
SEVENTH FRAMEWORK PROGRAMME
Theme ICT-1-1.4 (Secure, dependable and trusted infrastructures)

WORLDWIDE OBSERVATORY OF
MALICIOUS BEHAVIORS AND ATTACK THREATS

D06 (D3.1) Infrastructure Design

Contract No. FP7-ICT-216026-WOMBAT

Workpackage WP3 - Data Collection and Distribution
Author -
Version 0.1
Date of delivery M9
Actual Date of Delivery M9
Dissemination level Public
Responsible FORTH
Data included from POLIMI, NASK, FT, EURECOM, VU, HISPASEC, SYMANTEC

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°216026.

SEVENTH FRAMEWORK PROGRAMME
Theme ICT-1-1.4 (Secure, dependable and trusted infrastructures)

The WOMBAT Consortium consists of:

France Telecom Project coordinator France
Institut Eurecom France
Technical University Vienna Austria
Politecnico di Milano Italy
Vrije Universiteit Amsterdam The Netherlands
Foundation for Research and Technology Greece
Hispasec Spain
Research and Academic Computer Network Poland
Symantec Ltd. Ireland
Institute for Infocomm Research Singapore

Contact information:
Dr. Hervé Debar
Rue des Coutures, 42
14066 Caen
France

e-mail: herve.debar@orange-ftgroup.com
Web: http://www.wombat-project.eu
Phone: +33 23 175 92 61
Fax: +33 23 137 83 43

herve.debar@orange-ftgroup.com
http://www.wombat-project.eu

Contents

1 Introduction 6

2 Architectural Overview 8
2.1 General Design . 8
2.2 Components . 10

2.2.1 Sources . 10
2.2.2 WAPI . 12
2.2.3 Database . 13

2.3 Usage . 14
2.3.1 Tactical vs. Strategic analysis . 14
2.3.2 WAPI . 14
2.3.3 Database . 14

3 Components 16
3.1 WAPI . 16

3.1.1 Requirements . 17
3.1.2 Architecture . 18
3.1.3 WAPI concepts . 19
3.1.4 Protocol primitives . 23
3.1.5 Conclusion . 24

3.2 Existing Sources . 25
3.2.1 Hispasec . 25
3.2.2 Leurré.com . 31
3.2.3 Arakis . 40
3.2.4 Anubis . 46
3.2.5 Other Sources . 53

3.3 New Sources . 57
3.3.1 BlueBat . 57
3.3.2 VU’s new sensors . 65
3.3.3 NASK’s HoneySpider Network (HSN) sensor 68

3.4 Existing Database . 71

3

3.4.1 Structure . 72
3.4.2 Extensibility . 75
3.4.3 Queries . 76
3.4.4 Sample Usage . 77

4

Abstract

This document contains a description of the wombat architecture and a high level design
of the new sensors. The wombat architecture is covered by a comprehensive review of
all its components. Part of this architecture is also the data sources and especially the
new ones that will be implemented as part of the wombat project. Each of them will
be described in the design level, focusing on the way that they will be integrated with
the wombat infrastructure.

1 Introduction

The purpose of this document is to present the architectural design choices that have
been made in the context of the WOMBAT project in order to facilitate the collection
as well as the analysis of data related to Internet threats.

The ultimate goal of the WOMBAT project is to offer a better understanding of the
threats computer systems are facing. The approach followed by the project to reach
this goal is to start from real, actual data. The line of actions is made of three distinct
steps. In the first one, we build a framework to collect data, in the second step we extract
metadata out of the obtained raw data, and in the third one we carry out various analyses
on the metadata in order to produce meaningful results on the modus operandi and on
the strategies of the malicious actors responsible for the current and future Internet
threats.

This document presents the data collection framework required for the first step.
It also addresses the issue of how this data collection can be used for the metadata
extraction phase.

The scope of this document is limited to the design of the general architecture. It
offers a high level description of the various functional elements that come into play in
this architecture, their respective roles and interactions. It offers some usage scenarios
to describe how we do plan to use this framework in the subsequent work packages. It
also highlights how the framework is able to integrate new data feeds offered by external
parties or, conversely, how third parties could use the data we collect in order to carry
out some specific analysis on their own.

The details of the specific new sensors defined and developed within the WOMBAT
project to populate this framework are to be found in a companion deliverable, namely
Design and prototypes of new Sensors - D3.2 .

The rest of this document is made of two distinct sections. In section 2 we offer a high
level overview of the architecture itself (section 2.1) and briefly present its main compo-
nents, namely: the data sources, the WAPI and the centralized DB (section 2.2). That
section ends with a brief presentation of the foreseen usage of the presented architecture.
The second main part of the document, section 3, offers a more detailed description of
each class of components. Section 3.1 describes WAPI, the WOMBAT API, that aims
at providing a common method to query the various data feeds composing the architec-
ture. Section 3.2 describing the already existing data feeds that we have at our disposal.

6

For each of them, we describe their current integration in the architecture as well as
the plans for an enhanced integration in the coming months. Section 3.2.5 covers the
external data feeds, the owners of which have expressed interest in being integrated, in
one way or another, to the WOMBAT architecture. Section 3.3 briefly introduces the
new sensors that are to be developed in the context of WOMBAT, leaving a detailed
presentation of these techniques for the other deliverable D3.2. Last but not least, sec-
tion 3.4 presents the centralized database. Its current status is described as well as plans
for future enhancements. Some simple usage scenarios highlights how complementary
this system is to the various autonomous data feeds we have presented before.

FP7-ICT-216026-WOMBAT 7

2 Architectural Overview

2.1 General Design

The architecture we present in the following pages has been designed with a few key
principles in mind, namely: openness, scalability, timeliness, ease of use and controlla-
bility. These principles stem from constraints and/or desires that had been expressed
by the various members of the consortium and also by the numerous partners attend-
ing the first WOMBAT workshop held in Amsterdam in April 2008 and documented in
deliverable D2.1 : Workshop 1. We describe each of them hereafter to help the reader
understand the rationales that motivate the infrastructure described afterwards.

� Openness: The WOMBAT consortium has no intend to remain a closed circle. On
the contrary, we acknowledge the existence, outside the consortium, of important
actors also involved in the collection and analysis of threats related data. Some of
these actors were actually present at the first WOMBAT workshop organized in
Amsterdam in April 2008. They do come from all over the world. It is our goal to
implement a system capable of welcoming their contributions, i.e. their datasets
or their analysis of our datasets. The cost for them to integrate into our system
should be as small as possible.

� Scalability: We do foresee to collect a possibly very large amount of data coming
from many different sources. The total amount of sources is likely to evolve as the
project goes since, hopefully, our increased visibility will lead new external con-
tributors to join forces with us. Therefore, we must propose a system that is able
to grow dynamically. Also, the total amount of data collected by all participating
collectors is likely to be huge. A naive solution that would consist in gathering
every possible source of information into a single place is, therefore, not acceptable.

� Timeliness: The implementation of this infrastructure is not a goal on its own. Its
sole raison d’etre is to enable metadata extraction and, hence, knowledge mining.
We want to be able to start working on these tasks as early as possible even if

1The proceedings are available at http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=

4627301&isYear=2008

8

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4627301&isYear=2008
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4627301&isYear=2008

2.1 General Design

the implementation of the infrastructure is not yet as polished as it should. In
other terms, the proposed solution must be such that it can take advantages of
data sources that would not, in a first phase, fully comply with the integration
guidelines advocated by the architecture. In other words, the architecture must
be flexible and able to deal with, if needed, “dirty hacks” to enable us to benefit
from external sources as quickly as possible.

� Ease of use: We want to offer a simple way to interact with the various data
sources at our disposal within the infrastructure. However, we have to expect
these sources to be of many different kinds. Some may offer something as simple
as data files whereas others will be complicated SQL Databases. We need to offer
a simple mechanism to hide, as much as possible, the differences and complexities
of these sources without forcing them to modify their internal structures. Clearly,
the idea of offering guidelines for a generic (as much as possible) API is appealing
for that purpose.

� Controllability: Experience shows that the sharing of some of these threats
related data may sometimes be problematic, be it for privacy, confidentiality of
liability reasons. There are valid concerns linked to legal, business or even political
reasons that can justify why a data source may or may not be shared with some
or all the partners. The infrastructure must offer a simple, convenient and flexible
way to handle these access control problems.

These principles have guided the design of the architecture which is mostly made of
three distinct components: (i) a diverse set of data sources, (ii) the WAPI and (iii) a
centralized database. The data sources, as the name implies, are the sources of the data
that we need in order to carry out the tasks defined in steps 2 and 3 of the WOMBAT
project. These sources can be of different kinds, as we describe in Sections 3.2 and 3.3.
What is important to understand is that these data sources are completely autonomous.
The WOMBAT infrastructure does not impose anything neither on the way they are
implemented nor on the data they are able to provide. The WOMBAT infrastructure
does not consider, for instance, a complete copy or replication of the data they can
generate into a centralized database. Such requirement would impose heavy constraint
on the data owners and would violate several of the principles explained before, namely
openness, scalability and controllability.

The WAPI (WOMBAT API) is a simple mechanism that we want to offer in order
to facilitate the integration of new sensors while preserving the ease of use principle.
The idea behind WAPI is to enable, for example, analysts to write programs that would
use data from several data sources without having to worry about the specific querying

FP7-ICT-216026-WOMBAT 9

2 Architectural Overview

mechanisms offered by these data sources. Also, it enables the data owners to modify
their internal data structure without having to notify the external users. However, in
order to cope with the timeliness principle, we will, in a first stage, consider using the
existing interfaces offered by some of these existing data sources. The new sources,
though, will be WAPI compliant as soon as WAPI will be stable and mature. Also, at
that stage, every new external source willing to join the WOMBAT infrastructure, will
be required to provide a WAPI compliant interface. It will be the responsibility of the
data owner to define what he is willing to share with whom, in which format (e.g. raw
data or pseudonyms or anonymous Ids.). WAPI will contain the primitives to enable
such access control.

Offering a purely distributed system, enriched with a generic API, may seem appealing
and sufficient at first but experience shows that, for several reasons, such an architecture
will not be able to fulfill efficiently the needs that will arise when dealing with metadata
extraction and knowledge mining. Such system has to complemented by a centralized
database that will, by no means, not contain a complete copy of all data sources but,
instead, a certain amount of well identified aggregated information. The reasons for
doing this are explained with some more details in Section 2.2.3. The centralized DB
itself will be WAPI compliant and will use WAPI to talk to the various data sources it
will collect information from.

So, from the previous discussion, it should be clear now that the WOMBAT infras-
tructure is a hybrid schema of autonomously implemented data sources owned either
by WOMBAT partners or by external parties. A generic API, named WAPI, will offer
a simple way to write analyser programs taking advantage, transparently, of a number
of sources. However, in a first step, integration will be based on the existing inter-
faces provided by these data sources. A centralized database will also be available to
provide efficiently aggregated information coming from several sources, acting as some
sort of a proxy. In the next Section (2.2), we provide some more input on the various
classes components and defer until Section 3 the actual description of instances of these
components.

2.2 Components

2.2.1 Sources

There are different kinds of data sources that we are considering in the context of the
wombat architecture. First of all, some data sources simply provide information about
events that they have observed and that are related to observable threats. We call these
data sources the “data feeds”. On the other hand, there are data sources that, when

10 SEVENTH FRAMEWORK PROGRAMME

2.2 Components

presented with some sort of input related to an observable threat, are able to tell us
what information they have about it. We call these sources the “analysers”. Last but
not least, there are data sources that combine both aspects, we call them the “hybrids”.
This informal classification simply aims at clarifying the classes of data sources. It should
certainly not be seen as some sort of taxonomical attempt to define our data sources.
We say a few more words about each of them in the following subsections.

Data Feeds

The data feeds offer simple facts about threat-related events that they have observed.
Typical data sensors that fall within this category are the honeypots, darknets, and
other honey farms that are deployed on the Internet. Also, several organizations do keep
track of IP addresses of spammers, phishing sites and other botnet zombies.

It is worth noting that the amount and type of information provided by these sources
varies greatly. For instance, on one extreme, the Leurré.com distributed system of hon-
eypots implements a whole SQL database which is able to provide geographical informa-
tion, reverse name lookup, Operating System fingerprinting, etc of observed attacking
IPs. On the other extreme, some DNS Black List servers (DNSBL[7]) may simply pro-
vide a Boolean answer when asked if a given IP is known to be, or not, a spamming
IP.

Also, the amount of time during which a given information remains available from a
given data feed is highly variable. Here to, the Leurré.com [12] database is an extreme
case where no information is ever removed, enabling everyone to query the system for
data as old as 5 years. DNSBL, on the other hand, represent again another extreme
since its content is regularly updated, for very good reasons.

From the previous examples, it comes that the integration of a given dataset into the
architecture requires a good understanding of the data it offers as well as its durability.
Since we aim, within wombat, at carrying long term, strategic analysis of attack trends,
it is worth trying to store into our centralized database, with a timestamp, the data that
are likely to disappear quickly. This will ensure their availability for future use. This, of
course, is only possible if the amount of information to be stored remains affordable.

Analyzers

The analysers are data sources that can be queried with an external observed event in
order to obtain further information about it. VirusTotal [21], from Hispasec Systemas,
is a very good example of such a system. Indeed, one can submit to this public web site,
a suspicious binary file and it will be inspected by 36 distinct anti virus scanners. At

FP7-ICT-216026-WOMBAT 11

2 Architectural Overview

the end, the results of all these analysis are stored in a single report which is sent back
to the submitter.

In this specific case, the analyzers provide important data that are worth being col-
lected in order to study observed events. Similarly to the previous case with the DNSBL
servers and a given IP address, the results provided by Virustotal for a given piece of
malware may vary as time passes since the antivirus signatures are updated very fre-
quently. Therefore, we do wish to study, e.g., over a long period of time how antivirus
products are able to react to new threats, we need to submit regularly to Virustotal
the malware we are interested in and we need to store, with a timestamp, the results
provided for it.

We acknowledge the fact that the separation between analysers and datafeeds is rather
artificial. Indeed, we could say that, e.g., a DNSBL is an analyzer since one can query
it with an externally observed IP address to find out if others have also seen it sending
spam. Nevertheless, we feel that, for the sake of clarity, stressing the existence of these
two classes of data sensors help understanding the kind of data we are interested in.

Hybrids

The logical follow up to the previous point is the identification of data sources that, in
some cases, are able to provide further information on an externally observed event and
that, in other cases, are able to provide information on events they have observed by
themselves.

One such example of hybrid analyzer is the private interface that VirusTotal offers
to the antivirus companies. On one hand, the AV companies can use VirusTotal as an
analyzer by submitting malware to it, as everyone can do it through the public interface.
On the other hand, VirusTotal will alert the AV companies when it observed a malware,
received through the public interface, which is not recognized by all AV products. In
that case, VirusTotal plays the role of a datafeed.

2.2.2 WAPI

WAPI, the WOMBAT API, aims at improving the ease of use and of the various data
sources that will be available in the WOMBAT infrastructure. As already eluded to,
each data owner will be responsible for deciding what he is eager to share, in which
format and to whom. WAPI will provide the primitives to easily specify some sort of
access controls. The role of WAPI will be to make it as transparent as possible to
programmers the specificities (naming schemes, querying methods, etc.) of each data
source. Of course, differences will still exist since the sources offer neither the same

12 SEVENTH FRAMEWORK PROGRAMME

2.2 Components

amount of information nor the same level of abstraction. However, WAPI-compliant
interfaces will ensure that the same object will be named and presented the same way
by all data sources that know about it. More details about WAPI is offered in Section
3.1

2.2.3 Database

There are, at least, three reasons to augment our distributed architecture with a cen-
tralized database.

� First of all, as we have already seen in the previous examples, some data sources
do not store for a long period of time the data they offer at any point in time. Not
storing them in a dedicated data structure for later use dramatically reduces the
usefulness of the integration of this data source into the overall architecture.

� The second reason has to do with efficiency. One can foresee that there are certain
classes of queries such as, e.g. the top-ten attacked ports, that are likely to be
frequently asked. This is all the more true that we will start exposing some of our
data through a public web site. Assuming we have a public web page that presents
the histogram of the most frequently attack ports over time, it would be extremely
inefficient to query each and every data source able to provide information on this
topic whenever someone downloads the page. Instead, one would prefer to have
the page built on the fly from some pre-computed tables containing aggregated
information pulled from the various data sources.

� The third reason has to do with (the lack of) transparency. Indeed, for efficiency
or privacy reasons, one may want to prefer to give access, through WAPI, to a
proxy server that will be responsible for querying all available data sources rather
than exposing all of them. Such proxy server should logically be implemented on
the same machine as the centralized database so that he could, possibly, avoid
any communication to the individual data sources if the DB already contains the
aggregated information he is looking for.

The current status of the centralized database, descriptions of queries that can be run
against it as well as a couple of usage scenarios are given in Section 3.4

FP7-ICT-216026-WOMBAT 13

2 Architectural Overview

2.3 Usage

2.3.1 Tactical vs. Strategic analysis

At this point, it is worth reminding the reader that the ultimate goal of the WOMBAT
project is to better understand the modus operandi of the attackers and their strategies.
We aim at studying trends that manifest themselves over long period of time in order
to warn stakeholders as early as possible of new or increasing threats. We are pursuing
a fundamentally different goal than the one classical response teams are after. Their
responsibility is to address in near real time newly observed events by, e.g, creating new
antivirus signatures to stop the spread of a new malware. This is what can be referred
to as a tactical approach to the fight against Internet crimes. WOMBAT deals with
the strategic battle instead. Both are, of course, complementary but involve different
times scales. Tactical battles are won, or lost, in terms of minutes or hours whereas
strategic approaches involve days, weeks or months. This is the reason why, so far, we
have avoided mentioning any notion of automated alert mechanism or “push” protocol
to convey information, preferring an infrastructure mostly relying on “pull” methods.
As we acquire more experience with the metadata extraction and knowledge mining, we
may have to revisit this design choice but, as of know, it appears to be a reasonable and
efficient choice for the framework we are working on.

