shown in bold. Arrows de-
picts the references among Objects.

82 SEVENTH FRAMEWORK PROGRAMME

Figure 11.4: Shelia Dataset. The dataset contains four Ob-
jects (URL, Alert, Malware and Call) that are
presented as list-boxes. The elements of each
list-box are the Object identifiers. Methods are
shown in bold. Arrows depicts the references
among Objects.

FP7-ICT-216026-WOMBAT 83

11 APPENDIX

Figure 11.5: HSN Dataset. The dataset contains three Ob-
jects (Attacker, Crawlerurl and hirequest)
that are presented as list-boxes. The elements of
each list-box are the Object identifiers. Methods
are shown in bold. Arrows depicts the references
among Objects.

84 SEVENTH FRAMEWORK PROGRAMME

Figure 11.6: WEPAWET Dataset. The dataset contains six
objects (Address, Malware, Domain, Exploit,
Task and Payload) that are presented as list-
boxes. The elements of each list-box are the Ob-
ject identifiers. Methods are shown in bold. Ar-
rows depicts the references among Objects.

FP7-ICT-216026-WOMBAT 85

11 APPENDIX

Figure 11.7: Virus Total Dataset. The dataset contains three
Objects (Source, File and Analysis) that are
presented as list-boxes. The elements of each
list-box are the Object identifiers. Methods are
shown in bold. Arrows depicts the references
among Objects.

86 SEVENTH FRAMEWORK PROGRAMME

Figure 11.8: FORTH Dataset. The dataset contains four Ob-
jects (Domain, DNS, Address and Malware) that
are presented as list-boxes. The elements of each
list-box are the Object identifiers. Methods are
shown in bold. Arrows depicts the references
among Objects.

FP7-ICT-216026-WOMBAT 87

	Introduction
	Overview
	WAPI

	SGNET
	Introduction
	Deployment and experiences
	Current and future work

	HARMUR
	Introduction
	Deployment and experiences
	Current and future work

	Shelia
	Introduction
	Shelia recap

	Deployment and experiences
	Current and future work

	Paranoid Android and Multi-level intrusion detection
	Introduction
	Deployment and experiences
	Current and future work

	HoneySpider Network
	Introduction
	Deployment and experiences
	Experiences relating to the architecture of the system
	Experiences relating to the detection methods used
	Experiences relating to the behaviour of malicious web sites
	Experiences using HSN WAPI

	Current and future work

	BlueBat
	Introduction
	Deployment and experiences
	Current and future work

	NoAH
	Introduction
	Deployment and experiences
	Current and future work

	WAPI and WOMBAT Workshop Scenarios
	Introduction
	Preliminaries
	Investigation of a Banking Fraud
	Malware identification
	Infection analysis
	The real culprit
	Conclusions

	Monitoring of our Own Networks
	Searching for infections
	Looking for similar malware samples
	Looking more in depth at zief.pl
	Conclusions

	Conclusions
	APPENDIX