2.3.2 WAPI

As explained before, WAPI can be used either for programmers to write scripts that
would process objects retrievable from several sources without having to worry about
the specificities of each data structure and querying method. It will also be used by the
maintainers of the centralized DB to update its content by querying other sources. Last
but not least, it will also be a usable interface to query the centralized database.

WAPI is a key element to facilitate the integration of new sources. When WAPI will
be stable and mature, we will make it a requirement to be WAPI compliant in order to
integrate a new data source into the infrastructure.

2.3.3 Database

The centralized database, as explained before, will be used for two distinct purposes.
On one hand, it will act as a proxy to hide, by choice or by necessity, the various data
sources that can be queried to answer a given question. On the other hand, it will serve
as a long-term repository for aggregated information that (i) are more efficiently stored

14 SEVENTH FRAMEWORK PROGRAMME

2.3 Usage

once than queried frequently to a number of sources or that (ii) are likely to disappear
from the data sources that produced them (e.g. DNSBL).

FP7-ICT-216026-WOMBAT 15

3 Components

3.1 WAPI

Many of the sources involved in WOMBAT already provide or plan to provide solutions
to allow data consumers to take advantage of their data sets (in case of data feeds) or
of the results of their analysis (in the case of analyzers). We can identify two main
disadvantages in the currently available solutions:

� Many of them are not easily scriptable. Many sources provide web-based interfaces
that, while easily consultable by the human operators, are not convenient for au-
tomated analysis. The ultimate goal of WOMBAT is that of building automated
analysis techniques to generate intelligence out of these datasets. The presence of
easily scriptable interfaces is thus of prime importance.

� The interfaces are very diverse in structure and methodology. For instance, Leurré.com
provides direct access to the underlying SQL database to trusted partners, while
DNSBL provides a DNS-based technique to query about the presence of a given
IP address in the blacklist. The analyst aiming at taking advantage of multiple
data sources to perform correlations among the different dataset is thus forced
to implement ad-hoc plugins and parsers for each data source. This process is
not necessarily a simple task, and requires the analyst to deeply understand, for
instance, the schema of the SQL database provided by the source.

We propose to define a common WOMBAT API (WAPI) to be shared among all
the participants in order to address the above issues and simplify the task of the data
consumer willing to take advantage of these datasets. The definition of this API is thus
meant both for internal use, to ease the data sharing among project participants, and
for the future external consumers of the output of the deliverables of the project.

Moreover, we intend to make publicly available the complete specification of the API
as well as examples of implementation. We hope in fact that, with the increase in
visibility of the project, other data sources will be willing to take advantage of our work.

16

3.1 WAPI

3.1.1 Requirements

In the preliminar design of the WOMBAT API, we have identified a number of desired
requirements and features.

� Data control. The WAPI architecture must allow each source to control the
nature of the shared information. It is likely that some sources will be willing to
share only a portion of the information stored in their datasets. Also, sources must
be able to dynamically pre-process the information provided to data consumers,
for instance applying anonymization algorithms.

� Access control. The confidentiality requirements of the various sources can lead
to the definition of different trust levels for the data consumers. Data consumers
belonging to different trust levels will be allowed to access information of different
nature. While the practical implementation of these trust levels is not considered
of prime importance in the short term, the WAPI architecture must be easily
extensible to implement more sophisticated types of access control.

� Common vocabulary. The information shared within the WAPI must be based
on a set of common definitions. We want to ensure that all the sources will share
a common vocabulary and common definitions for all the shared concepts, such as
IP addresses or malware hashes.

� Extensibility. Many sources in WOMBAT are still in an experimental phase and
they are likely to evolve in the next years. This evolution may consist, for instance,
in applying new analysis techniques to the dataset, enriching it with new types of
information. Therefore we do not want to bind the WAPI specification to a specific
set of primitives defined a priori for each type of source.

� Client flexibility. The technologies used for the practical implementation of the
WAPI must not bind the data consumer to the usage of any specific programming
language.

It is important to notice that the requirement of a common vocabulary conflicts with
that of extensibility. In fact, in order to achieve a common vocabulary we would need to
explicitly enumerate all the informations that can be provided by each source on each
security phenomenon, generating an ontology. Because of the extensibility requirement
and because of the complexity of a similar task, we do not want to follow this path. The
WAPI must be a practical instrument to ease the integration of the different sources
and the future analysis task within the project: its specification and its implementation
must be kept as simple as possible.

FP7-ICT-216026-WOMBAT 17

3 Components

S1 S2 S3

C

S1 S2 S3

P

C

client
API

Server
logic

Proxy node

Sources Sources

Data consumers Data consumers

A B

(a)

S1 S2 S3

C

S1 S2 S3

P

C

client
API

Server
logic

Proxy node

Sources Sources

Data consumers Data consumers

A B

(b)

Figure 3.1: WAPI architecture.

We have thus decided to define within the WAPI specicifation only a set of high-level
concepts shared by all the datasets. We do not instead specify in depth all the possible
actions or informations associated to each of these objects. These high-level objects can
be considered as a naming skeleton upon which every specific WAPI implementation will
build. The specific actions and attributes of these high level objects implemented by each
WAPI service can be dynamically defined and are not part of the WAPI specification. For
instance, VirusTotal WAPI, when queried, will offer a method to retrieve information on
the ability of AntiVirus software to recognize a certain malware sample. The Anubis [2]
WAPI, instead, may reply to the same query with various methods to retrieve behavioral
information on that sample. This will be possible taking advantage of a small set of
primitives, described more in depth in Section 3.1.4.

3.1.2 Architecture

The WAPI aims at providing data consumers a remote access to the information collected
by the sources. The WAPI is a remote API allowing consumers to retrieve remote infor-
mation from sources according to a given protocol. Figure 3.1(a) shows the envisaged

18 SEVENTH FRAMEWORK PROGRAMME

3.1 WAPI

architecture for the WAPI. Three components can be identified:

� Server logic. Every data provider must implement a server application converting
the protocol interaction into a set of queries to their dataset. For instance, in the
case of an SQL database, each protocol interaction will be converted to one or
more SQL requests generating the information required by the client. The logic
at server side is thus responsible for hiding the specificities of the underlying SQL
dataset from the data consumer.

� Client API. On the client side, a programming interface is needed to generate
the protocol interaction required to retrieve the information. The choices made in
the implementation of the server-side logic and the communication protocol must
allow the client implementation to be independent from any specific programming
language.

� Communication protocol. The communication protocol will be based on a
PULL communication pattern. The client will generate queries to the server fol-
lowing the primitives defined in Section 3.1.4 and the server will provide back to
the client the corresponding answers. We have chosen to implement the communi-
cation protocol using the SOAP protocol. The reasons for this choice are twofold.
Firstly, NASK already has experience in the usage of this protocol and is willing
to offer its expertise in the implementation phase. Secondly, the SOAP protocol
is very well supported by a high number of client libraries making it the perfect
choice to satisfy the client flexibility requirement.

A desired feature for the communication protocol is the ability to support proxied
setups such as that represented in Figure 3.1(b). Such a setup allows to offer to data
consumers external to the WOMBAT an “aggregated service” transparently offering to
the users the information resulting from the union of all the perspectives provided by
all the sources that will support the WAPI. For instance, we want to offer to the data
consumer a “super-source” P transparently providing all the information offered by S1,
S2, and S3 on a certain security phenomenon.

3.1.3 WAPI concepts

The specification of the WAPI protocol is based on three concepts: objects, attributes
and methods.

Among all the WOMBAT sources, we can identify a small set of high level concepts
that are represented under different perspectives in all the datasets. These high level

FP7-ICT-216026-WOMBAT 19

3 Components

concepts are what we call here WAPI objects. Every WAPI object can be associated to
a set of attributes and methods.

Attributes are information items that are provided by a certain source upon instanti-
ation of a WAPI object. For instance, the object modeling an attacker can be associated
to an attribute “IP address”.

Methods are instead additional queries associated to a given WAPI object to retrieve
additional information about it. While the attributes are computed and provided to
the WAPI client at every instantiation of a WAPI object, methods allow to retrieve
on demand more costly information. For instance, a geolocation() method can be
associated to an attacker object to retrieve information about the geographical location
of the corresponding IP.

The WAPI objects introduced here have been derived from the analysis of the input
data and information to the WOMBAT system proposed in Section 4.1.3 of deliverable
D2.3 : Requirements analysis. Figure 3.2 represents the relationships among the different
WAPI objects under the form of a UML class diagram. Some common attributes are
specified for every object. The definition of most of the attributes and of the methods is
left to the specific implementation of each WAPI source, since they heavily depend on
the characteristics of the dataset.

Attacker and victim

Every security event observed by a source is normally characterized by an attacker and
a victim. In the case of server-side attacks, an attacker corresponds to an Internet host
actively generating unsolicited traffic towards its victim. In the case of client-side attacks
such as those observed by the NASK honeyclients, the attacker is a server (e.g. a Web
server) trying to run malicious code on the honeyclient once contacted.

These WAPI objects are thus associated to a set of common characteristics, such as
an address (in most cases, an IP address), an optional TCP/UDP port, and a type that
identifies their role in the conversation (client or server).

Event

This WAPI object models an instance of a security event observed between an attacker
and a victim at a given point in time. An event is identified by the address of the
attacker, of the victim, and by a timestamp.

The notion of event is very generic, and strongly depends on the type of sensor that
collected the information. For this reason, the generic concept of event needs to be
further specified.

20 SEVENTH FRAMEWORK PROGRAMME

3.1 WAPI

Event

1 1

1..*

1..*

1..*

Address
Port
Type

Attacker
Address
Port
Type

Victim

Timestamp

Unsolicited
traffic

Timestamp
Alert ID
Description

Alert

Timestamp
Type

Exploit

Hash
Malware

Timestamp
Src address
Dst address

Spam

Figure 3.2: WAPI objects

FP7-ICT-216026-WOMBAT 21

3 Components

� Unsolicited traffic. Firewall logs or low-interaction honeypots generate events
corresponding to the detection of blocked traffic or unsolicited traffic in general.
This information often cannot be easily mapped to a specific root cause, and is
characterized by a timestamp and by additional information that is sensor depen-
dent.

� Alert. Intrusion Detection Systems or Early Warning Systems generate alerts
generally associated to a unique ID and to a description of the alert.

� Spam. Spamtraps and similar spam-monitoring techniques will generate an event
for every observed spam mail. Further parsing of the mail content can lead to the
identification and download of a malware sample.

� Exploit. More sophisticated honeypots (such as Argos and SGNET) and honey-
clients generate this kind of events whenever an exploit is detected. The ability
to understand a successful exploitation is normally coupled with the ability to
download malware samples, and provide more detailed information on the nature
and the type of exploit. Most of the available information heavily depends on the
technology of the sensor that triggered the event.

Malware

This WAPI object models malicious executables. While some data sources such as
honeypot deployments will be able to generate a link between a malware sample and
the observed exploitation event, in many other cases (e.g. analyzers such as VirusTotal)
this link will not be present. For analyzers such as VirusTotal and Anubis, the malware
object will actually be the root of a hierarchy of information that is specific to each
analyzer.

Custom objects

The list of WAPI objects provided until now is by far not exhaustive. We can identify in
every data source other specific concepts that may be wrapped into WAPI objects. For
instance, some datasets may take advantage of clustering techniques to define classes
of exploits. All these source-specific concepts are not modelled here. As we will see in
Section 3.1.4, the WAPI protocol primitives do not pose any restriction on the type of
object that can be instantiated for a given source and full freedom is left to each data
source to implement interfaces to more specific concepts.

22 SEVENTH FRAMEWORK PROGRAMME

3.1 WAPI

Special objects

We plan to define to additional objects with special capabilities: the dataset object and
the timeiterator object.

The dataset object is a special object providing aggregate information on the state of
the dataset. This object can be used to implement methods providing statistics on the
state of the observed events. For instance, a honeypot deployment such as Leurré.com
can implement a dataset method to compute statistics on the top 10 attacking sources
witnessed in a given timeframe.

The timeiterator object addresses instead the common need to have information on
the evolution in time of the observed events. Figure 3.2 provides a schematic structure
of different aspects of a specific attack instance. Timeiterators aim instead at iterating
over time among different instances of an object, when the characteristics of the dataset
make it possible.

3.1.4 Protocol primitives

The interaction among WAPI objects, attributes and methods is defined by a small set
of primitives that need to be implemented by any WAPI client and server. We describe
here their general structure and purpose.

list objects()

This primitive requests to the WAPI server the list of all the WAPI objects currently
implemented, together with the list of attributes required to instantiate each of them.
For instance, the output of a WAPI server able to provide information on all the standard
WAPI objects will be:

object type required attributes
Attacker address
Victim address
Event src address,dst address,timestamp
Malware hash

list methods(object type)

This primitive allows to query a WAPI source for the list of supported methods for an
object type. Once queried, the WAPI server replies with the list of methods currently
supported and with the list of arguments required for the execution of that method, if
any.

FP7-ICT-216026-WOMBAT 23

3 Components

generate object(object type,required attributes)

This primitive allows the generation of a WAPI object starting from a set of attributes
identifying it. The object type is the string representation of the object type as returned
by list objects. In order to produce an unambiguous instantiation, a value must be
assigned to each required attribute specified by the output of list objects.

If the object is known to the WAPI source, an identifier of the object will be returned,
as well as the list of attributes associated by the source to that object.

run method(object identifier,method identifier,arguments)

Given an object identifier and a method name, this primitive allows to request to the
WAPI server the execution of such method.

3.1.5 Conclusion

The characteristics of the WAPI architecture reflect the requirements listed in Section
3.1.1.

The server logic is in charge of carrying on the SOAP interaction and of converting the
objects instantiations and the method calls into queries for the internal dataset. Each
data source has complete freedom in the choice of the methods to be provided to the
data consumer, and can process the generated data with anonymization routines before
sending it back to the requestor.

The dynamic generation of the list of available methods can easily allow in the future
to implement access control based on trust levels. Once an authentication method is
provided to determine the trust level of the user, each trust level can be mapped to a
set of methods considered safe for that user class.

We have defined an infrastructure of common concepts, called WAPI objects, upon
which each data source can build methods to be offered to the data consumer. While
no dictionary is defined a priori for these methods and for their syntax, we consider the
task of manually uniforming such syntax a small cost when compared with the increased
flexibility of the approach.

The dynamic declaration of the methods for the WAPI objects, separated from the
specification of the protocol, allows to easily add new features without impacting the
implementation of the clients or of other sources implementing the WAPI.

Finally, the protocol API allows to easily generate application level proxies offering
to data consumers a set of methods resulting from the union of all the methods offered
by the proxied sources. If all the WOMBAT sources will implement such API, we will

24 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

be able to easily offer to external data consumers an aggregated vision over all the
information collected within the WOMBAT project.

3.2 Existing Sources

3.2.1 Hispasec

Hispasec

Hispasec provides feeds of different nature. On the one hand, VirusTotal will be able to
provide the system with a wide amount of malware samples that will help later to identify
different types of malicious software. Together with the binary samples themselves, we’ll
provide metadata associated to the file sent that will help enrich the information about
the sample. In the other hand, we’ll use internal services from Hispasec, associated
or not with VirusTotal, that will provide URLs associated to malware, fraud sites and
exploits, and also malware identificators that are referencing associated URLs. That
information is important to know vectors of the infections in one hand, and locations
for components and drop sites for information stealing malware for instance.

VirusTotal

VirusTotal is a public online service that lets users check files with a list of antivirus
engines. Initially made public in June 2004, it featured 11 antivirus engines. In this
moment it uses more than three times that number (36 to be exact). Although it was
initially thought as an easy service for regular users so they could check the possible
maliciousness from a given file (typically an attached file received by email that his own
resident antivirus dont recognize as malicious), with time it has been gaining respect in
the security community and today it is used daily also by entities like CERTs, universi-
ties, response teams from a list of security companies, researchers and even antimalware
companies.

VirusTotal Interfaces

Simplicity in the usage of the service is one of the key elements to make it a popular
tool. The overall way of working is quite simple. Users are given a couple of interfaces
to send files to the system: a minimalistic and tool-like web and an email address.

� Using the web interface is the preferred method by normal users: once the file is
sent, the user is informed about the queue status (if the service is very loaded)

FP7-ICT-216026-WOMBAT 25

3 Components

and about how long the scanning is estimated to start. Once the scanning begins,
first the user is shown with metadata of different nature related with the file:
part of that information is very basic (file size and type, different hashes, etc.)
while other is more useful for security professionals able to read such specialized
information (that is the case, for instance, of basic Portable Executable info). Once
this information is shown, the file is scanned with all antivirus engines available
at the moment, and results are shown in real time. One small tool were also
developed by Hispasec to make users able to send files to the service using a
Microsoft Windows context menu option. This is a very simple tool that basically
opens the browser and sends the file directly to the service, so the user does not have
to open the browser, select the file to scan, etc. We also know of the existence
of third-party tools like browser bars or plugins for malware research tools -
that makes use of both email and HTTP interfaces of VirusTotal, both for mass
automations and for deep scanning procedures of single files.

� The other way to get scan results with VirusTotal is the email interface: users can
send files to scan@virustotal.com, and using different email subjects, they can get
their scan result in plain text (scan) or XML (scan+xml). This second version is
especially useful for automations, and it is widely used by heavy users like CERTs
or security companies that send thousands of files each day, and uses that reports
for malware classification.

In both cases, this kind of professional users gives the feed received by VirusTotal a
better level of quality, not only because theyre more prone to be real malware, but also
for being fresh, something very useful for characterization of new threats.

Other factor that makes VirusTotal popular in different zones of the world is the avail-
ability of the web interface in several languages. That factor makes it more comfortable
for non-expert users, and provides the service with samples from very different locations
that are of interest in terms of malware sources (i.e. Russia, China, Brazil, etc.).

VirusTotal as malware feed source

The popularity of the service has made it process a quite respectable amount of files
per month. In the first month of public life of VirusTotal, the service received more
than 8.400 files detected as malicious by at least one of the engines used. A couple of
years later (September 2006), the number of samples detected as malicious raised up to
120.000 per month: thats more than 14 times more than the original amount. In June
of 2008, the number of samples of this kind raised up to more than 680.000: more than
5 times the number of samples seen in September 2006. The uniqueness ratio of files

26 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

received, using the MD5 hash as basis for that check and in the context of that month,
is usually between 70 and 80%.

When a sample is detected by at least one antivirus engine as malicious, it is sent to the
sample distribution subsystem. If this sample has been previously sent to any antivirus
laboratory we check repeated files with their md5 hash and a database of previously sent
items - it is discarded for distribution, as it would make no sense to send repeated files to
their labs. Once a file is in this stage, a list of rules is applied for checking which vendor
is interested in receiving it. The standard rule for sending that sample is to send the
sample to those vendors that dont detect it if at least any other vendor does it. Besides
that, samples detected with heuristic or generic signatures are also sent to that given
company. The first rule is of obvious usage, as antivirus labs are interested in files that
they dont detect but others do. The second rule is important also, as antivirus vendors
are interested in knowing how their heuristic engines are behaving with new in-the-wild
threats. This way it is easier for them to check if theyre having any problem with false
positives, and they can also have a deeper look to the sample to include it in a given
family instead of detecting it only with heuristic or generic means. Other vendors use
different rules, like adding extra rules for skipping files only detected by certain other
antivirus products (prone to false positives), or receiving only files detected by at least
N engines (once again, trying to avoid receiving false positives).

All this process is done in real time, as for antivirus labs studying this samples as
soon as possible is very important to be able to protect their customers properly. Even
discarding files that are wrongly identified as malware, with cases like false positives and
corrupt samples for instance, the freshness of and volume of the feed sent daily makes
VirusTotal a very interesting source of new malware for antivirus vendors, and thats also
one of the most interesting aspects of the binary feed sent to Wombat. One difference in
that sense compared to antivirus labs is that Wombat system will also process samples
undetected by any of the antivirus engines used, as our experience dealing with this
matter shows us that there are some very new threats are not detected even with more
than 30 different products.

Metadata associated with sample feed

Besides the binary itself provided by the distribution system, samples are sent with extra
information that is useful for a first level of classification of its nature. Basically, the
information generated is separated in three different categories:

� Basic metadata: original file name, file size, date of reception, packer identifi-
cation, source (anonimized in the case of samples sent by users), country code of

FP7-ICT-216026-WOMBAT 27

3 Components

origin, file type and common name. In the case of samples that has been extracted
from a given location, the URL will be included in the source field. Common name
is the most common core name given by the N antivirus that detected it. Basically
it uses fuzzy string matching with family names given in each antivirus. Together
with this basic properties of files, we include a list of different hashes: MD5 (128
bit), SHA1 (160 bit), SHA256 (256 bit) and SHA512 (512 bit). Rivers MD5 is
the de facto standard for file integrity check. The problem is that there has been
attacks against it (called collision attacks) so two binary different files can have
the same MD5 signature. SHA1 is also a quite common hashing algorithm used for
file integrity check, and until now no successful attacks has been achieved against
it. In order to be prepared for possible future problems with the SHA1 strength
against collision attacks, we are also including SHA256 and SHA512 hashes, that
uses far more bits for the signature hash generation, and therefore harder to com-
promise. Other kind of hash that will be included is SSDEEP, also called context
triggered piecewise hashing. This new hashing technique have one big advantage
over classical methods like MD or SHA: this fuzzy hashes can be compared to
check binary differences between files. The basic feature of identifying a file with
a more or less short signature is achieved, although this kind of signatures doesnt
have a fixed length. A single byte changed in a file makes MD and SHA hashing
generate completely different signatures, while a fuzzy hash would only change
slightly. That way, it is easy to identify two binary different files that has a certain
level of similarity. This kind of hashing is usually applied in computer forensics
procedures.

� Portable Executable basic information: in the case of the file being a Portable
Executable one, some of their characteristics are included, like Entry Point, TimeS-
tamp, Machine Type, DLL identification. Besides that fields, information about
the executable sections is included, with section name, virtual address, virtual size,
raw size, entropy level and md5 hash. Imports done by the file are also included,
with the name of the library used and the resource imported. In case of the file
exporting resources (like in a DLL), the names of the exported names are included.

� Antivirus reports: here we include the information given by the antivirus engines
when the file was scanned. Here we include the detection ratio, and for every
engine detecting the sample: its name, version, last update time, result reported,
annotations, and core name. Annotations can include, depending on the engine,
information about packing, behavior observed, or general data in the form of an
URL to the antivirus vendors database. Core name is the result of dissecting the

28 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

name given by the specific engine, getting only the specific family or denomination.
Typically, antivirus engines name malware in 3 parts: the first one (head) is usually
related to the platform or nature of the threat. The second one (core) is the name
of the family assigned to that malware. The third one (tail) is usually a postfix used
to include things like variant number or some special characteristics (like being of
mass distribution, etc). A typical example of this would be Win32/Bagle.B, with
Win32 as head, Bagle as core and B as tail. This information is used to generate
the common name in the basic metadata part.

� Tools report: some extra tools are used by VirusTotal that are not antivirus
engines, but that can generate information that can be useful for classification of
the file. One example of this is TrID, a tool that describes the possible nature of
the file with certainty ratios, identifying different types of executable files, office
documents, image files, etc. This kind of information can be used later for deciding
which subsystem must process it in order to extract the possible malicious behavior
(for instance, it would make no sense sending a JPG file to an subsystem dedicated
to analyzing PE files behavior).

List of URLs pointing to malicious content (URL -> Payload)

Other information that Hispasec will provide to Wombat will be a list of URLs related
to malicious content, like malware, phishing sites or exploits. In the malware case, as
described in the Basic Metadata section, the source of the file, in the case that were
extracted from an URL, will be included there. That is quite important information as
it links the malware itself to a source, that way the enrichment part of Wombat will have
extra information about patterns. This URLs are captured using different subsystems:

� VirusTotal scan URL feature: we are working to integrate in the short term a
new feature at the service that will let users check URLs besides than the usual way
only with binaries. Together with the normal analisys with 30+ antivirus of the
file pointed by that URL, the location will be checked with a list of site-checking
services that will provide information about if theyre labeled as containing phishing
sites or exploits.

� Spamtraps: Hispasec owns a network of spamtraps that we use for detecting,
among other things, phishing (fraud) attacks against certain companies. Some of
this spam messages also contains URLs that, from time to time, points to malware.
Nowadays is very typical for malware distribution to use this mixed style: instead
of worms that self-propagate as attachment in messages, many malware creators

FP7-ICT-216026-WOMBAT 29

3 Components

upload the file to certain locations and then proceed to do a spam campaign to
entice users to download and execute it using one excuse or another.Spamtraps:
Hispasec owns a network of spamtraps that we use for detecting, among other
things, phishing (fraud) attacks against certain companies. Some of this spam
messages also contains URLs that, from time to time, points to malware. Nowadays
is very typical for malware distribution to use this mixed style: instead of worms
that self-propagate as attachment in messages, many malware creators upload the
file to certain locations and then proceed to do a spam campaign to entice users
to download and execute it using one excuse or another.

� Public repositories: there are, open to public use, certain sites that contains
raw spam messages and URLs that are theoretically related to malware and other
fraudulent content. We process this information to extract anything related to
malware, phishing and/or exploits.

� Crawlers: We use our own crawling technology with URLs related to phishing
and malware, accessing that way to new URLs pointing to malware. It is basically
a proactive evolution of the pure reactive URL fetching from Spamtraps.

List of Malware using URLs (Malware -> URL)

Hispasec will also provide with the relation of malware files that are using specific URLs.
That is very typical in downloaders and modular malware that downloads different
components using one logic or another: dynamic configuration files and payloads, etc.
This list will include the identification of the file (typically hashes associated with the
file as described in the Basic Metadata section) and the list of URLs that are associated
with it. This kind of information is specially interesting, given the nature of many
fraud-oriented malware, as configuration files can be fetched, and stolen information
destinations can be identified.

Basically, we use several subsystems that extracts URLs from malware samples: some
of them are based on virtualization of environments, where URLs are collected as theyre
referenced through the network subsystem. We also have sandbox technology that let
us execute that malware samples and intercept that same network activity. This redun-
dance is important for handling cases of malware that is aware of virtual environments,
not running correctly on them. In both cases, we also apply different techniques to locate
strings in the executables that can be URLs accessed by it. For that goal, we use differ-
ent kind of unpacking techniques, something specially important given the big amount
of samples that uses this kind of technology for complicating this kind of automated
processing.

30 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

3.2.2 Leurré.com

Launched in 2003 by EURECOM, the Leurré.com project is based on a worldwide dis-
tributed system of honeypots running in more than 30 different countries. The main
objective of the project is to get a more realistic picture of certain classes of threats
happening on the Internet, by collecting unbiased quantitative data in a long-term per-
spective.

In the first phase of the project, the data collection infrastructure relied solely on low-
interaction sensors based on Honeyd [44] to collect unsolicited traffic on the Internet.
Recently, a second phase of the project was started with the deployment of medium-
interaction honeypots based on the ScriptGen [36] technology, in order to enrich the
network conversations with the attackers.

All the information collected by the sensors distributed in different locations of the
Internet is retrieved by a central entity on a daily basis. This information is parsed
and stored in a centralized database at different levels of aggregation. Moreover, the col-
lected traffic is enriched with different types of contextual information (e.g. geographical
localization, reverse DNS lookups, PE information on collected malware, ...). All the
generated contextual information is stored in the database, and is used to generate a
complete dataset on the evolution of Internet attack threats.

The participation to the Leurré.com project is open to any institution interested in
taking advantage of such a dataset. In order to participate, the interested institution is
required to install one of the honeypot sensors and receives in exchange access to the
whole dataset. Information about the identity of the partners and the observed attackers
is protected by a Non-Disclosure Agreement signed by each entity participating to the
project to minimize legal concerns.

Data collection: Leurré.com 1.0

EURECOM has started collecting attack traces on Internet threats by means of honeypot
responders in 2003. The first platform consisted of three high interaction honeypots built
on top of the VMware technology (the interested readers in the platform configuration are
invited to read [26] for more information). As shown in [26, 25], these first experiments
allowed to detect some locality in Internet attacks: activities seen in some networks were
not observed in others. To validate this assumption, it was decided to deploy multiple
honeypots in diverse locations. With diversity, we refer both to the geographical location
and to the sensor environment (education, government, private sectors, etc). However,
the VMware-based solution did not seem to be scalable. First, this solution had a
high cost in terms of security maintenance. Second, it required significant hardware

FP7-ICT-216026-WOMBAT 31

3 Components

resources. In fact, to avoid legal issues it is necessary to ensure that these systems
could not be compromised and could not be exploited by attackers as stepping stones to
attack other hosts. For those reasons, a low-interaction honeypot solution were preferred,
honeyd [44]. This solution allowed to deploy low-cost platforms, easy to maintain and
with low security risk, hosted by partners on a voluntary basis. The low-cost of the
solution allowed to build a distributed honeynet consisting now of more than 50 sensors
distributed all over the world, collecting data on network attacks and representing this
information under the form of a relational database accessible to all the partners.

Data collection: SGNET

The choice of using low interaction honeypots in the first version of the Leurré.com
deployment was primarily motivated by a tradeoff between the level of interaction, and
thus the richness of the collected data, and the cost of the sensors. High interaction
honeypots have resource requirements that are too high to allow their deployment on low
cost hardware offered by volunteering partners. Also, the deployment of high interaction
honeypots poses security problems that are not easily addressable without requiring high
maintenance cost.

This tradeoff led to the initial decision of using low-interaction techniques for the data
collection, but led also to the experimentation of alternate solutions better balancing
the two ends of this tradeoff. This led to the development of ScriptGen [36, 35].

ScriptGen is an automated technique that tries to learn the behavior of a given net-
work protocol when facing deterministic attack tools. ScriptGen aims at being protocol
agnostic: no a-priori assumption is made on the characteristics of the protocols. Its
characteristics are reconstructed by looking at the sample set and partially rebuild the
protocol semantics taking advantage of bioinformatics algorithms [43]. These algorithms,
conceived to detect similarities among different DNA sequences, are used in ScriptGen to
detect structural similarities in the protocol stream and identify protocol regions likely
to carry a different semantic value. ScriptGen takes advantage of these semantic ab-
stractions to build a FSM representation of the protocol behavior during the interaction
of a client with a server as shown in Figure 3.3 for an excerpt of the SMTP FSM. This
representation can be used to emulate the protocol behavior, and thanks to the semantic
abstraction it allows to handle future instances of similar activities.

The properties of the ScriptGen approach allow to perform a completely automated
incremental learning of the activities as shown in [35]. ScriptGen-based honeypots are
able to detect when a client request falls out of the current FSM knowledge (a 0-day
attack or, more exactly, a yet unseen attack) by simply detecting the absence of a
matching transition. In such case, the honeypot is unable to provide a valid answer to

32 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

250 OK

250 OK

250 OK

MAIL FROM: <alice@eurecom.fr>

MAIL FROM: <bob.eurecom.fr>
MAIL FROM: <carl@eurecom.fr>

250 OK

MAIL FROM: <*@eurecom.fr>

Figure 3.3: ScriptGen semantic abstraction

FP7-ICT-216026-WOMBAT 33

3 Components

Sensors Sample factories

Shellcode handlers

SG1

SG2

SG3

SF1 SF2 SF3

SH1 SH2

GW
Private

Network

Figure 3.4: SGNET architecture

the attacker. We showed in [35] how the honeypot can react to this situation relying
on a real host (an oracle) by acting as a proxy between the attacker and the real host.
This allows the honeypot to continue the conversation with the attacker, and to collect
a new sample of protocol interaction that can be used to refine the protocol knowledge.

ScriptGen is able to correctly learn and emulate the exploit phase for protocols as
complex as NetBIOS [35]. ScriptGen allows to build highly interactive honeypots at low
cost. The oracles needed to learn new activities can be hosted in a single virtualization
farm and contacted by the honeypots through a tunneling system, in a structure similar
to Spitzner’s honeyfarm concept. Differently from classical honeyfarms, access to the
real hosts is a rare event resulting from the occurrence of a new kind of attack. As a
consequence, systems based on the ScriptGen honeypots potentially have a high degree
of scalability.

The practical implementation of ScriptGen to a distributed honeypot deployment led
to the generation of an evolution of the data collection system used by Leurré.com,
called SGNET [34]. SGNET is a distributed honeypot framework that combines the
strengths of the ScriptGen learning with other techniques developed by other WOMBAT
participants to ultimately emulate the full attack trace of code injection attacks and
download samples of self-propagating malware. Currently implemented under the form
of an experimental prototype, SGNET will be extended and mature within the context
of this project.

SGNET data collection framework combines together a very diverse set of tools and

34 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

techniques:

� ScriptGen (EURECOM). ScriptGen learning techniques are used within SGNET
in order to increase the level of interaction of honeypot sensors without significantly
impacting their cost.

� Argos (VU Amsterdam). Whenever a new activity is observed, the SGNET
sensor relies on an Argos based high interaction host using the proxy algorithm
introduced in [35]. Taking advantage of Argos, the generated sample provides
information not only on the network interaction, but also on the presence of suc-
cessful code injections and on their behavior. More specifically, Argos provides
information on the position of the first byte of malicious code (shellcode) that the
attacker is forcing the victim to execute.

� Nepenthes. Nepenthes is used in SGNET to emulate the behavior of the shell-
code, and retrieve malware samples.

SGNET architecture is represented in Figure 3.4. Similarly to the first version of
the Leurré.com deployment, SGNET consists of a number of small sensors deployed
throughout the Internet. Taking advantage of the ScriptGen FSM knowledge, these
sensors achieve at low cost a significantly higher level of interaction with the clients.
While the “normal” interaction is completely handled through the FSM knowledge held
by the sensor, two scenarios require the communication of the sensor with a central farm
providing more sophisticated services.

1. Unknown activity. If the sensor encounters a network activity not falling into
the existing FSM knowledge, it is unable to handle the activity autonomously. As
previously explained, the sensor needs to act as a proxy towards a high interaction
machine, based on Argos, acting as an oracle. This high interaction machine, called
sample factory, is provided by the central farm.

2. Successful code injection attack. Once a successful code injection attack is
detected, the information provided by the Argos-based sample factories is used to
identify the shellcode pushed by the attacker to the victim’s memory. SGNET relies
on an external entity, the shellcode handler, based on Nepenthes, to understand
the behavior of this shellcode and emulate it.

The integration of these different tools in the SGNET architecture allows to collect in-
depth information on the different stages of a code injection attack. All the information
generated by all the sensors participating to the deployment is collected daily and stored
in a centralized database, described hereafter.

FP7-ICT-216026-WOMBAT 35

3 Components

Tiny SessionLarge Session

Source Geo InfoOS

Packet
Info

SG_Session

FSM Path

Malware
download

Malware
sample

Antivirus InfoBehavioral
 info

Alert sequence

Network Information

Source Characterization Activity Characterization

Malware Characterization

Figure 3.5: Leurré.com database structure

Collected data

The distributed sensors part of the two Leurré.com architectures collect a different
amount of information on the observed activities. All the information is centrally col-
lected in an SQL database, accessible to all the partners. As previously described, the
increased level of interaction of the SGNET sensors allows to collect detailed information
on the structure of code injection attacks that is unavailable to the first generation de-
ployments. Consequently, the database schema associated to SGNET is an extension of
that of the first generation deployment, adding new tables and concepts to those already
available in the first generation one.

Figure 3.5 provides an overview over the main concepts and the corresponding tables
in the Leurré.com schema, including those specific to SGNET data. The interested
reader can find in [37] a more exhaustive tractaction of the Leurré.com dataset. While
the diagram is not exhaustive, it provides a schematic view on the types of information
provided in the dataset. We can identify the following classes of information:

� Source characterization. In order to take into consideration the artifacts caused
by dynamic addressing, the activity of an attacking source is defined in Leurré.com
as all the activity generated by a given IP address separated by packet inter-arrival
times smaller than 25 hours. That is, if the same IP is observed in two timeframes

36 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

separated by more than 25 hours, it is associated to two separate attacking sources.

Additional tools are used to characterize each attacking source. More specifically,
an IP geolocation database [38] is used to determine the ISP and the country of
origin of each IP address. Also, passive OS fingerprinting techniques [48] provide
hints on the version of the Operating System used by the attacker.

� Network information. The database provides statistics on the network activity
generated by each source at different aggregation levels. The term large session is
used to refer to the whole network activity generated by a given source towards
a honeypot platform. The concept of large session is refined through the identi-
fication of multiple tiny sessions, grouping together the activity generated by the
source towards each of the IPs of the platform. In SGNET, the concept is further
refined by the SG sessions, corresponding to each TCP session or UDP request
and answer handled by the ScriptGen FSMs.

Each of these aggregation levels is associated to various network statistics and its
nature is characterized in different ways. For instance, a tiny session is associated
to a ports sequence, representing the ordered sequence of ports contacted by the
attacker during the interaction. In SGNET, each SG session is associated to the
identifier of the traversal of the FSM, that proved to be a very good indicator of
the type of activity.

� Activity characterization. In SGNET we have recently tried to collect more in-
formation on the nature of the observed activities by taking into consideration the
alerts generated by the Snort IDS for the packets associated to each FSM traversal.
While this is currently ongoing work, we believe that the increased level of inter-
action can be exploited to collect meaningful information on the characteristics of
the activity.

Moreover, the information provided by the interaction of the ScriptGen learning
with the Argos-based sample factory allows the identification of the SG sessions
that lead to successful code injections. SGNET is able to collect detailed infor-
mation on the characteristics of a successful code injection attack. The database
provides detailed information on the binary shellcode, and on the interpretation of
that shellcode according to the shellcode handler. This allows to classify the dif-
ferent download strategies used by the attackers to upload malware to the victims.
For instance, it is possible to distinguish a malware that is pushed to the victim
through a small downloader from malware that the victim is forced to download
taking advantage, for instance, of the tftp system utility.

FP7-ICT-216026-WOMBAT 37

3 Components

� Malware characterization. Every malware sample downloaded by SGNET is
an extremely valuable source of information on the ultimate goal of the attacking
source. For this reason, each malware sample is enriched by different types of
information resulting from the integration with other WOMBAT sources, namely
Anubis (TU Vienna) and VirusTotal (Hispasec). Each malware collected by in-
frastructure is automatically submitted to these services, and the results of the
analysis are stored in the SGNET database taking advantage of a simple plugin-
based framework.

Different submission policies are applied for the two services. In the case of Anubis,
each malware sample is submitted only once for analysis, and the corresponding
analysis result is stored in the database in aggregate form. In the case of Virus-
Total, the malware is submitted multiple times to observe the behavior of the
different AV vendors in recognizing the sample. Every sample is submitted at
least 30 days to VirusTotal; the submission policy then stops submission when the
last 7 obtained results do not differ.

Sharing data

A time consuming task in the management of the Leurré.com datasets consists in pro-
viding support to the users of the dataset. Historically, the access to the Leurré.com
dataset was provided to interested partners either through a web interface or through
direct SQL access via an SSH account. While the latter was adequate to the task of
building automated analysis scripts, a set of inconvenients were identified.

� The full Leurré.com SQL schema is rather complex. Also, it often rapidly evolves:
new analysis methods are generated and new data feeds are continuously added.
The impact on the external user of such complexity is noticeable, and often leads
to misunderstanding of the semantics of the various concepts or of the content of
the tables.

� Errors of a single user can have repercussions on the availability of the whole
system. For instance, an erroneous SQL query can lead to an excessive cost on the
system draining the DBMS resources.

For the above reasons, an alternate solution was investigated. This led to the genera-
tion of an API, called horasis, and based on python. The horasis API allows the inter-
ested data consumer to access most of the information stored in the database through a
set of object instantiations and method calls. No knowledge is required on the underly-
ing SQL schema: the library transparently converts all the python interaction into SQL

38 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

queries used to reply to the user. The horasis library provides a unified interface to both
the Leurré.com first generation dataset and to the additional information generated by
the experimental SGNET prototype.

The horasis library provides to the user three main concepts: DB objects, iterators
and predicates.

The horasis DB objects are python objects wrapping the main concepts defined in the
Leurré.com DB schema. Examples of these objects are, for instance, the Malware object,
the TinySession object, and so on and so forth. Each of these objects is instantiated
using an identifier, for instance the file MD5 hash for a Malware object or the internal
identifier for a TinySession object. Upon instantiation, the library queries the database
to retrieve information on the existance of the instance in the dataset, and retrieve a set
of informations that is easily retrievable from the dataset. For instance, the MALWARE
table in the Leurré.com schema contains the MD5 of each sample, its size in bytes
and other similar information. When verifying the existance of the MD5 in the table,
the library can retrieve all the content of the row without significantly impacting the
performance. All this information thus appears as an attribute of the object instance.
Each object also provides a set of methods that, once invoked, generate more expensive
SQL queries and eventually link to other DB objects. For instance, a malware object
provides a method to retrieve the list of all the InjectionAttack events that led to its
download.

The horasis iterators are used to iterate in time over a collection of DB objects. For
instance, the CodeInjectionIterator allows to iterate over all the code injection objects
detected by the deployment over a certain period of time.

Finally, the horasis library provides a set of predicates used to query the database.
Two different types of predicates are provided:

� Interrogative predicates. They are used to query the database about the avail-
able knowledge on a certain event. For instance, the predicate whois ip queries
the database about its knowledge on a certain IP address if any. These predi-
cates return an activity identifier, an opaque identifier used within the Leurré.com
database to identify a certain class of activities.

� Explicative predicates. They are used to retrieve additional information about
an activity identifier generated by the interrogative predicates. For instance, the
predicate activity srcnetblocks provides the list of CIDR network prefixes con-
taining at least an attacking source that performed a given activity class.

Figure 3.6 shows an example of the type of information that a data consumer can
retrieve from the Leurré.com SGNET dataset taking advantage of the horasis library.

FP7-ICT-216026-WOMBAT 39

3 Components

Behavior

AV info

PE Info

Behavioral info (Anubis)

AV info (VirusTotal)

Session

Malware

Source address, port
Destination address, port
Type (handled by SG/handled via proxying)
SG traversal

Hash
Size
Broken flag

Shellcode
Download characteristics (protocol, source IP, ...)
Optional shell emulation information

PE info (pefile library)

Code
injection

Figure 3.6: Horasis library

Taking advantage of an iterator, the data consumer can have access to all the code
injections observed by the infrastructure for a given timeframe. Each of these events
is associated to three main objects: the code injection itself, the SG session and the
malware object. Through this information, the user can retrieve detailed knowledge on
the various phases of a code injection attack.

Summarizing, the horasis library allows data consumers to easily take advantage
of most of the Leurré.com dataset without an in-depth knowledge of the underlying
SQL schema. The horasis API is currently used by FORTH for the integration of the
Leurré.com datasets in the WOMBAT database. The experience and some of the un-
derlying ideas have been integrated in the specification of the WOMBAT API.

3.2.3 Arakis

Arakis [42] is na Early Warning System designed and implemented by NASK and oper-
ated by CERT Polska. The system was first deployed in 2004, but development of new
functionality was continued until 2008. The system consists of over 50 sensors deployed
in many Polish institutions and a central server aggregating the data provided by sensors
and performing offline analyzes of collected data, resulting in more advanced alerts.

Unlike many other data sources in WOMBAT, Arakis is not a general purpose system
with data collection and analysis as the goal. The goal of the system is the protection
of CERT Polska constituency. For this reason some of the collected data are considered

40 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

sensitive and cannot be provided to WOMBAT.
Arakis uses several types of sensors. Data for WOMBAT come mostly from honeypots

and darknets, but other types of data are collected as well.
Data provided
The amount of data made available to WOMBAT depends on the source. Some infor-

mation, including destination IPs of captured flows and pcap dumps, is only available
from the CERT Polska sensor.

WOMBAT can access the Arakis database in three different ways: by observing Arakis
alerts, rankings and through searches. Arakis made public five kinds of alerts and four
kinds of rankings.

All alerts provide some basic information – the automatically generated message con-
taining most important information about the alert in text format, timestamp, short
title, alert type, etc. Additional information is provided if available. The alerts are as
follows:

� NCLUS – signifies that a new cluster of traffic signatures was created. This is an
effect of the automatic analysis, so it may mean both that a new form of behavior
is becoming frequent (possibly a new threat), or that a known attack is variable
enough that some incidents were not recognized as a part of an already existing
cluster, but created a new one. This is resolved manually: a new cluster has no
name, it is assigned after analysis of the cluster. Additionally a threat level is
assigned, qualifying the cluster as representative of malicious or benign traffic, or
as trash – meaningless, accidental similarity of several signatures, not indicative of
malicious or benign behavior.

The alert makes it possible to access all information associated with the cluster, in-
cluding the creation date, supersignature (aggregation of signatures in the cluster,
potentially useful as content of snort signatures, but only after manual verifica-
tion), ports and protocols associated with the cluster (especially meaningful if only
one pair is identified), as well as LCS signatures belonging to the cluster, including
the “core” (the central signature, most representative of the cluster), the manually
created descriptive labels for the signatures and flows with those signatures.

All LCS signatures used in clustering are the product of analysis called HLCS
(Horizontal Longest Common Subsequence) in which each flow is treated as a list
of sequences - packets, and flows are compared packet-by-packet. There is also
another analysis called VLCS (Vertical LCS), treating each flow as a single long
sequence and comparing entire flows, used e.g. in the NWORM analysis. For this
reason it is possible that a signature in the system is very similar to the core of an

FP7-ICT-216026-WOMBAT 41

3 Components

existing cluster, but is not included in it - this happens if it only appears in VLCS
analysis, but not in HLCS.

� NWORM – signifies that a new, unknown behavior was identified.This is a rather
complex analysis, making this alert rare but valuable. The alert is generated only
when during analysis of sensor events a signature (VLCS) with a single associated
port-protocol pair is found such that:

1. flows with that signature were identified as important events on several sen-
sors,

2. the signature is representative of those events (there is only one VLCS in
these events),

3. there were no matching snort rules for these events,
4. the VLCS has no label (not yet analyzed manually),
5. the VLCS is not identical to a HLCS already belonging to a named (manually

analyzed) cluster,
6. at least one of the reported events includes an HLCS which does not belong

to a named cluster.

This set of constraints should guarantee that the collected events are significant
and that there is no information in the database suggesting that the events are a
part of a known type of behavior.

The port-protocol-VLCS set identified by the analysis is included in the alert’s
message, but is also available directly, so all associated data, like flows associated
with the LCS, can be accessed. Verifying this information later is also useful, since
manual analysis by CERT Polska may provide more information, either by labeling
that LCS or naming associated clusters. The events used to generate the alert are
also provided, making it possible to obtain a full list of all LCS signatures and
flows included in these events.

� NSNORT – signifies that a new snort rule has been matched to observed traffic.
The analysis uses a TTL, so the rule may not actually be new, just not matched
for a long time. The flow matched by the rule is accessible, as well as the signature
details.

� NPORT – signifies that a new port-protocol pair has been observed in an event
identified by a sensor. The available information includes the port and protocol
numbers and the event, making it possible to find all flows associated with the
alert.

42 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

� SWEEP – signifies that a suspected portsweep attempt was identified. The alert
is generated when a port-protocol pair is found such that the flows using that
port-protocol pair detected during a specified time came from a small number of
unique source IPs but were addressed to many unique destination IPs. This is
probable if an obscure vulnerability in a rare program is being exploited. The port
and protocol numbers and all flows contributing to the alert can be accessed.

The Arakis system collects a lot of information, allowing it to produce meaningful
statistics about suspicious or malicious traffic in the monitored IP ranges. The statistics
are available to WOMBAT as the following TOP N rankings:

� Top rising destination ports (honeypot) – this statistic is periodically computed and
available directly in the database. The port-protocol pairs are scored depending
on sensor weights and sensor-generated scores measuring the activity.

� Top clusters – this statistic, computed on demand, shows the most active clusters,
ordered by the number of captured flows with signatures grouped in each cluster.
Since inclusion in a cluster usually correctly identifies the threat (or normal be-
havior) of flows with given signatures, this statistic can be viewed as a ranking of
most active threats, including benign traffic erroneusly targeted at honeypots.

� Top snort rules – this statistic, computed on demand, lists the snort rules that
have registered the most events in a given time range. Rule name, id, references
(URLs) and list of events (allowing access to sample flows) are provided.

� Top rising source and destination ports (darknet) – these statistics are precom-
puted only on a per sensor basis, but WOMBAT is provided with global rankings,
computed on demand from sensor rankings. Two variants of this ranking are avail-
able, with scores counting individual flows, or the number of unique source IPs.
Due to the nature of darknet sensors, no more details are available – this ranking
cannot be used as a starting point for browsing the Arakis database.

Additionally, the Arakis system provides search capability, making available infor-
mation about selected IPs or IP ranges in given time windows. This information may
include:

� Honeypot flows registered from that IP. Details such as source and destination
ports and addresses, timestamp, signatures, etc. are available. Pcap dumps are
collected as well and may in some cases be available to WOMBAT. However, some
information (pcap, destination IP) can only be provided for flows captured by the
CERT Polska sensor.

FP7-ICT-216026-WOMBAT 43

3 Components

� (future) Darknet flows registered from that IP. Currently the system cannot provide
actual flows with detailed information, but this kind of functionality is planned for
future extension of Arakis and – if implemented – will be added to the search
available to WOMBAT. The amount of data may range from a simple number of
flows registered to detailed flow data including pcap dumps.

� The search results can be enriched using the rest of the database. After flows are
found it is trivial to add information such as:

– LCS signatures with labels (if available), identifying the type of activity,
– clusters to which the signatures were assigned, giving a higher-level descrip-

tion of the IP’s behavior,
– events in which the flows were grouped, providing correlation between the

flows,
– history of alerts generated using the flows or events associated with the IP,
– snort rules matched to the flows (with references if desired)

Some of these details are available to WOMBAT by default, others can be made
accessible if desired.

Searches for LCS sequences may also be made available if useful.
Integration with WOMBAT
The Arakis database contains more data than the portion made available to WOM-

BAT. To keep the rest of the database confidential, a layer of isolation was necessary.
Direct SQL access to the database was therefore immediately ruled out. This layer of
isolation is useful for many reasons:

Efficiency – developers of Arakis have a much better understanding of the database
structure, its strengths and weaknesses, than can realistically be expected of anyone
else, regardless of the amount of documentation made available. The isolation layer
allows SQL query optimization by developers familiar with the database.

Security and confidentiality – by restricting database access to the isolation layer NASK
keeps control of the type of data provided to WOMBAT, as expected by the con-
stituency.

Anonymization and presentation – some of the data provided to WOMBAT are stored
in the database in a format which makes sense in the original system, but is not
very useful to WOMBAT users. Other data needs special processing to provide
adequate anonymization – for example, destination IPs require anonymization to

44 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

keep secret the honeynet IP ranges (except one sensor, where the IPs are public),
for the same reason cluster supersignatures require parsing to eliminate any IP
addresses explicitly listed in the signature. The isolation layer provides a good
place for this kind of operations.

(D)DoS protection – the Arakis system is an important countrywide system and while
an occasional failure would not be critical, it is necessary to protect it from ob-
vious threats. It is obviously most important to ensure that data from sensors
reach the central database. Since the data for WOMBAT must be taken from the
central database, direct access would make it possible to overload the database
with queries, crippling the system’s ability to collect data, process it and serve the
user interface. The isolation layer makes it possible to limit the amount of queries
coming from WOMBAT to an acceptable level. Note that this level is expected
to exceed the actual needs of the WOMBAT system, the protection is necessary
in case of WOMBAT malfunction (quite possible in the development phase), de-
liberate misuse of the WOMBAT system by malicious users or successful spoofing
attacks targeting Arakis directly.

The isolation layer was implemented as a SOAP server, providing WOMBAT with
API for Arakis access, called ArakisWAPI. Note that this design predates the design of
WAPI as previously mentioned in this document. ArakisWAPI is currently not WAPI-
compatible, although both have a lot in common. A new, WAPI-compatible version of
ArakisWAPI will be developed as soon as integration using the current version will be
sufficiently tested, so that the new version will suit the needs of the WOMBAT central
system as well as possible.

The Web Services are provided over SSL and require a client certificate to access
the system. This is basically the only requirement for the client – no implementation
details are enforced. The server is implemented in PHP and a sample client in the same
language was provided, but implementation in a different language is certainly possible.
The API was designed by NASK, but it is open to changes. The ArakisWAPI will be
modified to simplify integration with WOMBAT.

The ArakisWAPI provides a number of services, grouped as follows:

� Access services. These services are used as starting points, when the client has no
initial information. The group includes the getNewAlerts service, providing infor-
mation about alerts generated in a given time range and the group of getTopObject
services providing the rankings.

� Search services. These services can be used when querying Arakis for any infor-
mation about a given object. Currently this group only includes the getFlowIDs-

FP7-ICT-216026-WOMBAT 45

3 Components

ForSIPRange service which finds all flows in a given time range originating from a
given IP or IP range.

� Enrichment services. The other groups of services usually provide only basic in-
formation about objects. This information can be enriched using the services
in this group, browsing the database by following the links between different ob-
jects. This is currently the largest group of services, including: getFlowIDsForAlert
and getEventIDsForAlert, identifying the flows and events associated with a given
alert; getClusterName and getClusterDetails, providing information about clusters
of signatures; getLCSDetails, getFlowIDsForLCS, getFlowDetailsForLCS, provid-
ing information about LCS signatures of flows and flows with a given signature;
getFlowDetails, returning the details of a given flow; getEventDetails, providing
information about a given event, including the individual flows; and finally get-
SnortRulesForFlows, providing details about snort rules triggered by given flows.

The implementation of ArakisWAPI is basically finished, the only missing part is pcap
dump access – this functionality must be implemented in a different way than the rest
of the services. Pcap dumps for most flows in the database will not be available anyway,
due to privacy constraints, so the service is not of key importance and has been scheduled
as the last step in the implementation.

3.2.4 Anubis

Malware, which is a generic term to denote all kinds of unwanted software (e.g., viruses,
worms, or Trojan horses), poses a major security threat to computer users. According
to estimates, the financial loss caused by malware has been as high as 14.2 billion US
dollars in the year 2005. Unfortunately, the problem of malicious code is likely to grow
in the future as malware writing is quickly turning into a profitable business. Malware
authors can sell their creations to miscreants, who use the malicious code to compromise
large numbers of machines that can then be abused as platforms to launch denial-of-
service attacks or as spam relays. Another indication of the significance of the problem
is that even people without any special interest in computers are aware of worms such as
Nimda or Sasser. This is because security incidents affect millions of users and regularly
make the headlines of mainstream news sources.

The most important line of defense against malicious code are virus scanners. These
scanners typically rely on a database of descriptions, or signatures, that characterize
known malware instances. Whenever an unknown malware sample is found in the wild,
it is usually necessary to update the signature database accordingly so that the novel
malware piece can be detected by the scan engine. To this end, it is of paramount

46 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

importance to be able to quickly analyze an unknown malware sample and understand
its behavior and effect on the system. In addition, the knowledge about the functionality
of malware is important for removal. That is, to be able to cleanly remove a piece of
malware from an infected machine, it is usually not enough to delete the binary itself.
It is also necessary to remove the residues left behind by the malicious code (such as
unwanted registry entries, services, or processes) and undo changes made to legitimate
files. All these actions require a detailed understanding of the malicious code and its
behavior.

The traditional approach to analyze the behavior of an unknown program is to execute
the binary in a restricted environment and observe its actions. The restricted environ-
ment is often a debugger, used by a human analyst to step through the code in order to
understand its functionality. Unfortunately, anti-virus companies receive up to several
thousand new malware samples each day. Clearly, the analysis of these malware samples
cannot be performed completely manually. Hence, automated solutions are necessary.

One way to automate the analysis process is to execute the binary in a virtual ma-
chine or a simulated operating system environment. While the program is running, its
interaction with the operating system1 (e.g., the native system calls or Windows API
calls it invokes) can be recorded and later presented to an analyst. This approach reliefs
a human analyst from the tedious task of having to manually go through each single
malware sample that is received. Of course, it might still be the case that human analy-
sis is desirable after the automatic process. However, the initial results at least provides
details about the program’s actions that then help to guide the analyst’s search.

Current approaches for automatic analysis suffer from a number of shortcomings.
One problem is that malicious code is often equipped with detection routines that check
for the presence of a virtual machine or a simulated OS environment. When such an
environment is detected, the malware modifies its behavior and the analysis delivers
incorrect results. Malware also checks for software (and even hardware) breakpoints to
detect if the program is run in a debugger. This requires that the analysis environment is
invisible to the malicious code. Another problem is when the analysis environment does
not monitor the complete interaction with the system. When this happens, the malicious
code could evade analysis. This might be possible because there exist thousands of
Windows API calls, often with arguments that are composed of complex data structures.
Furthermore, the malicious code could also interact directly with the operating system
via native system calls. Thus, the analysis environment has to be comprehensive and
cover all aspects of the interaction of a program with its environment.

1Because the vast majority of malware is written for Microsoft Windows, the following discussion
considers only this operating system.

FP7-ICT-216026-WOMBAT 47

3 Components

Analysing Unknown Binaries (ANUBIS) that was developed in the Secure Systems
Lab of the Technical University of Vienna. It is a tool that automates the process of
analyzing malware to allow a human analyst to quickly get a basic understanding of
the actions of an unknown executable. Running a binary under ANUBIS results in the
generation of a report that contains information to give the human analyst a very good
impression about the purpose and the functionality of the analyzed sample. This report
includes detailed data about modifications made to the Windows registry and to the file
system, information about interactions with the Windows Service Manager and other
processes, as well as a complete log of all generated network traffic.
The following list summarizes the key features of ANUBIS:

� ANUBIS uses emulation to run the unknown binary together with a complete
operating system in software. Thus, the malware is never executed directly on the
processor. Unlike solutions that use virtual machines, debuggers, or API function
hooking, the presence of ANUBIS is more difficult to detect for malicious code.

� The analysis is comprehensive because our system monitors calls to native kernel
functions as well as calls to Windows API functions. It also provides support
for the analysis of complex function call arguments that contain pointers to other
objects.

� ANUBIS can perform function call injection. Function call injection allows us to
alter the execution of the program under analysis and run our code in its context.
This ability is required in certain cases to make the analysis more precise.

System Description

ANUBIS is a tool for analyzing Windows executables (more precisely, files conforming
to the portable executable (PE) file format). To this end, the program under analysis
is executed inside a PC emulation environment and relevant Windows API and native
system calls are logged. In the following sections, we describe in more detail the design
and implementation of key components of ANUBIS.

Emulation Environment. As mentioned previously, ANUBIS uses a PC emulator
to execute unknown programs. When designing our system, we had to choose between
different forms of emulation. In particular, we had to decide if the hardware of a complete
PC should be emulated so that an actual off-the-shelf operating system could be installed,
or if the processor should be emulated and our own implementation of (a subset of) the
operating system interface should be provided. Virus scanners typically emulate the
processor and provide a lightweight implementation of the operating system interface

48 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

(both native system calls and Windows API calls). This approach allows a very efficient
analysis process. Unfortunately, it is not trivial to make the operating system stub
behave exactly like the actual operating system, and the semantics between a real system
and the simulated one differ in many cases. These differences could be detected by
malware, or simply break the code. Thus, we decided to emulate an entire PC computer
system, running an off-the-shelf Windows XP on top. While the analysis is significantly
slower compared to a virus scanner, the accuracy of the emulation is excellent. Since
our focus is on the analysis of the behavior of the binary, this trade-off is acceptable.

ANUBIS uses Qemu, an open-source PC emulator written by Fabrice Bellard, as its
emulator component. Qemu is a fast PC emulator that properly handles self-modifying
code. To achieve high execution speed, Qemu employs an emulation technique called
dynamic translation. Dynamic translation works in terms of basic blocks, where a basic
block is a sequence of one or more instructions that ends with a jump instruction or
an instruction modifying the static CPU state in a way that cannot be deduced at
translation time. The idea is to first translate a basic block, then execute it, and finally
translate the next basic block (if a translation of this block is not already available). The
reason is that it is more efficient to translate several instructions at once rather than
only a single one.

Of course, Qemu could not be used in our system without modification. First, it had
to be transformed from a stand-alone executable into a Windows shared library (DLL),
whose exported functions can be used by ANUBIS. Second, Qemu’s translation process
was modified such that a callback routine into our analysis framework is invoked before
every basic block that is executed on the virtual processor. This allows us to tightly
monitor the process under analysis.

Before a dynamic analysis run is performed, the modified PC emulator boots from a
virtual hard disk, which has Windows XP (with Service Pack 2) installed. The lengthy
Windows boot-process is avoided by starting Qemu from a snapshot file, which represents
the state of the PC system after the operating system has started.

Analysis Process. The analysis process is started by executing the (malware-
)program in the emulated Windows environment and monitoring its actions. In par-
ticular, the analysis focuses on which operating system services are requested by the
binary (i.e., which system calls are invoked). Every action that involves communication
with the environment (e.g., accessing the file system, sending a packet over the network,
or launching another program) requires a Windows user mode process to make use of an
appropriate operating system service. There is no way for a process to directly interact
with a physical device, which also includes physical memory. The reason for this stems
from the design of modern operating systems, which prohibit direct hardware access so
that multiple processes can run concurrently without interfering with each other. Thus,

FP7-ICT-216026-WOMBAT 49

3 Components

it is reasonable to monitor the system services that a process requests in order to analyze
its behavior.

On Microsoft Windows platforms, monitoring system service requests is not entirely
straightforward. The reason is that the actual operating system call interface, called
native API interface, is mostly undocumented and not meant to be used directly by
applications. Instead, applications are supposed to call functions of the documented
Windows API. 2 The Windows API is a large collection of user mode library routines,
which in turn invoke native API functions when necessary. The idea is that the Win-
dows API adds a layer of indirection to shield applications from changes and subtle
complexities in the native API. In particular, the native API may change between differ-
ent Windows versions and even between different service pack releases. On a Windows
system, the native API is provided by the system file ntdll.dll. Parts of this interface
are documented by Microsoft in the Windows DDK and the Windows IFS kit. Moreover,
Gery Nebbett has written an unofficial documentation of the native API, which covers
about 90% of the functions.

Malware authors sometimes use the native API directly to avoid DLL dependencies
or to confuse virus scanner’s operating system simulations. For this reason, ANUBIS
monitors both the Windows API function calls of an application and also its native API
function calls. The task of monitoring which operating system services are invoked by
the program requires us to solve two problems:

1. We must be able to precisely track the execution of the malware process and
distinguish between instructions executed on behalf of the malware process and
those of other processes. This is essential because the virtual processor does not
only run the malware process, but also instructions of the Windows operating
system and of several Windows’ user mode processes. Therefore, a mechanism is
required that enables ANUBIS to determine for each processor instruction whether
or not this instruction belongs to the malware process.

2. We need an unobtrusive way for monitoring the accessed operating system services.
That is, we have to be able to determine that a native API call or a Windows API
call is invoked without modifying the malware code. That is, we cannot hook API
functions or set debug breakpoints.

We accomplish the precise tracking of the malware process with the help of the CR3
processor register. The CR3 register, which is also known as the page-directory base
register (PDBR), contains the physical address of the base of the page directory for

2The Windows API is documented by Microsoft in the Platform SDK.

50 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

the current process. The processor uses the page directory when it translates virtual
addresses to physical addresses. More precisely, to determine the location of the page
directory when performing memory accesses, the processor makes use of the CR3 register.

Windows assigns each process its own, unique page directory. This protects processes
(in particular, their virtual memory address space) from each other by ensuring that each
process has its own virtual memory space. The page directory address of the currently
running process has to be stored in the CR3 processor register. Consequently, Windows
loads the CR3 register on every context switch. Thus, we simply have to determine which
page directory address has been assigned to the malware process by Windows. Then,
we are able to efficiently determine whether or not the current instruction belongs to
the test subject under analysis by comparing the current value of the CR3 register to the
page directory address of this test subject.

Determining the physical address of the page directory of the test subject is the
responsibility of a probe component that is located inside the emulated Windows XP
environment. This probe serves as a sensor in the emulated environment and consists of
a kernel driver and a program that is run in user mode. The task of the kernel driver is to
locate the page directory address that belongs to the test subject and report its findings
back to the user mode process. The user mode component then informs ANUBIS. Note
that ANUBIS is outside the emulated environment, thus, communication between the
probe and ANUBIS has to take place over the virtual network that connects the emulated
environment with its host system. To this end, an RPC server is used that runs inside
the emulated PC.

The kernel driver is necessary because the page directory address is stored in a memory
region that is only accessible to the Windows NT kernel and its device drivers. More
precisely, the page directory address can be found as an attribute of that EPROCESS
structure that corresponds to the test subject. The EPROCESS structure is a Windows-
internal data object that plays a key role in the way Windows manages processes. For
each process in the system, a corresponding EPROCESS structure exists. Thus, the device
driver has to walk the list of system processes (which consists of EPROCESS members)
until it finds the one corresponding to the process of the test subject. At this point, the
appropriate page directory address can be read. Note that the page table address of the
test subject’s process has to be obtained before its first instruction is executed. To this
end, the process is created in a suspended state. Only after successfully identifying the
page directory address is the test subject allowed to run.

As mentioned previously, the second problem of our analysis is to monitor the invoca-
tion of operating system functions.3 This task can be solved by comparing the current

3We use the term operating system function as a generic term for both Windows API and native API

FP7-ICT-216026-WOMBAT 51

3 Components

value of the virtual processor’s instruction pointer (or program counter) register to the
start addresses of all operating system functions that are under surveillance. This com-
parison is performed in the callback routine of ANUBIS, which Qemu invokes at the start
of each translation block. Note that the start address of a function always corresponds
to the first instruction in a translation block. The reason is that a function call is a
control transfer instruction, and whenever a control transfer instruction is encountered,
Qemu starts a new translation block. At this point, ANUBIS is invoked and can check
the current value of the program counter.

A Windows application typically accesses operating system functions by dynamically
linking to system DLLs and calling their exported functions. Thus, we can extract the
addresses of interesting functions simply from library export tables. For example, an
application calls the Windows API function CreateFile, which is implemented in the
shared library Kernel32.dll when it wants to create a file. In this case, determining
the start address of CreateFile is easily possible by looking at corresponding entry in
Kernel32.dll’s export table (and then adding the base address of Kernel32.dll to it,
as DLLs may be loaded at a different base address).

Analysis Report. ANUBIS is a tool for analyzing malware. While, in principle, arbi-
trary functions can be monitored, we provide a number of callback routines that analyze
and log security-relevant actions. After a run on a test sample, the recorded information
is summarized in a concise report. This report contains the following information:

1. General Information - This section contains information about ANUBIS’s invoca-
tion, the command line arguments, and some general information about the test
subject (e.g., file size, exit code, time to perform analysis, . . .).

2. File Activity - This section covers the file activity of the test subject (i.e., which
files were created, modified, . . .).

3. Registry Activity - In this section, all modifications made to the Windows registry
and all registry values that have been read by the test subject are described.

4. Service Activity - This section documents all interaction between the test subject
and the Windows Service Manager. If the test subject starts or stops a Windows
service, for example, this information is listed here.

5. Process Activity - In this section, information about the creation or termination
of processes (and threads) as well as interprocess communication can be found.

functions.

52 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

6. Network Activity - This section provides a link to a log that contains all network
traffic sent or received by the test subject.

Collected Data. We have made ANUBIS available to the public through a public
web interface. Using this interface, Internet users can submit samples and can obtain
automatically generated analysis reports. We have collected thousands of binary sam-
ples since the introduction of the ANUBIS web site in 2007. In fact, the ANUBIS web
service has become quite popular and is used regularly by organizations such as Shad-
owserver.org and Team Cymru that work on malware detection and analysis. Also,
some CERTS such as the Aus-CERT (i.e., the Australian CERT) have made ANUBIS
an important part of their daily business workflow).

Some simple analysis is currently performed on the collected samples. We try to
identify samples that are malicious by applying simple rules such as the number of
outgoing connections, and protocols that are used. For example, if a sample connects to
an IRC server, this is usually a strong indication that we are dealing with a bot sample.

However, much more precise and effective techniques are still required to further anal-
yse and cluster the samples that have been collected.

3.2.5 Other Sources

Apart from the data sources described in the previous sections, there are some other
that have already been integrated to the WOMBAT infrastructure. These data sources
are public and do not belong to any organization within the consortium. Currently the
integrated ones are Sans.org, OffensiveComputing.net and NEMU but there are others
that can be also integrated in the future.

Sans.org

The ISC [30] was created in 2001 following the successful detection, analysis, and
widespread warning of the Li0n worm. Today, the ISC provides a free analysis and
warning service to thousands of Internet users and organizations, and is actively work-
ing with Internet Service Providers to fight back against the most malicious attackers.

Each day the Internet Storm Center gathers millions of intrusion detection log entries,
from sensors covering over 500,000 IP addresses in over 50 countries. It is rapidly
expanding in a quest to do a better job of finding new storms faster, identifying the
sites that are used for attacks, and providing authoritative data on the types of attacks
that are being mounted against computers in various industries and regions around the
globe. The Internet Storm Center is a free service to the Internet community. The
work is supported by the SANS Institute from tuition paid by students attending SANS

FP7-ICT-216026-WOMBAT 53

3 Components

security education programs. Volunteer incident handlers donate their valuable time to
analyze detects and anomalies, and post a daily diary of their analysis and thoughts on
the Storm Center web site.

The ISC relies on an all-volunteer effort to detect problems, analyze the threat, and
disseminate both technical as well as procedural information to the general public.
Thousands of sensors that work with most firewalls, intrusion detection systems, home
broadband devices, and nearly all operating systems are constantly collecting informa-
tion about unwanted traffic arriving from the Internet. These devices feed the DShield
database where human volunteers as well as machines pour through the data looking for
abnormal trends and behavior. The resulting analysis is posted to the ISC’s main web
page where it can be automatically retrieved by simple scripts or can be viewed in near
real time by any Internet user.

Likewise, the Internet Storm Center uses small software tools to send intrusion detec-
tion and firewall logs (after removing identifying information) to the DShield distributed
intrusion detection system. The ISC’s volunteer incident handlers monitor the constantly
changing database to provide early warnings to the community of major new security
threats. The ISC also provides feedback to participating analysis centers comparing their
attack profiles to those of other centers, and provides notices to ISPs of IP addresses
that are being used in widespread attacks. The ISC maintains a very popular daily
diary of incident handlers notes, and can generate custom global summary reports for
any Internet user.

The value of the Internet Storm Center is maximized when the sensors are collecting
data on attacks touching all corners of the Internet. Because of the vastness of cyberspace
it is impossible to instrument the entire Internet. Instead, samples are taken in as many
diverse places as possible to create an accurate representation of current Internet activity.
Many ISC users send their log data directly to the ISC databases without going through
an organizational or local analysis and coordination center. Several large organizations
have expressed interest in mirroring the ISC’s distributed intrusion detection system,
placing sensors at the edges and within their networks to provide early detection of
anomalous behavior.

Data provided. The Internet Storm Center provides the following reports:

� Top Ports. A report on the Top TCP ports attacked is published daily on the
Intenet Storm Center. This report includes each port and the number of reported
attacks that targeted it.

� Top Sources. Analogous to Top Ports, this report summarizes the Top daily
attack sources. That is the IP address of each attack source and the number of
reported attacks originated by it.

54 SEVENTH FRAMEWORK PROGRAMME

3.2 Existing Sources

� AS Reports. These reports are based on ASes (Autonomous Systems4). Tech-
nically, these reports are an aggregation of the IP addresses of the attack sources
based on the AS they belong to.

� Country Reports. Another aggregation based on the Country that an attack
originated.

� Survival Time. The survival time is calculated as the average time between
reports for an average target IP address. The average time between probes will
vary widely from network to network.

� Trends. The “Trend” is an attempt to put a number to the increase in activity
for a given port. This number is the comparison of the last 24 hours to the last
30 days. So if we see a rise in activity compared to the last 30 days, the trend is
high.

� Daily Data Volume. The number of reports per day.

Currently, we considered integrating the first two data types, that is the Top Ports
and Top Sources. In order to overcome the fact that these data are in the form of Top-X
daily lists, we used the WOMBAT database. That way we are able to keep history over
this reports.

Offensive Computing

Offensive Computing, LLC was formed by Valsmith and Danny Quist as a resource for
the computer security community. The primary emphasis here is on malware collections
and analysis for the purpose of improving people’s abilities to defend their networks.
There is a noticeable lack of public sources of malware and malware analysis available.
Those that were available were either for sale or limited to a small number of users. They
provide resources such as live copies of malicious software, MD5 checksums to search on
and analysis of the malware to the general public. Offensive Computing currently has
the largest publicly available malware collection on the Internet.

This way users can match malware they find on a system and they can quickly identify
it and know the best defense. By removing barriers to information we believe this will
make the Internet a safer place.

Samples are acquired in various ways:
4In the Internet, an Autonomous System (AS) is a connected collection of IP routing prefixes under

the control of one or more network operators that presents a common, clearly defined routing policy
to the Internet, cf. RFC 1930, Section 3.

FP7-ICT-216026-WOMBAT 55

3 Components

Figure 3.7: Internet Storm Center web-
page.

Figure 3.8: Offensive Computing web-
page.

� User contributed.

� Captured via mwcollectors and other honeypots.

� Found via searches.

� Discovered on compromised systems.

This site does NOT encourage or condone the spreading or propagation of viruses or
worms. Thats exactly what this site is designed to help defend against.

The intent of providing live copies of malware is so that the community can collaborate
on identifying and analyzing them in order to develop snort signatures and other defenses.

NEMU

NEMU is a network intrusion detection system developed by FORTH. The way this
system is able to detect an intrusion is by emulating a CPU on the network level,
interpreting all streams of data as they were executable code. Whenever the length of
the executed data of a stream exceeds a threshold an alert is generated and the stream
is saved.

We integrated some of these PCAP network traffic trace files in the WOMBAT
database mainly for debugging reasons.

56 SEVENTH FRAMEWORK PROGRAMME

3.3 New Sources

3.3 New Sources

3.3.1 BlueBat

Motivations for development

Since mobile computing is such a pervasive technology, end users as well as organizations
are extensively adopting mobile devices as a critical component of their IT environments.
For this reason, it is becoming more and more important to understand the potential
risks linked with all types of wireless devices and communication protocols. Bluetooth
in particular is widely believed to be the dominant standard in short-range, “personal
area” wireless communications, in particular for smartphones and PDA devices.

For this reason we are currently developing and field testing a viable Bluetooth hon-
eypot sensor codenamed BlueBat. We build on a previous experience of site assessment
and survey [24] to create usable honeypot sensors. We performed site surveys for sensor
placement, and tested various hardware and software combinations for achieving an op-
timal collection capability with inexpensive sensors. We analyzed the results of the field
tests, and demonstrated various design constraints.

State of the Art

Bluetooth is a short range radio communication protocol aimed to unify different wireless
data transmission technologies among mobile and static electronic devices: commonly,
PCs and cellular phones, but even Bluetooth enabled POS terminals, cars or house-
hold appliances are not uncommon. Basically it is an alternative to traditional infrared
communication standards such as IrDA, and is based on a short-wave radio technol-
ogy, which is reportedly able to transmit data across physical obstacles such as walls or
other objects [39]. Bluetooth devices use the 2.4 GHz frequency range (the same range
used by IEEE 802.11 standards for wireless Ethernet). An important improvement over
IrDA is that Bluetooth device do not need a careful alignment, nor in fact a clear line
of sight among devices, making connections easier over a slightly increased range w.r.t.
IrDA. This is one of the key reasons why Bluetooth can conceivably be used as a trans-
port for automatically spreading malware, or as a mean of attack, while this is not the
case with IrDA, since the requirement of aligning transmitting and receiving devices
avoids“casual” or unwanted interaction.

Bluetooth technology is characterized by a low power (from 1 to 100 mW) and a
communication speed of around 1 Mbps in its original version; towards the end of 2004,
a new (but backward compatible) implementation of the Bluetooth technology (version
2.0) was released, allowing for transfer speeds of up to 2 and 3 Mbps, as well as lower

FP7-ICT-216026-WOMBAT 57

3 Components

energy consumption: it was further updated to 2.1 in 2007. With regards to transmission
power (and thus effective range), Bluetooth devices can be grouped in classes:

� Class 1: 100 mW (20 dBm), 100 m range

� Class 2: 2.5 mW (4 dBm), 10 m range

� Class 3: 1 mW (0 dBm), 1 m range

Most common are class 2 and 3 devices: for instance notebooks and cellular phones are
normally Class 2 peripherals.

The Bluetooth standard incorporates very robust security mechanisms [27] that can
be used to create very secure architecture. A series of theoretical glitches and possi-
ble attacks were discovered in the core specifications of Bluetooth [31, 28]. The most
serious of these (described and implemented in [45]) can lead to a compromise of the
cryptographic algorithm protecting communication through sniffing, but this is less than
practical since the attacker needs to be present to the pairing of devices, and to be able
to sniff communications among them. This is more difficult than it would be for the
802.11 family protocols, since Bluetooth divides the 2.4 GHz spectrum range into 79
channels, through which devices hop with a pseudorandom hopping sequence which is
different from PAN to PAN. This is done both to avoid interferences among different
PANs and as a security enhancement. Common, off-the-shelf hardware is not able to
perform sniffing on all channels, and dedicated (and costly) hardware is required. How-
ever, recently some researchers touted the possibility of manually modifying common
hardware to perform sniffing [40].

Even if Bluetooth is theoretically quite robust, since late 2003, a number of security
issues in various specific implementations of the standard stack surfaced. Such attacks
are very well described on the website [20], and they allow different degrees of data access
(from the agenda to any file on a vulnerable device), communication interception, up
to and including running any AT command taking full control of the phone, something
that can be effectively used to transform a telephone into a spyphone [22]. To further
stress that implementation glitches lurk below the surface, on June 2008 there was a
very interesting security bulletin from Microsoft [13] which reported a vulnerability in
the Bluetooth stack in Windows that could allow remote code execution, with system
privileges.

These flaws demonstrate how, in many cases, it is possible to steal information from
mobile devices, controlling them from a distance, making calls, sending messages, or even
connecting to the Internet. This type of problems is traditionally handled, in computer
systems, with the release and application of patches. However, this approach does not

58 SEVENTH FRAMEWORK PROGRAMME

3.3 New Sources

extend to GSM handsets, since in most cases a firmware update can be performed only
at service points and shops, not by the customers themselves: therefore many vulnerable
phones and firmwares keep going around even long after a vulnerability is discovered.

Some of these attacks are implemented in “Bloover”, a proof-of-concept application
developed and released by Martin Herfurt, which runs on Symbian cellphones. This
counters the idea that an attacker would need a laptop in order to execute these at-
tacks, therefore making themselves visible. Some scripts and tools have also been ported
to the Nokia 770 Internet Tablet. Most of these attacks can also be performed at a
distance using long range antennas (similar to the ones we show in Section 3.3.1) and
modified Bluetooth dongles: a Bluetooth Class 2 device was reportedly able to perform
a BlueSnarf attack at an astounding distance of 1.08 miles.

Viruses for mobile devices propagating over Bluetooth reportedly exist. The propa-
gation of a Bluetooth virus can take place in several different ways. The most common,
until now, is through simple social engineering. The worm sends messages with copies
of himself to any device which comes into range through an OBEX push connection.
OBEX (OBject EXchange) is the protocol used for exchanging binary objects over Blue-
tooth. There are different profiles for this service, and “push” is the profile generally
used for phone to phone occasional transfers without authentication (e.g. for exchang-
ing electronic business cards). Much like in the case of e-mail worms and trojans, the
receiver, finding an “attractive” message on the cellular phone with the invitation to
download and install an unknown program, often has no clue that this can pose a dan-
ger. For instance, Cabir [4], one of the first cellular phone worms, and the first case of
malware able to replicate itself only through Bluetooth, used this technique. Using some
vulnerabilities [14], also seemingly innocent files such as images could be used as a viral
propagation vectors.

MMS messages are another potential medium of propagation, e.g. the worm Commwar-
rior [6] propagated also through MMS (in fact, it spread from 8 A.M. to midnight using
Bluetooth connections, and from midnight to 7 A.M. through MMS messages). Blue-
tooth attacks, such as the ones described above, could also be used: but since they are
quite platform-specific, they are a difficult and unreliable mean of propagation when
compared to the simplicity of social engineering. A final method of propagation, since
most smartphones can use e-mail and potentially offer TCP/IP services, could be fairly
similar to mail based or TCP based worms, such as the ones we usually witness on the
Internet. This type of method has not been really used until now.

Cabir and Commwarrior are both targeted at SymbianOS devices, but worms for other
platforms exist. In addition, if these two specimens are not very dangerous, other mal-
ware carries more dangerous payloads. For instance, CardBlock.A [5] locks the memory
card with a random password. PBStealer.A [17] is able to steal the phonebook of the

FP7-ICT-216026-WOMBAT 59

3 Components

device. An even worst scenario would certainly be a worm spreading over Bluetooth and
acting like MultiDropper.H [15], which contains both Symbian and Windows-targeted
malware, meant to infect also the user’s computer during synchronization.

BlueBat design

In order to create a Bluetooth honeypot, a distributed approach seems attractive. So,
at first we envisioned a distributed honeypot similar to the concept of Honey@home
for PCs [9]. A distributed honeypot working on mobile phones, however, must be even
easier to install and more reliable than one running on a computer, if regular phone
owners are expected to deploy it. Since it also needed to be cross-platform and work on
a variety of devices, developing a small J2ME application was the only possible option.
Such an application is in principle very simple, being just an OBEX push server that
accept any incoming files, obfuscating them through a simple XOR, in order to make
them inoperative and avoid any possible risk to the user.

However, the inner workings of the Bluetooth stack on most cellphones, and their
interaction with the J2ME framework, make this approach unpractical. Each service on
a Bluetooth device must be registered in a Service Discovery DB (SDDB) on a certain
UUID. This is roughly equivalent to the concept of “port” on a TCP/IP connection.
When another device wants to connect, it runs a SDP (Service Discovery Protocol)
scan and then communicates. There are some standard numbers, equivalent to the
“well-known ports”: for instance, OBEX push is commonly associated to UUID 1105.
Therefore, our software must be registered in the SDDB under that same UUID. But
the phone manufacturer OBEX service is already registered with this UUID, and it has
priority: if a request reaches the device, it is the manufacturer server which answers it.

Obviously, registering the software on another UUID works, but it is not an option for
a honeypot. There is no documented way to “unregister” a service of the manufacturer
from J2ME, as can be seen in the JSR-82 specifications [11]. It is only possible to
register, unregister and modify an entry from the same application which created it. A
dirty hack on the SDDB or the stack is also out of discussion, as it wouldn’t be portable
and quite unreliable. Shutting down the service is also not portable and not always
cleanly feasible.

The only way to pursue this distributed approach would be to create a software for
an open platform, such as OpenMoko [16] or Android [1]. However, this would not solve
the problem of diffusion, as these platforms are not, as of now, widespread.

We resorted to a more traditional design, creating an ad hoc device based on the
GNU/Linux OS to collect the samples. We made use of the official Bluetooth stack
implementation named BlueZ [3]. Specific utilities allow to perform device configuration,

60 SEVENTH FRAMEWORK PROGRAMME

3.3 New Sources

Figure 3.9: All the material used during the experiments.

scanning and information gathering. We created a python software, using the pybluez
[18] package, to glue such utilities together, along with the gpsd [8] GPS daemon, and
Colin Mulliner’s secure OBEX server [19]. We used the latter because of his security
option (chroot, privilege separation), and of the possibility to control its behavior via a
python script. Basically, BlueBat.Honeypot opens an OBEX server modified to accept
any incoming file transfer. In parallel, we perform a continuous scanning for devices,
and we fingerprint the ones we find, using pybluez. We also use gpsd to log the position
data for each activity, to support mobility. The script gathers the data and pushes it in
a MySQL Database, correlating the results.

The hardware design is extremely complex, and a number of tradeoffs and choices
were made (and are discussed in [33]). We bought and tested a wide array of devices,
in different combinations and solutions. The complete set of devices tested is shown in
Figure 3.9.

We chose the Asus EEE PC as being an optimal base platform: this device has
a limited cost (250 e), very good autonomy (4–5 hours of honeypot operations when
screen is disabled), as it uses a SSD instead of a classical hard disk, and is quite resistant
to vibrations and movement. A common laptop would be similar, but with more limited
autonomy and more sensitive to dust or vibrations as it uses a classical hard disk. Other

FP7-ICT-216026-WOMBAT 61

3 Components

(a) Omnidirectional antenna (b) Parabolic antenna (c) Patch antenna

Figure 3.10: Specification diagrams of the different types of antennas used.

embedded devices (e.g. Soekris) were tested, but their limitations do not match the cost
savings.

We tested several different types of antennas, both directional and omnidirectional:

� 12.5 dBi directional patch antenna

� 19 and 20.5 dBi directional parabolic antenna

� 3 dBi omnidirectional antenna

� 9 dBi omnidirectional antenna

Directional antennas offer obvious range advantages but only in a single direction.
They are thus interesting for monitoring long, narrow, non-crowded zones, for instance
monitoring a street from an apartment, or to be placed in an elevated position. Parabolic
antennas (whose specifications are drawn in Figure 3.10(b)) are much more powerful than
the patch one (specifications drawn in Figure 3.10(c)), but they are not easy to conceal
whereas patch antennas are smaller and are easy to conceal in a bag. Omnidirectional
antennas are discrete and easy to conceal in a bag as well. They are best to cover a large
place, in particular if crowded and/or concealing them. Their specification is reported
as Figure 3.10(a). All the specifications in Figure 3.10 are drawn from the hardware
vendor’s website [10].

62 SEVENTH FRAMEWORK PROGRAMME

3.3 New Sources

(a) Midrange distance honeypot,
based on patch antennas, easy to
conceal.

(b) Long range honeypot, with 2
parabolic and 1 patch antennas.

(c) Concealed honeypot, based on
two Aircable dongles and two
9 dBi omnidirectional antennas,
hidden in a backpack.

Figure 3.11: Photos of three different honeypot sensors.

Range Antenna Configuration Dongle Max Range Cost Conceal. Mobile Remarks
Long 2 parabolic + 1 patch Normal 1.5 Km 620 e No Fixed Long distance, wide angle (Duomo square)
Long 2 parabolic Aircable 1.5 Km 490 e No Fixed Long distance, wide angle (Duomo square)
Long 2 patch Normal 600m 520 e Yes Yes Mobile, can cover Duomo square
Long 1 parabolic Normal 1.5 Km 400 e No Fixed Long distance, narrow angle
Long 1 patch Normal 600m 400 e No Yes Long distance, narrow angle
Medium 2 omnidirectional Aircable 120–200m 410 e Yes Best For concealed monitoring
Short just dongles Normal 40–60m 310 e Yes Yes Low cost reference

Table 3.1: Comparison of the different hardware honeypot solutions.

Normal class 1 dongles can be used for almost everything, but if an external antenna
is needed, they must be modified (see [20] or [23]). Alternatively, an Aircable dongle
can be used, as it has excellent coverage, works out of the box, and has a connector
for external antennas (it is, of course, a bit more expensive). Most of time, we used 2
classical class 1 dongles and one Aircable dongle.

We tested different honeypot configuration, aimed for different uses :

Long range configurations aim to cover the longest possible distance. We use a powerful,
directional antenna for receiving malware transfers, and different combinations of
smaller ones for scanning (for a reason which will be explained in the following
Section 3.3.1). The most powerful is shown in Figure 3.11(b).

FP7-ICT-216026-WOMBAT 63

3 Components

Midrange configurations use just patch or omnidirectional antennas. Effective in small
and not very crowded zones. Shown fitting in a compact box in Figure 3.11(a).

Short range configurations, for reference, create a honeypot based on simple class 1
dongles.

The comparative results of our tests are shown in Table 3.1. Maximum range is evaluated
in open space, while effective range in crowded areas is difficult to define due to the effects
that we describe in the following Section 3.3.1. Honeypots are defined as concealed if
they can fit as “devices in a bag” that can be brought in public places (something akin to
our experiment in [24]). An example of an honeypot with two Aircable dongles equipped
with 9 dBi omnidirectional antennas is shown in Figure 3.11(c).

Preliminary Field Test Results

First of all, we tested the antennas for visibility of devices. We made various experiments
in open spaces and in crowded spaces, with different types of devices (computer dongles
and two different phones, Nokia e65 and 6680). We observed that:

� With two class 2 phones, in an open space, the range is approximately 20m

� With a Class 1 dongle (without an antenna) and a phone, in an open space, the
range is approximately 57m

� With a Linksys dongle with external antenna and a phone, in an open space, we
reached 90m

� With an Aircable dongle in an open space, we reached 110m (with a 3dBi omnidi-
rectional antenna), 175m (9 dBi omnidirectional antenna), 400m (12.5 dBi patch
antenna), 1.48Km (20.5 dbi parabolic antenna).

We were not able to replicate the long distance Bluesnarf experience which reportedly
reached 1.78Km [20], even if our material was equal or better than the one used in that
occasion.

After testing the software successfully with manual transmission of files from various
devices, we field-tested the various combination of devices. A first test was made by
placing for several days a long range honeypot on a street. We also tested, for several
hours each, various locations in our own university, in the underground and the Duomo
square, using appropriately concealed and unobtrusive hardware. During all these tests,
no files were transmitted to the honeypots (except the test ones). We are currently

64 SEVENTH FRAMEWORK PROGRAMME

3.3 New Sources

discussing a semi-permanent placement of some of the honeypots in several high-affluence
positions in Milan.

Field tests revealed some unexpected issues: correlating scanning data and data ob-
tained by the honeypot is a good idea in theory but difficult to realize in practice, as
device scanning is very slow, consuming up to 5 minutes for a single pass of scanning
using only a standard Class 1 dongle. Using an Aircable dongle with a 9 dBi omni-
directional antenna such a scan may take up to 15 minutes, trying to lock on almost
out of range devices. During this timeouts, the scan process doesn’t see other devices
which may have entered and exited the study zone. This makes scanning substantially
useless in crowded zones when a powerful antenna is in use. So we resorted to use the
most powerful antennas just for running the OBEX server, and less powerful ones for
additional scanning and tracking.

Another unexpected result was that, actually, the human body (even the body of the
device owner can be enough) is able to shield Bluetooth signals. This, in crowded areas,
leads to a very difficult time for the scanner trying to enumerate devices, let alone for
trying to receive a file. Therefore, a dense crowd will limit the effectiveness of long
range solutions. Placement of the sensors turns out also to be of paramount importance.
Density of devices varies wildly, and population movement is also important: while
any touristic place such as the Duomo, train stations or airports have a crowd of people
passing by, some places such as metro stations have the additional advantage that people
move around slowly, or do not move at all: this also limits the issues with the “human
shield” effect. Besides metro stations, entry/exit of attractions or exhibits are other
good places.

3.3.2 VU’s new sensors

Shelia

Shelia is a Windows-based intrusion detection system for the client side. The current
version of Shelia is available from http://www.cs.vu.nl/~herbertb/misc/shelia. It
consists of two main parts: a client emulator and an intrusion detection engine. The
client emulator emulates the human user. It will read the email in a mail folder, follow
the links in emails to visit potentially malicious websites, open attachments, etc. The
intrusion detection engine will then determine whether the website, or the attachment
is malicious.

Shelia’s client emulator hooks into the API of Outlook Express, a standard mail client
provided with Windows. It uses Outlook Express to move between messages, find the
URLs and attachments, as well as their associated applications.

FP7-ICT-216026-WOMBAT 65

3 Components

Use of Shelia is intended to be as intuitive as possible. For instance, in a command
line version it is sufficient to specify which mailfolder should be scanned as follows:

shelia_client -sf "My Spam Inbox" [optional other parameters]

This means that shelia will read every email in this folder. If the email contains a
URL, shelia will fire up the default browser and vistit the website. If the file contains
an attachment, shelia will open it with the appropriate application. The optional other
parameters allow users to specify things like time-outs and containment strategy.

The time-out determines how long Shelia will wait until the applications are killed. For
instance, a time-out of one minute means that if Shelia finds a URL in an email, it will
give the browser exactly one minute to get infected. After that, it will kill the browser
and all potential helper applications that it has started. In other words, time-outs may
help to deal with infections that do not occur immediately.

The containment strategy determines what should happen after an attack is detected.
Should the attack be allowed to proceed or should it be contained? Containment means
that when an exploit manages to take control of a client application (e.g., the browser or
word processor), we try to contain what the payload that is then executed is allowed to
do. A particularly powerful example of containment is that Shelia may allow the attack
payload to download an executable (very typical behaviour for a remote attack), while
preventing the execution of the malware. Indeed, it will collect the malware sample and
store it in a log folder.

In the detection engine, Shelia is slightly more clever than many other client-side
honeypots in that it tries to make sure that some suspect action (such as creating a file,
or changing the registry) really is an attack, rather than a false positive.

Shelia monitors the processes and generates alerts when the process attempts to ex-
ecute an ’dangerous’ operation (i.e., execute a call to change the registry, create files,
or attempt specific network operations) from a memory area that is not supposed to be
executable code. As mentioned earlied, Shelia may even allow the attack to run until it
downloads the malware, which it then tries to capture and store in a specific directory
(not unlike the download of malware offered by projects like Nepenthes).

Multi-tier intrusion detection

There are many ways to detect and analyse intrusion. Some are heavy-weight but
accurate, others fast but less accurate. Ideally, you would like to use different methods
simultaneously. The problem with very accurate intrusion detection methods (such
as taint and data flow analysis) is that they are heavy-weight slowing down processes

66 SEVENTH FRAMEWORK PROGRAMME

3.3 New Sources

tremendously. But certainly applying all methods at the same time incurs unacceptable
slowdowns.

Recently, we have developed a different approaches toward multi-level intrusion detec-
tion that tries to decouple the actual intrusion detection from the normal execution of
the process. We are currently working towards harnessing these approaches in a usable
sensors.

The approach works at the level of the VM. In summary, we record the execution of
unmodified OSs runing on Qemu (in a first tier) in such a way that we are able to replay
the execution exactly on another node/core. Just like in the ReVirt project we capture
the sources of non-determinism and results of (certain) syscalls. Besides recording, the
first tier performs no intrusion detection whatsoever and can therefore be fairly fast. In
the 2nd tier, we can apply whatever intrusion detection method we fancy. In our case,
we have experimented with different versions of Argos. Execution in the 2nd tier, while
instrumented, tends to be faster than the first tier, because we do not need to perform
many of the syscalls (and we certainly do not need to perform any network activity, as
this was already done by the first tier). This allows us to do fairly expensive checking
and still keep close to the original execution of the first tier. Since the execution trace
is in a file, different checkers can look at the same execution in parallel. In fact the
model trivially extends to more tier (for instance, where argos detects the intrusion and
prospector determines exactly which network bytes where involved).

The paranoid Android

Related to the decoupling approach described in the previous section, we have turned our
attention to mobile phones. Modern phones, like Apple’s iPhone or Google’s Android,
are like general purpose computers in that they run increasing numbers of increasingly
complex applications. There is no doubt that with the added complexity, the vulnera-
bility to remoted attacks is also on the rise.

Unfortunately, smart phones are unlike general purpose computers in several other
ways. For instance, they work on batteries and battery time is one of the most crucial
factors in the phone’s usability. Adding heavy-weight instrumentation to phones to
detect reliably the occurrence of Internet attacks is simply not an option since the battery
constraints dictate that every cycle is precious and heavy-weight intrusion detection
method would severely limit the battery time.

Obviously one may take a less advanced intrusion detection methods (such as in-
network anomaly detection) that is capable of finding some attacks. While OK for
battery time, the lack of accuracy is not very satisfying.

We are currently inverstigating an alternative model, whereby the operational func-

FP7-ICT-216026-WOMBAT 67

3 Components

tionality of the phone and the detection mechanisms are explicitly decoupled. Phrased
differently, we do not attempt to perform any intrusion detection on the phone itself,
but record enough of the execution state to allow replaying on a wired replica. We only
apply heavy-weight instrumentation on the grid-powered replica.

For this project we have chosen to use Android phones, because of their open source
nature, and the availability and support of the development environment. While real An-
droid hardware has recently appeared, the work is still in the design phase. Nevertheless,
if the project is successful, it means that we will be able to apply heavy-weight secu-
rity instrumentation that would otherwise be wholly beyond the capabilities of modern
phones.

3.3.3 NASK’s HoneySpider Network (HSN) sensor

As part of NASK’s contribution to WOMBAT, a new kind of sensor will be introduced
as a feed to the WOMBAT database. The sensor is a type of honeyclient, and is being
developed under a joint venture called the HoneySpider Network [32] project, together
with GOVCERT.NL and SURFnet. The goal is to develop a complete client honey-
pot (or honeyclient) system - the HoneySpider Network (or HSN for short) based on
existing state-of- the-art client honeypot solutions and a novel crawler application spe-
cially tailored for the bulk processing of URLs. The system focuses primarily on attacks
against, or involving the use of, Web browsers. These potentially include the detection
of drive-by downloads, malicious binaries and phishing attempts. Initially, the main area
of exploration is drive-by downloads. Apart from identifying browser exploits (including
0day attacks), the system is expected to automatically obtain and analyze the attack-
ing malware. Under WOMBAT, HoneySpider will be equipped with an API allowing
the WOMBAT infrastructure to perform queries in a manner similar to the way the
WOMBAT infrastructure can now query ARAKIS.

The introduction of a honeyclient-based sensor will allow the WOMBAT consortium
access to information about malicious Web pages and malware that is spread through
client side vulnerabilities. This is significant, as the existing WOMBAT sensors are
based on traditional server side honeypots. They can therefore collect malware that
spreads through vulnerabilities on the server side. It is often perceived however, that
the current trend in attacks has shifted to the client side, rendering blind server side
honeypot solutions. The reasons for this shift are seen as two-fold:

1. operating systems and network access (through firewalls for instance) have become
better secured,

68 SEVENTH FRAMEWORK PROGRAMME

3.3 New Sources

2. attacks have become more selective, targeting specific groups to make them more
difficult to detect and to deploy efficient countermeasures.

Passing URLs in mail messages allows many security checks to be bypassed, while
at the same time exploiting unpatched Web browsers and their plugins (or other client
applications) on user desktops when users click on those URLs.

Low interaction and high interaction honeyclients

The HoneySpider Network leverages the benefits of both low interaction and high inter-
action solutions by utilizing both types of technologies and integrating them together
through a management framework. Low interaction client honeypot solutions are faster,
easier to maintain than high interaction solutions, but at the same time are usually
unable to obtain malware that is being served by malicious web pages. The detection
scope of both solutions is different as well:

� Low interaction client honeypots are able to detect suspect web sites in a generic
manner (for instance, they can look for JavaScript code obfuscation, which is often
used by attackers to hide attack vectors), but will have difficulties detecting a new
exploit,

� High interaction client honeypots are more suited to the detection of new types
of exploits thanks to the fact that they utilize real operation systems and config-
urations, but will not detect an attack against an application that they do not
run.

Drive-by download detection

HSN focuses on the drive-by download problem. A drive-by download is the process
whereby a user’s operating system is compromised and malware is automatically in-
stalled with no user interaction other than the fact that the user pointed a browser to a
URL. In a drive-by download (as well as in other, less sophisticated web based attacks)
JavaScripts, VBScripts and iframes play an important role. Exploit code is not normally
hosted directly on a malicious site visited by a user, but is served through a series of
redirects from an exploit server. Scripting languages such as JavaScript are used to hide
(obfuscate) code that is used for these redirects and then launch exploits that download
and install malware.

Emulating browser behavior to handle the drive-by download process is a difficult task
for low interaction client honeypots. The HSN crawler (based on heritrix [29] integrates

FP7-ICT-216026-WOMBAT 69

3 Components

Rhino [41] and a DOM implementation to handle JavaScript and various heuristics to
determine whether the scripts that are being executed are suspicious or malicious in
nature. These heuristics include machine learning techniques, that are utilized in a
manner similar to the way spam detection is performed. The main detection mechanism
is based around the Na?ve Bayes classifier, implemented through Weka [47]. A large
set of script samples are classified manually and labeled either benign, malicious or
suspicious. N-grams are generated over each script sample, with the top most frequent
n-grams (the exact number is configurable), selected as representative of a sample. These
manually selected scripts and their n-gram representation are used for training the Näıve
Bayes classifier. When the HSN crawler discovers JavaScript in a URL it is pointed to,
it automatically computes the n-gram vector representation of the script and applies the
classifier to determine its benign, suspicious, or malicious nature. At the same time it
attempts to execute the script - any scripts obtained as a result of execution are also
sent through the classifier.

The high-interaction component of HSN is Capture-HPC [46] based. Capture-HPC
detects attacks against clients by modifying system calls and intercepting and registering
their use. The low-interaction component is intended as filter for this component. HSN
features a workflow process, whereby URLs are processed based on priorities and confi-
dence levels assigned to their sources. These sources can be of various types, including
spam URLs, URLs returned as a result of search engine queries, lists of URLs pulled
through HTTP, lists of URLs published in files, as well as manually entered URLs.

An architecture overview of the HoneySpider Network is shown in Fig. 3.12.

Data contribution to WOMBAT

When the HoneySpider Network will be completed and operational, the new HSN sensor
will contribute information about existing and emerging Web browser threats, and will
provide to WOMBAT, through an API:

� lists of URLs suspected or verified as spreading malware,

� the method used to detect the URL, such as, for example, through a machine
learning heuristic, or antivirus engine detection or through a high interaction hon-
eypot,

� the type of source through which the URL was obtained, such as spam, search
engine query etc,

� exploit information, if possible along with information as to whether the latest
patched versions of applications were affected,

70 SEVENTH FRAMEWORK PROGRAMME

3.4 Existing Database

Figure 3.12: HoneySpider Network architecture overview.

� malware obtained, if any, along with associated meta-data, such as timestamps,
MD5/SHA1 hashes of the data, output from external analysis engines,

� search capabilities, with search parameters including timestamps, URLs, malware
hashes returning suspicious or malicious URLs and the associated malware.

The API will be compliant with the WAPI introduced in this document.

3.4 Existing Database

As mentioned in the previous sections, one of the main components that combine the
WOMBAT infrastructure is the centralized database. This section will cover the current
status of this component. At this point, it is worth briefly reminding the reader that the
purpose of this database is threefold: i) provide a long term storage for data sources that
do not provide it, ii) precompute and store the aggregated results of the most frequently
asked queries and iii) act as a proxy to hide the various data sources that can be queried
to answer a given question.

FP7-ICT-216026-WOMBAT 71

3 Components

Currently,the database provides long term storage and also is able to hide the identities
of the data sources. That is, it already implements purposes number (i) and (iii), but it
does not yet provides storage for aggregated results. This will be implemented later for
two reasons. Firstly, the WAPI should get more mature in order to be able to define all
the data types/structures. Secondly, as more and more data sources will be integrated
in the WOMBAT infrastructure and users will start to actually using it we will be able
to tell which queries are ”hot”. These queries will be the ones that will be periodically
precomputed and stored in the database for efficiency.

In the next section we give a detailed description of the current database’s structure.
In Section 3.4.3 we summarise the classes of queries that are supported by the database
and finally Section 3.4.4 provides some examples of usage.

3.4.1 Structure

Figure 3.13 shows the current schema of the database. The core of the structure is
the elements table which is used to distinguish all the elements stored. This table is
”connected” to some other ones that contain information which is more specific to the
type of each element. These are what we call the Data type specific tables. As shown
in the schema of the database, these tables share some connections with the files table,
which falls in the category General use tables because it can be used by any Data type
specific table. Finally, there are three other tables on the right side of the schema, namely
Higher level tables, that are somehow broken away from the previous tables. These tables
are used to store more higher level information that is not used for the storage of the
raw data but to store some more user friendly names and also some relationships.

In the following subsections we will go through each of the four categories that where
previously mentioned. These are: Core table, Data type specific tables, General use
tables, and Higher level tables.

Core table

The abstraction of the data unit in the WOMBAT database is the element. Each element
has some fundamental attributes that are stored in the elements table. These attributes
include a human readable name, a unique ID used to differentiate every element, a data
source origin, a data type and the date that it was added to the database. All these
attributes can be also seen from the figure of the schema (fig. 3.13).

72 SEVENTH FRAMEWORK PROGRAMME

3.4 Existing Database

Figure 3.13: Database Schema

Data type specific tables

The category next to the Core table is the Data type specific tables. These tables are
used to store some attributes that are related to each element’s data type. For example,
a malware sample from the Virustotal system has different metadata than a summary
of the Top 100 attacked TCP ports.

Currently, the database supports the storage of four data types, which means that it
contains four tables of this category. These are:

� malware. As its name implies, this table is used to store malware metadata.
These include the original name of the binary, the names given to that malware
by a set of Anti-Virus vendors etc.

� traces. Similarly, the traces table is use to store PCAP network traffic traces
metadata. Currently, the metadata that can be stored are just the destination
TCP port, but this table can be easily extended to include more as needed (e.g.
the duration of the trace file, the protocol of each layer etc).

� ip sources. One of the goals of the database is to provide long term storage

FP7-ICT-216026-WOMBAT 73

3 Components

for data sources that do not support it. This table fulfils that need for the IP
addresses of attack sources. Using this table, the WOMBAT database enables
saving the history over data sets that are available in the form of daily TOP-X
lists of IP addresses of attack source. Technically speaking, this is done efficiently
be storing only the different parts of that list daily.

� top ports. This tables is much more like the previous one - ip sources - but for a
different type of data, that is the attacked TCP ports.

General use tables

The common characteristic among the tables falling to this category is the supply of a
common place to store attributes shared by more than one data types. Currently this
category contains just one table, the files table, which provides the storage of files to
any data type that needs it. For example, both malware samples and PCAP network
traffic traces have to store files, so they both use the files table which is more efficient
than duplicating the effort for file storage.

Higher level tables

This category consists of tables that are storing somewhat more high level information
about the system. None of these tables is used for raw data storage. Thats why these
tables are not connected to any of the previous described ones.

There are two types of Higher level tables: mappings and relationships. Currently,
there are two tables that provide mappings and one that represents a relationship. All
of them are described in more details next.

� sources. This table provides a simple mapping between IDs and the human
readable names of the data sources.

� types. Similar to the previous but the mapping provided is between IDs and the
types of data. For example, ’malware samples’, ’IP addresses of attack sources’,
’PCAP network traffic traces’ etc.

� provides. As opposed to the previous two tables, this one provides a relation-
ship, namely provides. This relationship is between the data sources and the data
types and states what types of data is provided by each data source and whether
this is stored locally to the database of should be fetched by a remote repository.
In other words, this table stores the who-provides-what-and-how relationship.

74 SEVENTH FRAMEWORK PROGRAMME

3.4 Existing Database

Figure 3.14: Hierarchical Overview

3.4.2 Extensibility

A clear target that is always in our mind during the designing of the database is the
extensibility. The design of the database should be easily extensible to include more
data types and data sources without altering its previous functionality. In addition, it
should also leave space for improving its performance by making more efficient storage
decisions.

We believe that both of this goals are achieved by the current preliminary design of
the database. Figure 3.14 shows a hierarchical view of the tables used for data storage.
In the top layer is the Core table, the elements. Right bellow is the Data type specific
tables, e.g. malware, ip sources etc. Finally, on the bottom layer are the General use
tables, which currently consists of just the files table. As far as the first goal is concerned,
that is extending the data types and data sources, our database design deals with it in
the following way. If we want to add a new data type from a data source that does not
provide long term storage then what we have to do is just add an appropriate table on
the middle layer in the hierarchy. In addition, the current design supports the addition
of new data sources for already integrated data types for free. Technically, we can reuse
the tables for storing data type specific attributes for more that one data sources. Also,
as far as the second goal is concerned, we can improve the overall robustness of the
database by adding more General use tables in the bottom layer as needed.

FP7-ICT-216026-WOMBAT 75

3 Components

3.4.3 Queries

In this section we will go through the queries that are currently supported by the WOM-
BAT database. The number and the nature of these queries depends on the current data
sources and also on the current data types integrated to the database. Information on
both these quantities is stored in the Higher level table provides. Recall that this table
keeps track of who (data source) provides what (data types) and how (local or remote).

Table 3.2 shows the contents of the provides table as of now. These are also somehow
represent the progress of the integration of other systems to the WOMBAT infrastruc-
ture. Each cell of the table may have three possible values on for each pair of “data source
- data type”. These are: blank, local or remote. Blank means that this combination is
not integrated to the WOMBAT infrastructure. This may happen either simply due to
the fact that the specified source does not provide the specified data type or because the
integration is still in progress. “local” means that the current pair is already integrated
and also the actual data are stored locally to the WOMBAT database. The reason for
the local storage can be because a data source may not provide long term storage to its
data (e.g. Sans.org). Finally,“remote” also denotes that the pair is already integrated
and the actual data are stored to a remote repository - not in the WOMBAT database.

Currently, we consider the data query as a three step procedure. On each step the
user in narrowing his search criteria in order to express the actual data subset he wants.
The steps are the following:

1. Data type selection. The first step is to select the data type the user is inter-
esting for. Currently, as shown in table 3.2, these are malware, PCAP trace files,
Top sources and Top Ports.

2. Data source(s) selection. After the data type is selected then the user should
select the data source or sources he wants to query. The set of the data sources
that provide the actual data can be determined by querying the provides table.

3. Search parameters. Finally, after selecting the data type and data source(s),
the user should now enter the actual search parameters. For example, if the user
wants to query the database for a set of malware samples then some possible search
parameters could be the original name of the binary, the name that this sample
was identified by other AntiVirus vendors, the date that this sample was inserted
to the database etc.

After the successful completion of the previous procedure, a subset of the database’s
data will have been selected. This subset can then be used for further processing.

76 SEVENTH FRAMEWORK PROGRAMME

3.4 Existing Database

Source/Type Malware PCAP Trace Top Sources Top Ports
VirusTotal local
NEMU local
Leurré.com remote remote
Sans.org local local
Offensive Computing remote
SGNET remote

Table 3.2: provides table contents.

After a subset of the database’s data has been selected using this procedure, further
processing can incur. In this preliminary stage of the database, the processing we have
considered is simple operations like intersection or union between the resultsets of differ-
ent data sources. Although, this procedure is sufficient for this type of operations, as the
database evolves and new data types and processing operations are added we may need
to revise it. For instance, under some circumstances we may want to correlate different
data types, for example the destination port of the PCAP network traffic trace files with
the Top Ports.

3.4.4 Sample Usage

In this section we provide a couple of examples for the better understating of the current
design of the WOMBAT database. The first example has to do with data insertion
whereas the second one with data retrieval.

Example 1: Malware sample insertion

In this example we suppose that a new malware sample arrives from a data source that
does not provide long term storage. In that case, the malware sample should be saved
among its metadata. This is done in the following three steps:

1. Element insertion. The first step is to insert a new record in the elements table
containing a newly generated unique element ID, a name, source id with the value
of the actual source, type id with the value of malware and the current date.

2. File insertion. Next, a new record is inserted to the general use file table. This
record contains again a newly generated unique file ID, the path of the file on the
filesystem, its checksum and its size.

FP7-ICT-216026-WOMBAT 77

3 Components

3. Malware insertion. Finally, a new record is inserted in the malware table, recall
that it is one of the Data type specific tables. This record is connected to the
previously inserted element and file by storing the previously generated IDs. It
also contains the actual malware metadata, like the original binary name etc.

After the successful completion of the previous steps, the new malware sample will
have been added to the WOMBAT database.

Example 1: Data query

The scenario in this example of usage is the following: we want to query the database in
order to get the Top TCP ports attacked as seen by all the data sources. This includes
the following steps:

1. Find candidate data sources. The first step is to enumerate the data sources
that provide Top TCP ports attacked by querying the provides table. Recall that
this table stores the who-provides-what-and-how relationship.

2. Retrieve the results. Generally the data from the sources that provide Top
TCP ports attacked can be either stored locally, if the specific data source does not
support long term storage, or remotely. In the first case our database will have to
be queried whereas in the second one, the results must be fetched from a remote
repository.

3. Process. After the results from each data source, either locally or remotely stored,
are gathered, further process can incur - like correlation.

4. Present the results. Finally, the results are presented to the user.

78 SEVENTH FRAMEWORK PROGRAMME

Bibliography

[1] Android. http://code.google.com/android/.

[2] Anubis. http://anubis.iseclab.org/.

[3] Bluez website. http://www.bluez.org/.

[4] Cabir. Analysis available online at http://www.symantec.com/security_
response/writeup.jsp?docid=2004-061419-4412-99.

[5] Cardblock. Analysis available online at http://www.symantec.com/security_
response/writeup.jsp?docid=2005-100315-4714-99.

[6] Commwarrior. Analysis available online at http://www.symantec.com/security_
response/writeup.jsp?docid=2005-030721-2716-99.

[7] DNSBL definition on wikipedia.org. http://en.wikipedia.org/wiki/DNSBL.

[8] Gpsd website. http://gpsd.berlios.de/.

[9] Home page of “Network of Affined Honeypots (NOAH)”. Available online at http:
//www.fp6-noah.org.

[10] Home page of the Stella Doradus group. Available online at http://www.
stelladoradus.com.

[11] JSR-000082 Java(TM) APIs for Bluetooth 1.1 Maintenance Release. Chapter 6.
Available online at http://www.jcp.org/en/jsr/detail?id=82.

[12] Leurre.com. http://www.leurrecom.org/.

[13] Microsoft security bulletin nr. 30, 2008. Available online at http://www.
microsoft.com/technet/security/Bulletin/MS08-030.mspx.

[14] Motorola RAZR JPG Processing Stack Overflow Vulnerability. Available online at
http://www.zerodayinitiative.com/advisories/ZDI-08-033/.

79

http://code.google.com/android/
http://anubis.iseclab.org/
http://www.bluez.org/
http://www.symantec.com/security_response/writeup.jsp?docid=2004-061419-4412-99
http://www.symantec.com/security_response/writeup.jsp?docid=2004-061419-4412-99
http://www.symantec.com/security_response/writeup.jsp?docid=2005-100315-4714-99
http://www.symantec.com/security_response/writeup.jsp?docid=2005-100315-4714-99
http://www.symantec.com/security_response/writeup.jsp?docid=2005-030721-2716-99
http://www.symantec.com/security_response/writeup.jsp?docid=2005-030721-2716-99
http://en.wikipedia.org/wiki/DNSBL
http://gpsd.berlios.de/
http://www.fp6-noah.org
http://www.fp6-noah.org
http://www.stelladoradus.com
http://www.stelladoradus.com
http://www.jcp.org/en/jsr/detail?id=82
http://www.leurrecom.org/
http://www.microsoft.com/technet/security/Bulletin/MS08-030.mspx
http://www.microsoft.com/technet/security/Bulletin/MS08-030.mspx
http://www.zerodayinitiative.com/advisories/ZDI-08-033/

Bibliography

[15] Multidrop. Analysis available online at http://research.sunbelt-software.
com/threatdisplay.aspx?name=Trojan.MultiDrop.IC\&threatid=198898.

[16] Openmoko. http://www.openmoko.com.

[17] Pbstealer.a. Analysis available online at http://www.symantec.com/security_
response/writeup.jsp?docid=2005-112216-0519-99.

[18] Pybluez website. http://org.csail.mit.edu/pybluez/.

[19] Secur obex server. Available online at http://www.mulliner.org/bluetooth/
sobexsrv.php.

[20] Trifinite.org website. http://www.trifinite.org.

[21] VirusTotal. http://www.virustotal.com/.

[22] P. Betouin. Dossier sécurité bluetooth - partie 5 - scénarios d’attaques & synthése.
Available online at http://www.secuobs.com/news/05022006-bluetooth5.
shtml.

[23] L. Carettoni. “moddare” un dongle bluetooth con 14e. Available online at http:
//www.ikkisoft.com/stuff/moddongle.pdf, 2005.

[24] L. Carettoni, C. Merloni, and S. Zanero. Studying bluetooth malware propagation:
The bluebag project. Security & Privacy, IEEE, 5(2):17–25, March-April 2007.

[25] M. Dacier, F. Pouget, and H. Debar. Attack processes found on the internet. In
NATO Symposium IST-041/RSY-013, Toulouse, France, April 2004.

[26] M. Dacier, F. Pouget, and H. Debar. Honeypots, a practical mean to validate
malicious fault assumptions. In Proceedings of the 10th Pacific Ream Dependable
Computing Conference (PRDC04), Tahiti, February 2004.

[27] C. Gehrmann, J. Persson, and B. Smeets. Bluetooth Security. Artech House, Inc.,
Norwood, MA, USA, 2004.

[28] S. Hager, C.T.; Midkiff. Demonstrating vulnerabilities in bluetooth security. In
Global Telecommunications Conference GLOBECOM ’03, volume 3, pages 1420 –
1424, December 2003.

[29] Internet Archive. Heritrix - home page. Available online at http://crawler.
archive.org/.

80 SEVENTH FRAMEWORK PROGRAMME

http://research.sunbelt-software.com/threatdisplay.aspx?name=Trojan.MultiDrop.IC\&threatid=198898
http://research.sunbelt-software.com/threatdisplay.aspx?name=Trojan.MultiDrop.IC\&threatid=198898
http://www.openmoko.com
http://www.symantec.com/security_response/writeup.jsp?docid=2005-112216-0519-99
http://www.symantec.com/security_response/writeup.jsp?docid=2005-112216-0519-99
http://org.csail.mit.edu/pybluez/
http://www.mulliner.org/bluetooth/sobexsrv.php
http://www.mulliner.org/bluetooth/sobexsrv.php
http://www.trifinite.org
http://www.virustotal.com/
http://www.secuobs.com/news/05022006-bluetooth5.shtml
http://www.secuobs.com/news/05022006-bluetooth5.shtml
http://www.ikkisoft.com/stuff/moddongle.pdf
http://www.ikkisoft.com/stuff/moddongle.pdf
http://crawler.archive.org/
http://crawler.archive.org/

Bibliography

[30] Internet Storm Center. Home page of “Internet Storm Center”. Available online at
http://isc.sans.org.

[31] M. Jakobsson and S. Wetzel. Security weaknesses in bluetooth. In CT-RSA 2001:
Proceedings of the 2001 Conference on Topics in Cryptology, pages 176–191, Lon-
don, UK, 2001. Springer-Verlag.

[32] P. Kijewski, C. Overes, and R. Spoor. The HoneySpider Network: Fighting client-
side threats. 20th Annual FIRST Conference on Computer Security Incident Han-
dling, June 2008.

[33] A. Kokos, A. Galante, and S. Zanero. Bluebat: Towards practical bluetooth hon-
eypots. Submitted for publication to the EC2ND conference, 2008.

[34] C. Leita and M. Dacier. SGNET: a worldwide deployable framework to support
the analysis of malware threat models. In 7th European Dependable Computing
Conference (EDCC 2008), May 2008.

[35] C. Leita, M. Dacier, and F. Massicotte. Automatic handling of protocol depen-
dencies and reaction to 0-day attacks with ScriptGen based honeypots. In 9th
International Symposium on Recent Advances in Intrusion Detection (RAID), Sep
2006.

[36] C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an automated script genera-
tion tool for honeyd. In 21st Annual Computer Security Applications Conference,
December 2005.

[37] C. Leita, V. H. Pham, O. Thonnard, E. Ramirez-Silva, F. Pouget, E. Kirda, and
M. Dacier. The Leurre.com Project: Collecting Internet Threats Information using
a Worldwide Distributed Honeynet. In 1st Wombat Workshop, 2008.

[38] Maxmind. Ip geolocation and online fraud prevention, www.maxmind.com.

[39] R. Morrow. Bluetooth Implementation and Use. McGraw-Hill Professional, 2002.

[40] M. Moser. Busting the bluetooth®myth – getting raw access. Available on-
line at http://www.remote-exploit.org/research/busting_bluetooth_myth.
pdf, 2007.

[41] mozilla.org. Rhino: Javascript for java. Available online at http://www.mozilla.
org/rhino/.

FP7-ICT-216026-WOMBAT 81

http://isc.sans.org
www.maxmind.com
http://www.remote-exploit.org/research/busting_bluetooth_myth.pdf
http://www.remote-exploit.org/research/busting_bluetooth_myth.pdf
http://www.mozilla.org/rhino/
http://www.mozilla.org/rhino/

Bibliography

[42] NASK/CERT Polska. Public home page of project arakis. Available online at
http://www.arakis.pl.

[43] S. Needleman and C. Wunsch. A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins. J Mol Biol. 48(3):443-53, 1970.

[44] N. Provos. A virtual honeypot framework. In 12th USENIX Security Symposium,
pages 1–14, August 2004.

[45] Y. Shaked and A. Wool. Cracking the bluetooth pin. In MobiSys ’05: Proceedings
of the 3rd international conference on Mobile systems, applications, and services,
pages 39–50, New York, NY, USA, 2005. ACM Press.

[46] The Honeynet Project. Capture-HPC Client Honeypot/Honeyclient. Available
online at https://projects.honeynet.org/capture-hpc.

[47] The University of Waikato. Weka 3 - data mining with open source machine learning
software in java. Available online at http://www.cs.waikato.ac.nz/ml/weka/.

[48] M. Zalewski and W. Stearns. Passive OS Fingerprinting Tool.

82 SEVENTH FRAMEWORK PROGRAMME

http://www.arakis.pl
https://projects.honeynet.org/capture-hpc
http://www.cs.waikato.ac.nz/ml/weka/

	Introduction
	Architectural Overview
	General Design
	Components
	Sources
	WAPI
	Database

	Usage
	Tactical vs. Strategic analysis
	WAPI
	Database

	Components
	WAPI
	Requirements
	Architecture
	WAPI concepts
	Protocol primitives
	Conclusion

	Existing Sources
	Hispasec
	Leurré.com
	Arakis
	Anubis
	Other Sources

	New Sources
	BlueBat
	VU's new sensors
	NASK's HoneySpider Network (HSN) sensor

	Existing Database
	Structure
	Extensibility
	Queries
	Sample Usage

